metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m311-m312

Redetermination of tris­­(N,N-di­ethyl­di­thio­carbamato)anti­mony(III)

aDepartment of Chemistry Anhui University, Hefei 230039, People's Republic of China, and Key Laboratory of Enviromentally-Friendly Polymer Materials of Anhui Province, Hefei 230039, People's Republic of China
*Correspondence e-mail: yuchuanzhang1946@yahoo.cn

(Received 11 November 2008; accepted 14 February 2009; online 21 February 2009)

The title compound, [Sb(C5H10NS2)3], was synthesized from Sb2O3, diethyl­amine, carbon dis­ulfide, hydro­chloric acid and sodium hydroxide. The structure has been published previously but H atoms were not included in the model [Raston & White (1976[Raston, C. & White, A. (1976). J. Chem. Soc. Dalton Trans. pp. 791-794.]). Chem. Soc. Dalton Trans. p. 791]. The current determination has significantly higher precision than the original work. The complex has three ligands. The Sb atom is coordinated by three bidentate diethyl­dithio­carbamate groups, two in an almost planar fashion and the third perpendicular to that plane with a dihedral angle of 86.429 (13)°. One ethyl group is disordered over two positions of equal occupancy.

Related literature

For applications of dithio­carbamates, see: Fujii & Yoshimura (2000[Fujii, S. & Yoshimura, T. (2000). Coord. Chem. Rev. 198, 89-99.]); Stary et al. (1992[Stary, J., Kratzer, K. & Radioanal, J. (1992). Nucl. Chem. Lett. 165, 137-143.]); Pazukhina et al. (1997[Pazukhina, Y. E., Isakova, N. V., Nagy, V. & Petrukhin, O. M. (1997). Solvent Extr. Ion Exch. 15, 777-785.]). For the extraction efficiency of dithio­carbamate complexes in the presence of neutral N, S, O and P donor mol­ecules, see: Ooi & Fernando (1967[Ooi, Sh. & Fernando, Q. (1967). Inorg. Chem. 6, 1558-1562.]). For nitro­gen donor adducts of dithio­carbamate complexes, see: O'Brien et al. (1992[O'Brien, P., Bruce, D. W. & O'Hare, D. (1992). Inorganic Materials, pp. 491-495. New York: Wiley.], 1998[O'Brien, P., Otway, D. J. & Walsh, J. R. (1998). Thin Solid Films, 315, 57-61.]); Chunggaze et al. (1997[Chunggaze, M., Malik, M. A. & O'Brien, P. (1997). Adv. Mater. Opt. Electron. 7, 311-316.]); Bessergenev et al. (1996[Bessergenev, V. G., Belyi, V. I., Rastorguev, A. A., Ivanova, E. N., Kovalevskaya, Y. A., Larionov, S. V., Zemskova, S. M., Kirichenko, V. N., Nadolinnyi, V. A. & Gromilov, S. A. (1996). Thin Solid Films, 279, 135-139.], 1997[Bessergenev, V. G., Ivanova, E. N., Kovalevskaya, Y. A., Vasilieva, I. G., Varand, V. L., Zemskova, S. M., Larionov, S. V., Kolesov, B. A., Ayupov, B. M. & Logvinenko, V. A. (1997). Mater. Res. Bull. 32, 1403-1410.]); Hovel (1975[Hovel, H. J. (1975). Semiconductors/Semimetals: Solar Cells, Vol. 11, pp. 203-207. New York: Academic Press.]). For complexes with post-transition metals, see: Coucouvanis (1979[Coucouvanis, D. (1979). Prog. Inorg. Chem. 26, 301-469.]) and for complexes involving Te(IV), Te(II) and Se(II) centres, see: Husebye & Svaeren (1973[Husebye, S. & Svaeren, S. E. (1973). Acta Chem Scand. 27, 763-778.]); Rout et al. (1983[Rout, G. C., Seshasayee, M., Radha, K. & Aravamudan, G. (1983). Acta Cryst. C39, 1021-1023.]).

[Scheme 1]

Experimental

Crystal data
  • [Sb(C5H10NS2)3]

  • Mr = 566.53

  • Monoclinic, P 21 /c

  • a = 12.6454 (2) Å

  • b = 13.6217 (2) Å

  • c = 14.6731 (2) Å

  • β = 99.858 (1)°

  • V = 2490.15 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 296 K

  • 0.26 × 0.21 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.679, Tmax = 0.817 (expected range = 0.591–0.712)

  • 24761 measured reflections

  • 5746 independent reflections

  • 4947 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.059

  • S = 1.00

  • 5746 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Sb1—S5 2.4842 (5)
Sb1—S3 2.6238 (5)
Sb1—S2 2.6328 (5)
Sb1—S1 2.8805 (6)
Sb1—S4 2.8938 (5)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dithiocarbamates have found wide practical application as antioxidants and lubricants, as vulcanizing and NO-trapping agents (Fujii et al., 2000), as agents for the froth flotation process of sulfide minerals and for the liquid-liquid extraction of transition metals (Stary et al., 1992; Pazukhina et al., 1997). It has also been found that the extraction efficiency of dithiocarbamate complexes rises in the presence of neutral N, S, O, P-donor molecules, which could potentially imply formation of adducts (Ooi et al., 1967). Besides that, nitrogen donor adducts of dithiocarbamate complexes are also widely used in the preparation of thin semiconductor (O'Brien et al., 1992; Chunggaze et al., 1997; O'Brien et al., 1998) and electroluminescent (Bessergenev et al., 1996; Bessergenev et al., 1997) films of transition metal sulfides, the basis of electronics and solar cell technology (Hovel, 1975). The dithiocarbamate anion (R1R2NCS2-=I-) is known to be a strong nucleophile and to form stable complexs with many post-transition metals (Coucouvanis, 1979). Thus, complexes involving Te(IV), Te(II) and Se(II) centres have been reported, and structural studies on these have shown the presence of bidentate chelating ligands (Husebye et al., 1973; Rout et al., 1983). We have synthesized the title compound, C15H30N3S6Sb, and report here its crystal structure. The structure had been reported earlier (Raston & White, 1976), The syntheses and application of the crystal haven't been described in that paper. They mentioned simply that they examined samples of the antimony derivatives recrystallized from benzene solution. The crystal is monoclinic, Z=4, a=14.665 (5) Å, b=13.619 (5)Å, c=12.642 (4)Å, β=99.86 (4)°. These data of the crystal is similar to our crystal.but no hydrogen atoms were included in their structure model. The molecular structure and the atom-numbering scheme of the title compound are shown in Fig. 1. In the molecule, all bond lengths and angles agree well with values found in literature Table 1. The Sb atom is coordinated by three bidentate diethyldithiocarbamato groups, two groups in an almost planar fashion, the thirs group is perpendicular to that plane with a dihedral angle of 86.429 (13)°.

Related literature top

For applications of dithiocarbamates, see: Fujii & Yoshimura (2000); Stary et al. (1992); Pazukhina et al. (1997). For the extraction efficiency of dithiocarbamate complexes in the presence of neutral N, S,O, P-donor molecules, see: Ooi & Fernando (1967). For nitrogen donor adducts of dithiocarbamate complexes, see: O'Brien et al. (1992, 1998); Chunggaze et al. (1997); Bessergenev et al. (1996, 1997); Hovel (1975). For complexes with post-transition metals, see: Coucouvanis (1979) and for complexes involving Te(IV), Te(II) and Se(II) centres, see: Husebye & Svaeren (1973); Rout et al. (1983).

Experimental top

Water (200 ml), sodium hydroxide (4 g, 0.1 mol) and diethylamine (7.3 g, 0.1 mol) were added to a three-neck flask in an icewater bath under stirring. Carbon disulfide (7.8 g, 0.1 mol) was added dropwise into this solution during twenty minutes and the mixture was allowed to react for four hours yielding a light yellow liquid. Antimony trioxide (4.6 g, 0.016 mol) was dissolved in hydrochloric acid. The solution was added dropwise into the diethyl dithiocarbamate natrium under stirring and it was confirmed that the resulting solution was acidic. From this solution, a yellow deposit was obtained. It was collected by vacuum filtration, washed with a large amount of water and dried in air. Yellow single crystals were obtained after two weeks upon evaporation of a solution of the reaction product in a mixture of chloroform (5 ml) and methanol (30 ml).

Refinement top

Atom C8 and C9 were found to be disordered over two positions with the same site-occupancy factors (0.50/0.50). All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97, 0.96(–CH3) Å and Uiso(H) = 1.2Ueq(C), 1.5 Ueq(–CH3), respectively.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
tris(N,N-diethyldithiocarbamato)antimony(III) top
Crystal data top
[Sb(C5H10NS2)3]F(000) = 1152
Mr = 566.53Dx = 1.511 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9907 reflections
a = 12.6454 (2) Åθ = 2.2–27.5°
b = 13.6217 (2) ŵ = 1.62 mm1
c = 14.6731 (2) ÅT = 296 K
β = 99.858 (1)°Block, yellow
V = 2490.15 (6) Å30.26 × 0.21 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5746 independent reflections
Radiation source: fine-focus sealed tube4947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1616
Tmin = 0.679, Tmax = 0.817k = 1717
24761 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.1807P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.003
5746 reflectionsΔρmax = 0.38 e Å3
253 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0072 (2)
Crystal data top
[Sb(C5H10NS2)3]V = 2490.15 (6) Å3
Mr = 566.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6454 (2) ŵ = 1.62 mm1
b = 13.6217 (2) ÅT = 296 K
c = 14.6731 (2) Å0.26 × 0.21 × 0.21 mm
β = 99.858 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5746 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4947 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 0.817Rint = 0.021
24761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.00Δρmax = 0.38 e Å3
5746 reflectionsΔρmin = 0.29 e Å3
253 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sb10.664203 (10)0.489969 (8)0.544433 (8)0.03895 (6)
S50.82733 (4)0.47481 (3)0.47217 (3)0.04547 (12)
S20.59116 (4)0.32605 (3)0.46160 (3)0.04974 (12)
S10.55799 (5)0.51072 (3)0.35546 (4)0.04951 (13)
S30.73733 (4)0.34808 (3)0.65900 (3)0.04951 (12)
S60.75061 (4)0.67918 (4)0.48886 (4)0.05794 (14)
S40.78957 (5)0.55135 (4)0.71886 (3)0.05585 (13)
N10.88457 (11)0.62440 (10)0.37638 (9)0.0413 (3)
N30.81757 (14)0.39580 (12)0.83190 (10)0.0558 (4)
N20.50310 (13)0.33416 (11)0.28478 (10)0.0495 (4)
C20.89233 (16)0.72713 (14)0.34826 (13)0.0503 (4)
H2A0.82740.76170.35600.060*
H2B0.89840.72970.28330.060*
C50.82576 (13)0.59892 (13)0.43964 (11)0.0397 (4)
C60.54573 (13)0.38630 (13)0.35802 (12)0.0413 (4)
C70.78502 (15)0.43078 (14)0.74662 (12)0.0457 (4)
C30.94447 (15)0.55426 (14)0.32952 (12)0.0495 (4)
H3A0.96520.49860.36990.059*
H3B1.00940.58520.31680.059*
C100.82177 (18)0.29025 (16)0.85339 (14)0.0616 (6)
H10A0.76190.25750.81520.074*
H10B0.81460.28100.91760.074*
C130.49020 (17)0.22693 (15)0.28767 (15)0.0596 (5)
H13A0.55020.19910.32980.071*
H13B0.49130.20010.22660.071*
C120.38672 (19)0.19757 (17)0.31864 (19)0.0797 (7)
H12A0.38800.21890.38120.120*
H12B0.37910.12750.31540.120*
H12C0.32730.22770.27900.120*
C140.46194 (18)0.38151 (18)0.19505 (13)0.0669 (6)
H14A0.43760.44730.20600.080*
H14B0.40080.34460.16350.080*
C10.98809 (18)0.77734 (16)0.40466 (15)0.0672 (6)
H1A0.97860.78090.46810.101*
H1B0.99470.84250.38120.101*
H1C1.05190.74060.40050.101*
C40.8789 (3)0.51864 (19)0.24026 (17)0.0816 (8)
H4A0.81820.48220.25330.122*
H4B0.92230.47710.20880.122*
H4C0.85440.57390.20180.122*
C110.9249 (2)0.24437 (17)0.83695 (16)0.0733 (7)
H11A0.92620.24270.77170.110*
H11B0.93000.17870.86100.110*
H11C0.98450.28240.86760.110*
C150.5461 (2)0.3870 (2)0.13415 (16)0.0965 (9)
H15A0.60620.42440.16470.145*
H15B0.51650.41820.07680.145*
H15C0.56930.32190.12210.145*
C90.8390 (10)0.4544 (13)0.9120 (12)0.072 (3)0.50
H9A0.85340.52050.89270.087*0.50
H9B0.90480.43030.94920.087*0.50
C80.7567 (14)0.4614 (9)0.9733 (10)0.104 (4)0.50
H8A0.69170.48860.93910.156*0.50
H8B0.78280.50311.02500.156*0.50
H8C0.74250.39710.99520.156*0.50
C9'0.8734 (10)0.4662 (11)0.9077 (10)0.060 (2)0.50
H9'10.93150.43250.94730.072*0.50
H9'20.90310.52200.87970.072*0.50
C8'0.7900 (13)0.5005 (9)0.9641 (9)0.101 (4)0.50
H8'10.73370.53490.92460.151*0.50
H8'20.82320.54361.01240.151*0.50
H8'30.76050.44470.99080.151*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.04014 (8)0.03772 (8)0.04160 (8)0.00181 (4)0.01435 (6)0.00116 (4)
S50.0466 (3)0.0374 (2)0.0571 (3)0.00373 (19)0.0225 (2)0.00350 (19)
S20.0617 (3)0.0378 (2)0.0487 (3)0.0062 (2)0.0063 (2)0.00249 (18)
S10.0591 (3)0.0388 (2)0.0515 (3)0.0014 (2)0.0121 (2)0.00393 (18)
S30.0582 (3)0.0423 (2)0.0471 (3)0.0066 (2)0.0065 (2)0.00099 (19)
S60.0706 (3)0.0388 (3)0.0737 (3)0.0029 (2)0.0387 (3)0.0037 (2)
S40.0677 (3)0.0433 (3)0.0550 (3)0.0018 (2)0.0059 (2)0.0053 (2)
N10.0389 (8)0.0427 (8)0.0442 (8)0.0013 (6)0.0123 (6)0.0028 (6)
N30.0663 (11)0.0571 (10)0.0432 (9)0.0020 (8)0.0072 (8)0.0013 (7)
N20.0515 (9)0.0483 (9)0.0484 (9)0.0001 (7)0.0078 (7)0.0079 (7)
C20.0534 (11)0.0477 (10)0.0521 (10)0.0010 (9)0.0161 (9)0.0103 (8)
C50.0378 (9)0.0376 (9)0.0450 (9)0.0025 (7)0.0110 (7)0.0014 (7)
C60.0378 (9)0.0430 (9)0.0447 (9)0.0016 (7)0.0117 (8)0.0021 (7)
C70.0430 (10)0.0503 (11)0.0451 (10)0.0012 (8)0.0116 (8)0.0015 (8)
C30.0456 (10)0.0537 (11)0.0538 (10)0.0049 (9)0.0219 (9)0.0023 (9)
C100.0716 (14)0.0657 (13)0.0491 (11)0.0094 (11)0.0145 (10)0.0162 (10)
C130.0644 (14)0.0482 (11)0.0667 (12)0.0050 (10)0.0128 (10)0.0186 (10)
C120.0692 (15)0.0656 (15)0.1058 (19)0.0162 (13)0.0191 (14)0.0159 (14)
C140.0747 (15)0.0742 (15)0.0472 (11)0.0074 (12)0.0027 (10)0.0055 (10)
C10.0729 (15)0.0589 (13)0.0704 (14)0.0189 (11)0.0138 (12)0.0004 (10)
C40.098 (2)0.0876 (18)0.0591 (15)0.0177 (15)0.0135 (14)0.0195 (12)
C110.0946 (19)0.0606 (14)0.0697 (14)0.0029 (13)0.0287 (13)0.0149 (11)
C150.132 (2)0.105 (2)0.0598 (14)0.0332 (19)0.0349 (16)0.0051 (13)
C90.073 (8)0.074 (6)0.062 (5)0.013 (5)0.010 (5)0.003 (4)
C80.158 (11)0.104 (8)0.057 (4)0.014 (7)0.037 (5)0.013 (5)
C9'0.072 (7)0.060 (4)0.042 (3)0.011 (4)0.005 (4)0.008 (3)
C8'0.138 (11)0.114 (10)0.052 (4)0.027 (7)0.020 (5)0.007 (5)
Geometric parameters (Å, º) top
Sb1—S52.4842 (5)C13—H13B0.9700
Sb1—S32.6238 (5)C12—H12A0.9600
Sb1—S22.6328 (5)C12—H12B0.9600
Sb1—S12.8805 (6)C12—H12C0.9600
Sb1—S42.8938 (5)C14—C151.504 (3)
S5—C51.7559 (17)C14—H14A0.9700
S2—C61.7362 (18)C14—H14B0.9700
S1—C61.7028 (18)C1—H1A0.9600
S3—C71.7378 (19)C1—H1B0.9600
S6—C51.6896 (17)C1—H1C0.9600
S4—C71.696 (2)C4—H4A0.9600
N1—C51.331 (2)C4—H4B0.9600
N1—C31.462 (2)C4—H4C0.9600
N1—C21.467 (2)C11—H11A0.9600
N3—C71.336 (2)C11—H11B0.9600
N3—C91.408 (17)C11—H11C0.9600
N3—C101.471 (3)C15—H15A0.9600
N3—C9'1.545 (13)C15—H15B0.9600
N2—C61.324 (2)C15—H15C0.9600
N2—C131.471 (2)C9—C81.49 (2)
N2—C141.478 (2)C9—H9A0.9700
C2—C11.509 (3)C9—H9B0.9700
C2—H2A0.9700C8—H8A0.9600
C2—H2B0.9700C8—H8B0.9600
C3—C41.505 (3)C8—H8C0.9600
C3—H3A0.9700C9'—C8'1.52 (2)
C3—H3B0.9700C9'—H9'10.9700
C10—C111.503 (3)C9'—H9'20.9700
C10—H10A0.9700C8'—H8'10.9600
C10—H10B0.9700C8'—H8'20.9600
C13—C121.511 (3)C8'—H8'30.9600
C13—H13A0.9700
S5—Sb1—S389.136 (16)N2—C13—H13B109.2
S5—Sb1—S289.071 (16)C12—C13—H13B109.2
S3—Sb1—S274.239 (14)H13A—C13—H13B107.9
S5—Sb1—S183.205 (17)C13—C12—H12A109.5
S3—Sb1—S1138.085 (14)C13—C12—H12B109.5
S2—Sb1—S164.525 (14)H12A—C12—H12B109.5
S5—Sb1—S491.853 (17)C13—C12—H12C109.5
S3—Sb1—S464.313 (15)H12A—C12—H12C109.5
S2—Sb1—S4138.518 (15)H12B—C12—H12C109.5
S1—Sb1—S4156.580 (15)N2—C14—C15111.95 (18)
C5—S5—Sb193.69 (5)N2—C14—H14A109.2
C6—S2—Sb192.32 (6)C15—C14—H14A109.2
C6—S1—Sb184.85 (6)N2—C14—H14B109.2
C7—S3—Sb192.07 (7)C15—C14—H14B109.2
C7—S4—Sb184.06 (6)H14A—C14—H14B107.9
C5—N1—C3123.63 (15)C2—C1—H1A109.5
C5—N1—C2121.14 (15)C2—C1—H1B109.5
C3—N1—C2115.22 (14)H1A—C1—H1B109.5
C7—N3—C9124.3 (8)C2—C1—H1C109.5
C7—N3—C10122.90 (16)H1A—C1—H1C109.5
C9—N3—C10112.4 (7)H1B—C1—H1C109.5
C7—N3—C9'118.9 (6)C3—C4—H4A109.5
C9—N3—C9'17.9 (8)C3—C4—H4B109.5
C10—N3—C9'117.2 (6)H4A—C4—H4B109.5
C6—N2—C13122.77 (16)C3—C4—H4C109.5
C6—N2—C14121.42 (16)H4A—C4—H4C109.5
C13—N2—C14115.78 (15)H4B—C4—H4C109.5
N1—C2—C1111.36 (16)C10—C11—H11A109.5
N1—C2—H2A109.4C10—C11—H11B109.5
C1—C2—H2A109.4H11A—C11—H11B109.5
N1—C2—H2B109.4C10—C11—H11C109.5
C1—C2—H2B109.4H11A—C11—H11C109.5
H2A—C2—H2B108.0H11B—C11—H11C109.5
N1—C5—S6123.48 (13)C14—C15—H15A109.5
N1—C5—S5117.32 (12)C14—C15—H15B109.5
S6—C5—S5119.20 (9)H15A—C15—H15B109.5
N2—C6—S1122.83 (14)C14—C15—H15C109.5
N2—C6—S2119.00 (14)H15A—C15—H15C109.5
S1—C6—S2118.17 (10)H15B—C15—H15C109.5
N3—C7—S4123.55 (14)N3—C9—C8119.0 (9)
N3—C7—S3118.29 (15)N3—C9—H9A107.6
S4—C7—S3118.16 (10)C8—C9—H9A107.6
N1—C3—C4111.55 (17)N3—C9—H9B107.6
N1—C3—H3A109.3C8—C9—H9B107.6
C4—C3—H3A109.3H9A—C9—H9B107.0
N1—C3—H3B109.3C8'—C9'—N3107.9 (9)
C4—C3—H3B109.3C8'—C9'—H9'1110.1
H3A—C3—H3B108.0N3—C9'—H9'1110.1
N3—C10—C11111.87 (17)C8'—C9'—H9'2110.1
N3—C10—H10A109.2N3—C9'—H9'2110.1
C11—C10—H10A109.2H9'1—C9'—H9'2108.4
N3—C10—H10B109.2C9'—C8'—H8'1109.5
C11—C10—H10B109.2C9'—C8'—H8'2109.5
H10A—C10—H10B107.9H8'1—C8'—H8'2109.5
N2—C13—C12112.18 (17)C9'—C8'—H8'3109.5
N2—C13—H13A109.2H8'1—C8'—H8'3109.5
C12—C13—H13A109.2H8'2—C8'—H8'3109.5
S3—Sb1—S5—C5150.76 (6)C14—N2—C6—S2179.31 (14)
S2—Sb1—S5—C5134.99 (6)Sb1—S1—C6—N2176.81 (15)
S1—Sb1—S5—C570.53 (6)Sb1—S1—C6—S23.31 (9)
S4—Sb1—S5—C586.50 (6)Sb1—S2—C6—N2176.50 (13)
S5—Sb1—S2—C680.83 (6)Sb1—S2—C6—S13.61 (10)
S3—Sb1—S2—C6170.20 (6)C9—N3—C7—S413.3 (6)
S1—Sb1—S2—C62.08 (6)C10—N3—C7—S4174.62 (15)
S4—Sb1—S2—C6172.58 (6)C9'—N3—C7—S46.7 (6)
S5—Sb1—S1—C690.09 (6)C9—N3—C7—S3167.7 (6)
S3—Sb1—S1—C69.03 (7)C10—N3—C7—S34.3 (3)
S2—Sb1—S1—C62.13 (6)C9'—N3—C7—S3172.3 (6)
S4—Sb1—S1—C6168.95 (6)Sb1—S4—C7—N3170.09 (16)
S5—Sb1—S3—C799.33 (6)Sb1—S4—C7—S310.93 (9)
S2—Sb1—S3—C7171.40 (6)Sb1—S3—C7—N3168.95 (14)
S1—Sb1—S3—C7178.14 (6)Sb1—S3—C7—S412.02 (10)
S4—Sb1—S3—C76.85 (6)C5—N1—C3—C492.1 (2)
S5—Sb1—S4—C795.21 (6)C2—N1—C3—C487.3 (2)
S3—Sb1—S4—C77.06 (6)C7—N3—C10—C1185.0 (2)
S2—Sb1—S4—C74.51 (7)C9—N3—C10—C11102.1 (6)
S1—Sb1—S4—C7172.31 (7)C9'—N3—C10—C1183.1 (6)
C5—N1—C2—C192.8 (2)C6—N2—C13—C1286.1 (2)
C3—N1—C2—C187.77 (19)C14—N2—C13—C1291.9 (2)
C3—N1—C5—S6176.11 (13)C6—N2—C14—C1592.1 (2)
C2—N1—C5—S63.2 (2)C13—N2—C14—C1589.8 (2)
C3—N1—C5—S53.6 (2)C7—N3—C9—C8100.7 (13)
C2—N1—C5—S5177.00 (13)C10—N3—C9—C872.1 (15)
Sb1—S5—C5—N1163.57 (12)C9'—N3—C9—C8178 (5)
Sb1—S5—C5—S616.20 (10)C7—N3—C9'—C8'98.3 (9)
C13—N2—C6—S1178.50 (14)C9—N3—C9'—C8'15 (4)
C14—N2—C6—S10.6 (3)C10—N3—C9'—C8'93.1 (10)
C13—N2—C6—S21.4 (2)

Experimental details

Crystal data
Chemical formula[Sb(C5H10NS2)3]
Mr566.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.6454 (2), 13.6217 (2), 14.6731 (2)
β (°) 99.858 (1)
V3)2490.15 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.26 × 0.21 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.679, 0.817
No. of measured, independent and
observed [I > 2σ(I)] reflections
24761, 5746, 4947
Rint0.021
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.059, 1.00
No. of reflections5746
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.29

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sb1—S52.4842 (5)Sb1—S12.8805 (6)
Sb1—S32.6238 (5)Sb1—S42.8938 (5)
Sb1—S22.6328 (5)
 

Acknowledgements

This research was supported by the Chinese Ministry of Science and Technology (2005BA316C) and the Key Laboratory of Enviromentally-Friendly Polymer Materials of Anhui Province.

References

First citationBessergenev, V. G., Belyi, V. I., Rastorguev, A. A., Ivanova, E. N., Kovalevskaya, Y. A., Larionov, S. V., Zemskova, S. M., Kirichenko, V. N., Nadolinnyi, V. A. & Gromilov, S. A. (1996). Thin Solid Films, 279, 135–139.  CrossRef CAS Web of Science Google Scholar
First citationBessergenev, V. G., Ivanova, E. N., Kovalevskaya, Y. A., Vasilieva, I. G., Varand, V. L., Zemskova, S. M., Larionov, S. V., Kolesov, B. A., Ayupov, B. M. & Logvinenko, V. A. (1997). Mater. Res. Bull. 32, 1403–1410.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChunggaze, M., Malik, M. A. & O'Brien, P. (1997). Adv. Mater. Opt. Electron. 7, 311–316.  CrossRef CAS Google Scholar
First citationCoucouvanis, D. (1979). Prog. Inorg. Chem. 26, 301–469.  CrossRef CAS Google Scholar
First citationFujii, S. & Yoshimura, T. (2000). Coord. Chem. Rev. 198, 89–99.  Web of Science CrossRef CAS Google Scholar
First citationHovel, H. J. (1975). Semiconductors/Semimetals: Solar Cells, Vol. 11, pp. 203–207. New York: Academic Press.  Google Scholar
First citationHusebye, S. & Svaeren, S. E. (1973). Acta Chem Scand. 27, 763–778.  CrossRef CAS Web of Science Google Scholar
First citationO'Brien, P., Bruce, D. W. & O'Hare, D. (1992). Inorganic Materials, pp. 491–495. New York: Wiley.  Google Scholar
First citationO'Brien, P., Otway, D. J. & Walsh, J. R. (1998). Thin Solid Films, 315, 57–61.  Web of Science CrossRef CAS Google Scholar
First citationOoi, Sh. & Fernando, Q. (1967). Inorg. Chem. 6, 1558–1562.  CSD CrossRef CAS Web of Science Google Scholar
First citationPazukhina, Y. E., Isakova, N. V., Nagy, V. & Petrukhin, O. M. (1997). Solvent Extr. Ion Exch. 15, 777–785.  CrossRef CAS Web of Science Google Scholar
First citationRaston, C. & White, A. (1976). J. Chem. Soc. Dalton Trans. pp. 791–794.  CSD CrossRef Web of Science Google Scholar
First citationRout, G. C., Seshasayee, M., Radha, K. & Aravamudan, G. (1983). Acta Cryst. C39, 1021–1023.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStary, J., Kratzer, K. & Radioanal, J. (1992). Nucl. Chem. Lett. 165, 137–143.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m311-m312
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds