organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-(p-Phenyl­ene)bis­­(3,4-di­hydro-2H-1,3-benzoxazine)

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 22 December 2008; accepted 18 February 2009; online 25 February 2009)

Mol­ecules of the title compound, C22H20N2O2, are situated on crystallographic centres of symmetry. The oxazinane ring adopts a sofa conformation. Mol­ecules are linked into cyclic centrosymmetric dimers via C—H⋯O hydrogen bonds with the motif R22(6). In addition to the C—H⋯O inter­actions, the crystal structure is also stabilized by C—H⋯π inter­actions.

Related literature

For related structures, see: Huerta et al. (2006[Huerta, R., Toscano, R. A. & Castillo, I. (2006). Acta Cryst. E62, o2938-o2940.]). For the biological activity of bis-benzoxazine compounds, see: Billmann & Dorman (1963[Billmann, J. H. & Dorman, L. C. (1963). J. Med. Chem. 6, 701-708.]); Heinisch et al. (2002[Heinisch, L., Wittmann, S., Stoiber, T., Berg, A., Ankel-Fuchs, D. & Mollmann, U. (2002). J. Med. Chem. 45, 3032-3039.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2O2

  • Mr = 344.40

  • Monoclinic, P 21 /c

  • a = 9.191 (5) Å

  • b = 8.794 (4) Å

  • c = 11.317 (5) Å

  • β = 113.90 (3)°

  • V = 836.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.986

  • 13095 measured reflections

  • 3707 independent reflections

  • 2762 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.164

  • S = 1.02

  • 3707 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.97 2.49 3.3469 (15) 147
C3—H3⋯Cg1ii 0.93 2.72 3.582 (13) 155
C3—H3⋯Cg1iii 0.93 2.72 3.582 (13) 155
Symmetry codes: (i) -x+2, -y+2, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [x+1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1 is the centroid of the C9–C11/C9a–C11a ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bis-benzoxazine compounds exhibit various biological activities including antibacterial ( i. a. tuberculostatic), antitumor, fungicidal and plant-growth regulative properties (Billmann & Dorman, 1963; Heinisch et al., 2002). Polyoxymethylene (paraformaldehyde) undegoes a bimolecular condensation with N,N-bis-(o-hydroxybenzyl)-ethylenediamine in benzene to form 1,2-bis-[3-(3,4-dihydro-1,3–2H-benzoxazino]-ethane, which shows bacteriostatic and fungistatic activities (Billmann & Dorman, 1963). Taking into consideration these aspects, and in order to obtain a detailed information on the molecular structure in the solid state, the X-ray structure determination of the title compound has been carried out.

The molecules are situated on the crystallographic centres of symmetry and therefore have symmetry 1 (Fig. 1). The bond lengths N1—C7, O1—C5 are normal and comparable to the corresponding values observed in the related structure of 1,4-bis(8-tert-butyl-6-methyl-4H-1,3-benzoxazin-3-yl)benzene (Huerta et al., 2006).

The oxazinane ring of the benzoxazine moiety adopts the sofa conformation, with the puckering parameters q2 and ϕ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, Δs (Nardelli et al., 1983) as follows: q2=0.3657 (11) Å, ϕ=264.71 (17)°, Δs(N1)=21.40 (11).

In addition to the van der Waals interactions, the crystal packing is stabilized by C–H···O and C–H···π hydrogen bonds (Tab. 1) as well as by ππ-electron interactions. The atom C8 acts as a donor to the atom O1 of the neighbour molecule. This hydrogen bond is involved in a motif C11(10) forming an infinite chain along b axis. C11(10) projected on the axis b corresponds to the translational period along this axis. Simultaneously a pair of C8–H8A···O1 hydrogen bonds form a cyclic centrosymmetric dimer [R22(6)]. The ππ-electron interactions between the rings (C1\C2···C6) at x, y, z and 1-x, -y, -z with the centroid-centroid distances equal to 3.780 (2) Å are observed in the crystal structure.

Related literature top

For related structures, see: Huerta et al. (2006). For the biological activity, see: Billmann & Dorman (1963); Heinisch et al. (2002). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983). Cg1 is the centroid of the C9–C11/C9a–C11a ring.

Experimental top

A mixture of 2-(4-[(2-hydroxybenzyl)amino]anilinomethyl)benzenol (0.005 mole) and methanal (0.010 mole) was irradiated under microwaves generated by IFB Microwave Oven (Frequency = 2450 MHz ~λ=122 mm; 480 W) for 4 to 6 minutes; the distance from the source to the sample was 15 cm. The progress of the reaction was monitored by a thin layer chromatography. After completion of reaction, ice-cold water (50 ml) was added to the reaction mixture and stirred. The title compound was extracted with chloroform, the combined organic layers were dried over anhydrous sodium sulfate and then the solvent was evaporated. The crude product was recrystallized in ethylacetate at room temperature. The elongated single cystals of the title compound of average length of 2 mm were grown.

Refinement top

All the H atoms could be clearly discerned in the difference electron density map. Nevertheless the atoms were situated into the idealized positions and refined in the riding model approximation. The constraints: Caryl-H = 0.93 and Cmethylene-H = 0.97 Å. UisoH=1.2Ueq(Caryl/methylene).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level while the H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal structure showing the centrosymmetric hydrogen bond motif R22(6). For the sake of clarity, the H atoms not involved in the motif have been omitted. The atoms marked with an asterisk (*) are situated in the position (2-x, 2-y, -z). The dashed lines indicate the hydrogen bonds.
3,3'-(p-Phenylene)bis(3,4-dihydro-2H-1,3-benzoxazine) top
Crystal data top
C22H20N2O2F(000) = 364
Mr = 344.40Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3779 reflections
a = 9.191 (5) Åθ = 2.4–35.3°
b = 8.794 (4) ŵ = 0.09 mm1
c = 11.317 (5) ÅT = 293 K
β = 113.90 (3)°Block, colourless
V = 836.3 (7) Å30.21 × 0.19 × 0.16 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3707 independent reflections
Radiation source: fine-focus sealed tube2762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 35.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.982, Tmax = 0.986k = 1414
13095 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: difference Fourier map
wR(F2) = 0.164H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.092P)2 + 0.1065P]
where P = (Fo2 + 2Fc2)/3
3707 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.21 e Å3
40 constraints
Crystal data top
C22H20N2O2V = 836.3 (7) Å3
Mr = 344.40Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.191 (5) ŵ = 0.09 mm1
b = 8.794 (4) ÅT = 293 K
c = 11.317 (5) Å0.21 × 0.19 × 0.16 mm
β = 113.90 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3707 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2762 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.986Rint = 0.021
13095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.02Δρmax = 0.42 e Å3
3707 reflectionsΔρmin = 0.21 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43532 (12)0.74937 (13)0.05691 (12)0.0396 (2)
H10.40250.68100.01000.048*
C20.32355 (12)0.81402 (14)0.16802 (13)0.0455 (3)
H20.21660.78840.19600.055*
C30.37168 (13)0.91652 (15)0.23690 (12)0.0450 (3)
H30.29680.95940.31210.054*
C40.52981 (13)0.95635 (13)0.19555 (11)0.0407 (2)
H40.56131.02670.24180.049*
C50.64179 (11)0.89038 (11)0.08403 (10)0.03299 (19)
C60.59569 (11)0.78485 (11)0.01425 (10)0.03196 (19)
C70.71934 (12)0.71327 (13)0.10586 (11)0.0380 (2)
H7A0.71470.76010.18190.046*
H7B0.69660.60580.10750.046*
C80.89981 (12)0.88699 (12)0.08050 (12)0.0395 (2)
H8A1.00950.90230.09280.047*
H8B0.87960.95200.14150.047*
C90.93646 (9)0.61784 (10)0.05017 (9)0.02906 (18)
C100.93371 (10)0.46677 (11)0.08570 (9)0.03247 (19)
H100.88880.44290.14370.039*
C111.00414 (11)0.64904 (11)0.03736 (10)0.03289 (19)
H111.00760.74870.06360.039*
N10.87985 (9)0.73251 (10)0.10900 (8)0.03406 (18)
O10.79736 (9)0.93289 (9)0.04855 (8)0.0422 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0309 (4)0.0399 (5)0.0495 (6)0.0034 (4)0.0178 (4)0.0027 (4)
C20.0291 (4)0.0477 (6)0.0531 (6)0.0014 (4)0.0098 (4)0.0076 (5)
C30.0367 (5)0.0511 (6)0.0380 (5)0.0088 (4)0.0058 (4)0.0019 (4)
C40.0410 (5)0.0437 (5)0.0385 (5)0.0057 (4)0.0172 (4)0.0055 (4)
C50.0296 (4)0.0340 (4)0.0369 (5)0.0001 (3)0.0151 (3)0.0001 (3)
C60.0282 (4)0.0338 (4)0.0357 (4)0.0001 (3)0.0149 (3)0.0011 (3)
C70.0336 (4)0.0450 (5)0.0392 (5)0.0028 (4)0.0188 (4)0.0064 (4)
C80.0331 (4)0.0361 (5)0.0458 (6)0.0037 (3)0.0121 (4)0.0023 (4)
C90.0211 (3)0.0341 (4)0.0281 (4)0.0013 (3)0.0059 (3)0.0035 (3)
C100.0287 (4)0.0372 (4)0.0319 (4)0.0008 (3)0.0126 (3)0.0071 (3)
C110.0294 (4)0.0329 (4)0.0359 (4)0.0010 (3)0.0128 (3)0.0076 (3)
N10.0281 (3)0.0366 (4)0.0361 (4)0.0003 (3)0.0115 (3)0.0012 (3)
O10.0308 (3)0.0426 (4)0.0526 (5)0.0023 (3)0.0163 (3)0.0117 (3)
Geometric parameters (Å, º) top
C1—C21.3832 (16)C7—H7A0.9700
C1—C61.3879 (13)C7—H7B0.9700
C1—H10.9300C8—N11.4252 (13)
C2—C31.3767 (18)C8—O11.4381 (14)
C2—H20.9300C8—H8A0.9700
C3—C41.3795 (16)C8—H8B0.9700
C3—H30.9300C9—C101.3912 (13)
C4—C51.3915 (15)C9—C111.3938 (13)
C4—H40.9300C9—N11.4183 (12)
C5—O11.3713 (11)C10—C11i1.3841 (14)
C5—C61.3912 (13)C10—H100.9300
C6—C71.5113 (14)C11—C10i1.3841 (14)
C7—N11.4709 (12)C11—H110.9300
C2—C1—C6121.12 (10)C6—C7—H7B109.5
C2—C1—H1119.4H7A—C7—H7B108.1
C6—C1—H1119.4N1—C8—O1113.95 (9)
C3—C2—C1119.55 (10)N1—C8—H8A108.8
C3—C2—H2120.2O1—C8—H8A108.8
C1—C2—H2120.2N1—C8—H8B108.8
C2—C3—C4120.67 (10)O1—C8—H8B108.8
C2—C3—H3119.7H8A—C8—H8B107.7
C4—C3—H3119.7C10—C9—C11117.32 (9)
C3—C4—C5119.50 (10)C10—C9—N1119.36 (8)
C3—C4—H4120.3C11—C9—N1123.22 (8)
C5—C4—H4120.3C11i—C10—C9121.98 (8)
O1—C5—C4116.89 (9)C11i—C10—H10119.0
O1—C5—C6122.47 (9)C9—C10—H10119.0
C4—C5—C6120.63 (9)C10i—C11—C9120.70 (8)
C1—C6—C5118.50 (9)C10i—C11—H11119.7
C1—C6—C7121.66 (9)C9—C11—H11119.7
C5—C6—C7119.83 (8)C9—N1—C8117.79 (8)
N1—C7—C6110.80 (8)C9—N1—C7117.51 (8)
N1—C7—H7A109.5C8—N1—C7108.90 (8)
C6—C7—H7A109.5C5—O1—C8113.39 (8)
N1—C7—H7B109.5
C6—C1—C2—C30.69 (17)N1—C9—C10—C11i176.14 (8)
C1—C2—C3—C40.61 (18)C10—C9—C11—C10i0.28 (14)
C2—C3—C4—C50.91 (17)N1—C9—C11—C10i175.99 (8)
C3—C4—C5—O1179.20 (10)C10—C9—N1—C8173.54 (9)
C3—C4—C5—C60.07 (16)C11—C9—N1—C82.67 (13)
C2—C1—C6—C51.63 (16)C10—C9—N1—C753.04 (11)
C2—C1—C6—C7179.07 (10)C11—C9—N1—C7130.75 (10)
O1—C5—C6—C1179.60 (9)O1—C8—N1—C971.79 (11)
C4—C5—C6—C11.32 (15)O1—C8—N1—C765.29 (11)
O1—C5—C6—C70.29 (15)C6—C7—N1—C989.66 (10)
C4—C5—C6—C7179.37 (9)C6—C7—N1—C847.56 (11)
C1—C6—C7—N1163.06 (9)C4—C5—O1—C8167.11 (9)
C5—C6—C7—N117.65 (13)C6—C5—O1—C813.78 (14)
C11—C9—C10—C11i0.29 (15)N1—C8—O1—C547.26 (12)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1ii0.972.493.3469 (15)147
C3—H3···Cg1iii0.932.723.582 (13)155
C3—H3···Cg1iv0.932.723.582 (13)155
Symmetry codes: (ii) x+2, y+2, z; (iii) x+1, y+1/2, z1/2; (iv) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H20N2O2
Mr344.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.191 (5), 8.794 (4), 11.317 (5)
β (°) 113.90 (3)
V3)836.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.19 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
13095, 3707, 2762
Rint0.021
(sin θ/λ)max1)0.814
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.164, 1.02
No. of reflections3707
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.493.3469 (15)147
C3—H3···Cg1ii0.932.723.582 (13)155
C3—H3···Cg1iii0.932.723.582 (13)155
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+1/2, z1/2; (iii) x+1, y1/2, z1/2.
 

Acknowledgements

SR and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray data collection.

References

First citationBillmann, J. H. & Dorman, L. C. (1963). J. Med. Chem. 6, 701–708.  CrossRef PubMed Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHeinisch, L., Wittmann, S., Stoiber, T., Berg, A., Ankel-Fuchs, D. & Mollmann, U. (2002). J. Med. Chem. 45, 3032–3039.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuerta, R., Toscano, R. A. & Castillo, I. (2006). Acta Cryst. E62, o2938–o2940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds