organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,8-Di­bromo-5-hydr­­oxy-4-oxo-2-phenyl-4H-chromen-7-yl acetate

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, bDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India, cDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, and dDepartment of Chemistry, Kandasamy Kandar College, Velur 638 182, India
*Correspondence e-mail: vembu57@yahoo.com

(Received 12 January 2009; accepted 16 February 2009; online 21 February 2009)

In the title compound, C17H10Br2O5, the chromene ring is almost planar with minimal puckering [total puckering amplitude = 0.067 (4) Å]. The dihedral angle between chromeme ring system and phenyl ring is 3.7 (2)°. The crystal structure is stabilized by intermolecular C—H⋯O inter­actions and an intramolecular O—H⋯O hydrogen bond also occurs.

Related literature

For the biological and pharmacological properties of benzopyrans and their derivatives, see: Brooks (1998[Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.]); Hatakeyama et al. (1988[Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1022-1024.])); Hyana & Saimoto (1987[Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.]); Tang et al. (2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]). For the importance of 4H-chromenes, see: Liu et al. (2007[Liu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63, o90-o91.]); Wang, Fang et al. (2003[Wang, J.-F., Fang, M.-J., Huang, H.-Q., Li, G.-L., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1517-o1518.]); Wang, Zhang et al. (2003[Wang, J.-F., Zhang, Y.-J., Fang, M.-J., Huang, Y.-J., Wei, Z.-B., Zheng, Z.-H., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1244-o1245.]). For hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, pp. 125-167. Amsterdam: Elsevier.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11-40. New York: Oxford University Press.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C17H10Br2O5

  • Mr = 454.07

  • Monoclinic, P 21 /n

  • a = 14.072 (3) Å

  • b = 5.5586 (13) Å

  • c = 21.333 (5) Å

  • β = 104.501 (4)°

  • V = 1615.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.04 mm−1

  • T = 293 K

  • 0.55 × 0.23 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.157, Tmax = 0.547

  • 13326 measured reflections

  • 3773 independent reflections

  • 2245 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.105

  • S = 0.99

  • 3773 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12⋯O11 0.82 1.86 2.584 (4) 147
C3—H3⋯O11i 0.93 2.57 3.497 (4) 171
C24—H24⋯O11i 0.93 2.48 3.387 (5) 166
C17—H17A⋯O16ii 0.96 2.58 3.309 (6) 133
Symmetry codes: (i) -x+1, -y-1, -z; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chromenes (benzopyrans) and their derivatives have numerous biological and pharmacological properties (Tang et al., 2007) such as antisterility (Brooks, 1998) and anticancer activity (Hyana & Saimoto, 1987). In addition, polyfunctionalized chromene units are present in numerous natural products (Hatakeyama et al., 1988). 4H-chromenes are important synthons for some natural products (Liu et al., 2007). As a part of our structural investigations on 4H-chromene derivatives and compounds containing the benzopyran fragment, the single-crystal X-ray diffraction study on the title compound was carried out.

The chromene ring is almost planar similarly as those found in the related chromene derivatives (Wang, Fang et al., 2003; Wang, Zhang et al., 2003). The total puckering amplitude of the chromene ring is 0.067 (4) Å in the title structure. The interplanar angle between the chromene ring and the 2-phenyl ring is 3.7 (2)° thereby indicating the almost coplanar arrangement (Fig. 1). The OCOCH3 substituent at C7 is non-coplanar with the chromene ring as discerned from the interplanar angle of 87.4 (1)°.

The crystal structure is stabilized by the interplay of C–H···O and O–H···O interactions (Fig. 2 & Table 1). The H-bond distances agree with those reported in literature (Desiraju & Steiner, 1999; Desiraju, 1989). The C20–H20···O1 interaction generates a motif of graph set (Bernstein et al., 1995; Etter, 1990) S(5). An S(6) motif is formed by O12–H12···O11 interaction. This interaction is also responsible for the formation of a cooperative H-bonded network (Fig. 3). The C3–H3···O11i and C24–H24···O11i interactions constitute a pair of bifurcated acceptor bonds generating a ring of graph set R12(7). There are no significant C—H···π and π···π interactions.

Related literature top

For the biological and pharmacological properties of benzopyrans and their derivatives, see: Brooks (1998); Hatakeyama et al. (1988)); Hyana & Saimoto (1987); Tang et al. (2007). For the importance of 4H-chromenes, see: Liu et al. (2007); Wang, Fang et al. (2003); Wang, Zhang et al. (2003). For hydrogen bonding, see: Bernstein et al. (1995); Desiraju (1989); Desiraju & Steiner (1999); Etter (1990).

Experimental top

In to the RBF, a suspension of chrysin (1 g, 3.93 mmol) and potassium carbonate (1.64 g, 11.81 mmol) in dimethyl formamide (10 ml) were added. The reaction mixture was heated to 383 K for 2–3 hrs. The reaction mixture was cooled to 313 K and acetyl chloride (1.23 g, 15.74 mmol) was slowly added with the help of dropping funnel. The reaction mixture was maintained for 8–9 hr at 313 K and monitored by HPLC. After completion of the reaction, the contents were quenched with water and stirred for 30–45 min at 303 K. The crude solid obtained was filtered and washed with plenty of water followed by methanol and dried under vacuum at 343 K. The acetylated compound was then taken in RBF and dissolved in dichloromethane (10 ml) and cooled to 273 K. Bromine (0.6 ml, 11.81 mmol) was added dropwise over a period of 15–20 min. The reaction mixture was maintained at 273 K for 5–6 hr. After completion of the reaction, the reaction mixture was quenched in ice water and extracted with dichloromethane (10 ml) and purified by column chromatography using ethyl acetate: n-hexane (20:80). The crude brominated product was then dissolved in dichloromethane (10 ml) and equal amount of n-Hexane (10 ml). The clear solution was kept for a week without stirring. Diffraction quality needle shaped crystals of average size 0.23 mm were obtained which were filtered and washed with n-hexane and dried under vacuum at 343 K. Yield: 80%

Refinement top

All the H-atoms were observed in the difference electron density map. However, they were situated into idealized positions with C–H = 0.93 and 0.96 Å for aryl and methylene H, respectively and O–H = 0.82Å for hydroxyl H-atoms and and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq(C) for C—H and Uiso(H)=1.5Ueq(O) for O—H.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing viewed down the b-axis. Dashed lines represent the weak C–H···O interactions within the lattice.
[Figure 3] Fig. 3. Cooperative H-bonded network of O–H···O interactions viewed down the a-axis
6,8-Dibromo-5-hydroxy-4-oxo-2-phenyl-4H-chromen-7-yl acetate top
Crystal data top
C17H10Br2O5F(000) = 888
Mr = 454.07Dx = 1.867 Mg m3
Monoclinic, P21/nMelting point = 433–435 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 14.072 (3) ÅCell parameters from 475 reflections
b = 5.5586 (13) Åθ = 2.0–27.0°
c = 21.333 (5) ŵ = 5.04 mm1
β = 104.501 (4)°T = 293 K
V = 1615.6 (7) Å3Rectangular, brown
Z = 40.55 × 0.23 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3773 independent reflections
Radiation source: fine-focus sealed tube2245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.3 pixels mm-1θmax = 28.0°, θmin = 2.0°
ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
k = 77
Tmin = 0.157, Tmax = 0.547l = 2528
13326 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0505P)2]
where P = (Fo2 + 2Fc2)/3
3773 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C17H10Br2O5V = 1615.6 (7) Å3
Mr = 454.07Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.072 (3) ŵ = 5.04 mm1
b = 5.5586 (13) ÅT = 293 K
c = 21.333 (5) Å0.55 × 0.23 × 0.12 mm
β = 104.501 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3773 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
2245 reflections with I > 2σ(I)
Tmin = 0.157, Tmax = 0.547Rint = 0.046
13326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 0.99Δρmax = 0.57 e Å3
3773 reflectionsΔρmin = 0.37 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75605 (17)0.0593 (5)0.00552 (13)0.0490 (7)
C20.6921 (3)0.2392 (7)0.03148 (18)0.0441 (9)
C30.6143 (3)0.2872 (7)0.00800 (19)0.0444 (9)
H30.57340.41460.02560.069 (6)*
C40.5916 (3)0.1506 (7)0.04288 (19)0.0429 (9)
C50.6440 (3)0.1983 (7)0.11713 (18)0.0424 (9)
C60.7094 (3)0.3853 (7)0.13882 (18)0.0455 (9)
C70.7897 (3)0.4160 (7)0.11257 (19)0.0484 (10)
C80.8070 (3)0.2636 (7)0.0658 (2)0.0474 (10)
C90.7396 (3)0.0821 (7)0.04300 (18)0.0416 (9)
C100.6588 (3)0.0450 (6)0.06832 (18)0.0419 (9)
O110.51819 (18)0.1904 (5)0.06422 (13)0.0506 (7)
O120.5671 (2)0.1687 (5)0.14257 (14)0.0550 (7)
H120.53750.04580.12790.101 (9)*
Br130.68667 (3)0.60136 (8)0.20112 (2)0.06240 (17)
O140.8497 (2)0.6151 (5)0.13072 (15)0.0600 (8)
C150.9279 (3)0.5925 (8)0.1845 (2)0.0523 (10)
O160.9461 (2)0.4080 (6)0.21218 (15)0.0660 (8)
C170.9808 (3)0.8239 (8)0.1978 (3)0.0747 (15)
H17A0.93740.94480.20690.101 (9)*
H17B1.00330.87110.16070.101 (9)*
H17C1.03610.80620.23450.101 (9)*
Br180.91815 (3)0.30002 (10)0.03298 (2)0.06851 (18)
C190.7192 (3)0.3583 (7)0.08556 (19)0.0471 (10)
C200.8013 (3)0.2850 (9)0.1052 (2)0.0607 (12)
H200.83970.15870.08410.069 (6)*
C210.8258 (3)0.4012 (10)0.1563 (2)0.0741 (14)
H210.88100.35250.16940.069 (6)*
C220.7703 (4)0.5856 (10)0.1876 (2)0.0751 (14)
H220.78790.66290.22170.069 (6)*
C230.6888 (4)0.6571 (9)0.1692 (2)0.0781 (15)
H230.65070.78280.19080.069 (6)*
C240.6626 (3)0.5442 (8)0.1186 (2)0.0650 (12)
H240.60650.59300.10650.069 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0447 (14)0.0548 (18)0.0464 (16)0.0054 (12)0.0096 (12)0.0050 (14)
C20.044 (2)0.046 (2)0.039 (2)0.0008 (17)0.0044 (18)0.0001 (19)
C30.044 (2)0.042 (2)0.043 (2)0.0052 (18)0.0043 (18)0.0035 (19)
C40.042 (2)0.046 (3)0.038 (2)0.0027 (17)0.0031 (17)0.0030 (18)
C50.045 (2)0.043 (2)0.037 (2)0.0052 (18)0.0067 (18)0.0068 (19)
C60.058 (2)0.034 (2)0.038 (2)0.0010 (18)0.0007 (18)0.0031 (18)
C70.057 (2)0.035 (2)0.045 (2)0.0042 (19)0.003 (2)0.005 (2)
C80.043 (2)0.046 (3)0.049 (3)0.0046 (18)0.0034 (18)0.009 (2)
C90.044 (2)0.041 (2)0.036 (2)0.0044 (17)0.0052 (17)0.0021 (19)
C100.044 (2)0.039 (2)0.039 (2)0.0016 (17)0.0027 (17)0.0013 (17)
O110.0463 (14)0.0556 (17)0.0504 (17)0.0071 (13)0.0128 (13)0.0059 (14)
O120.0583 (17)0.054 (2)0.0540 (19)0.0002 (14)0.0171 (15)0.0058 (14)
Br130.0923 (4)0.0435 (3)0.0465 (3)0.0055 (2)0.0083 (2)0.0046 (2)
O140.0682 (18)0.0392 (16)0.064 (2)0.0116 (14)0.0006 (16)0.0060 (15)
C150.054 (2)0.040 (2)0.062 (3)0.005 (2)0.011 (2)0.013 (2)
O160.071 (2)0.0481 (19)0.067 (2)0.0012 (16)0.0046 (16)0.0045 (17)
C170.067 (3)0.052 (3)0.101 (4)0.014 (2)0.015 (3)0.014 (3)
Br180.0579 (3)0.0773 (4)0.0723 (4)0.0162 (2)0.0200 (2)0.0048 (3)
C190.048 (2)0.052 (3)0.038 (2)0.0083 (19)0.0036 (18)0.0017 (19)
C200.056 (2)0.075 (3)0.050 (3)0.003 (2)0.012 (2)0.003 (2)
C210.064 (3)0.105 (4)0.058 (3)0.003 (3)0.025 (2)0.011 (3)
C220.083 (3)0.094 (4)0.051 (3)0.011 (3)0.024 (3)0.020 (3)
C230.091 (4)0.081 (4)0.065 (3)0.015 (3)0.026 (3)0.033 (3)
C240.070 (3)0.066 (3)0.063 (3)0.006 (2)0.024 (2)0.012 (3)
Geometric parameters (Å, º) top
O1—C91.365 (4)O12—H120.8200
O1—C21.366 (4)O14—C151.383 (5)
C2—C31.340 (5)C15—O161.179 (5)
C2—C191.461 (5)C15—C171.478 (6)
C3—C41.425 (5)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—O111.249 (4)C17—H17C0.9600
C4—C101.454 (5)C19—C201.385 (5)
C5—O121.337 (4)C19—C241.385 (6)
C5—C61.388 (5)C20—C211.383 (6)
C5—C101.401 (5)C20—H200.9300
C6—C71.392 (6)C21—C221.359 (7)
C6—Br131.877 (4)C21—H210.9300
C7—C81.376 (6)C22—C231.362 (7)
C7—O141.387 (4)C22—H220.9300
C8—C91.387 (5)C23—C241.376 (6)
C8—Br181.878 (4)C23—H230.9300
C9—C101.391 (5)C24—H240.9300
C9—O1—C2120.6 (3)C15—O14—C7117.5 (3)
C3—C2—O1120.7 (3)O16—C15—O14121.5 (4)
C3—C2—C19127.2 (4)O16—C15—C17128.7 (4)
O1—C2—C19112.1 (3)O14—C15—C17109.8 (4)
C2—C3—C4122.6 (4)C15—C17—H17A109.5
C2—C3—H3118.7C15—C17—H17B109.5
C4—C3—H3118.7H17A—C17—H17B109.5
O11—C4—C3123.1 (3)C15—C17—H17C109.5
O11—C4—C10121.1 (3)H17A—C17—H17C109.5
C3—C4—C10115.8 (3)H17B—C17—H17C109.5
O12—C5—C6119.5 (4)C20—C19—C24118.9 (4)
O12—C5—C10120.8 (3)C20—C19—C2120.5 (4)
C6—C5—C10119.6 (3)C24—C19—C2120.6 (4)
C5—C6—C7119.6 (4)C21—C20—C19119.5 (4)
C5—C6—Br13120.0 (3)C21—C20—H20120.3
C7—C6—Br13120.4 (3)C19—C20—H20120.3
C8—C7—O14119.2 (4)C22—C21—C20121.0 (5)
C8—C7—C6121.7 (4)C22—C21—H21119.5
O14—C7—C6119.0 (4)C20—C21—H21119.5
C7—C8—C9118.2 (4)C21—C22—C23120.0 (5)
C7—C8—Br18121.3 (3)C21—C22—H22120.0
C9—C8—Br18120.5 (3)C23—C22—H22120.0
O1—C9—C8117.0 (3)C22—C23—C24120.3 (5)
O1—C9—C10121.3 (3)C22—C23—H23119.9
C8—C9—C10121.7 (4)C24—C23—H23119.9
C9—C10—C5119.1 (3)C23—C24—C19120.4 (4)
C9—C10—C4119.0 (3)C23—C24—H24119.8
C5—C10—C4121.9 (3)C19—C24—H24119.8
C5—O12—H12109.5
C9—O1—C2—C32.9 (5)O1—C9—C10—C40.8 (5)
C9—O1—C2—C19176.1 (3)C8—C9—C10—C4179.1 (3)
O1—C2—C3—C42.4 (6)O12—C5—C10—C9179.8 (3)
C19—C2—C3—C4176.5 (4)C6—C5—C10—C90.7 (5)
C2—C3—C4—O11178.4 (4)O12—C5—C10—C40.4 (5)
C2—C3—C4—C100.3 (5)C6—C5—C10—C4178.7 (3)
O12—C5—C6—C7179.8 (3)O11—C4—C10—C9180.0 (3)
C10—C5—C6—C71.1 (5)C3—C4—C10—C91.3 (5)
O12—C5—C6—Br132.3 (5)O11—C4—C10—C50.6 (6)
C10—C5—C6—Br13176.8 (3)C3—C4—C10—C5178.2 (3)
C5—C6—C7—C80.7 (6)C8—C7—O14—C1595.3 (4)
Br13—C6—C7—C8178.6 (3)C6—C7—O14—C1589.3 (4)
C5—C6—C7—O14174.6 (3)C7—O14—C15—O163.5 (6)
Br13—C6—C7—O143.2 (5)C7—O14—C15—C17177.8 (4)
O14—C7—C8—C9172.6 (3)C3—C2—C19—C20178.7 (4)
C6—C7—C8—C92.7 (6)O1—C2—C19—C200.3 (5)
O14—C7—C8—Br187.0 (5)C3—C2—C19—C240.4 (6)
C6—C7—C8—Br18177.7 (3)O1—C2—C19—C24179.4 (4)
C2—O1—C9—C8178.8 (3)C24—C19—C20—C211.1 (6)
C2—O1—C9—C101.3 (5)C2—C19—C20—C21179.7 (4)
C7—C8—C9—O1177.0 (3)C19—C20—C21—C220.2 (7)
Br18—C8—C9—O12.6 (5)C20—C21—C22—C230.5 (8)
C7—C8—C9—C103.1 (6)C21—C22—C23—C240.3 (8)
Br18—C8—C9—C10177.4 (3)C22—C23—C24—C190.6 (8)
O1—C9—C10—C5178.7 (3)C20—C19—C24—C231.4 (7)
C8—C9—C10—C51.4 (5)C2—C19—C24—C23179.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O110.821.862.584 (4)147
C20—H20···O10.932.342.679 (5)101
C3—H3···O11i0.932.573.497 (4)171
C24—H24···O11i0.932.483.387 (5)166
C17—H17A···O16ii0.962.583.309 (6)133
Symmetry codes: (i) x+1, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H10Br2O5
Mr454.07
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.072 (3), 5.5586 (13), 21.333 (5)
β (°) 104.501 (4)
V3)1615.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.04
Crystal size (mm)0.55 × 0.23 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.157, 0.547
No. of measured, independent and
observed [I > 2σ(I)] reflections
13326, 3773, 2245
Rint0.046
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.105, 0.99
No. of reflections3773
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.37

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O110.821.862.584 (4)146.5
C20—H20···O10.932.342.679 (5)100.8
C3—H3···O11i0.932.573.497 (4)171.1
C24—H24···O11i0.932.483.387 (5)166.0
C17—H17A···O16ii0.962.583.309 (6)133.0
Symmetry codes: (i) x+1, y1, z; (ii) x, y+1, z.
 

Acknowledgements

AN thanks Dr S. Kannan and Dr B. S. Krishnamurthy, School of Chemistry, Bharathidasan University, Tiruchirappalli, and Organica Aromatics Pvt Ltd Bangalore, India, for providing laboratory facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrooks, G. T. (1998). Pestic. Sci. 22, 41–50.  CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, pp. 125–167. Amsterdam: Elsevier.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11–40. New York: Oxford University Press.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1022–1024.  Google Scholar
First citationHyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.  Google Scholar
First citationLiu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63, o90–o91.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-F., Fang, M.-J., Huang, H.-Q., Li, G.-L., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1517–o1518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, J.-F., Zhang, Y.-J., Fang, M.-J., Huang, Y.-J., Wei, Z.-B., Zheng, Z.-H., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1244–o1245.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds