metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-(2-Benzoyl­pyridine-κ2N,O)di­chlorido[2-(2-pyridylcarbon­yl)phenyl-κ2C1,N]iridium(III) di­chloro­methane solvate

aNano-Powder and Thin Film Technology Center, ITRI South, Tainan 709, Taiwan
*Correspondence e-mail: jasonyang@itri.org.tw

(Received 7 January 2009; accepted 6 February 2009; online 13 February 2009)

The title compound, [Ir(C12H8NO)Cl2(C12H9NO)]·CH2Cl2, which was obtained from the reaction of iridium(III) chloride trihydrate and 2-benzoyl­pyridine, contains an IrIII atom coordinated by two N, one O, one C and two Cl atoms in trans positions, forming a distorted octa­hedral environment. The solvent molecule CH2Cl2 is disordered over two positions with an occupancy of 0.8:0.2.

Related literature

For the synthesis and structure of Rh(Hbzpy)(bzpy)Cl2 (bzpy is 2-pyridyl-2-phenonide), see: de Geest & Steel (1995[Geest, D. J. de & Steel, P. J. (1995). Aust. J. Chem. 48, 1573-1585.]). For a related structure, see: Tseng et al. (2005[Tseng, M. C., Wang, S. P., Yu, Y. C., Sheu, S. Y. & Huang, W. L. (2005). Acta Cryst. E61, m2452-m2453.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C12H8NO)Cl2(C12H9NO)]·CH2Cl2

  • Mr = 713.42

  • Triclinic, [P \overline 1]

  • a = 8.8694 (9) Å

  • b = 11.4600 (11) Å

  • c = 13.2604 (13) Å

  • α = 113.543 (2)°

  • β = 95.719 (2)°

  • γ = 90.641 (2)°

  • V = 1227.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.90 mm−1

  • T = 294 (2) K

  • 0.13 × 0.13 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.480, Tmax = 0.624

  • 14570 measured reflections

  • 6075 independent reflections

  • 5416 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.044

  • S = 0.85

  • 6075 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ir1—C24 1.995 (2)
Ir1—N2 2.032 (2)
Ir1—N1 2.047 (2)
Ir1—O1 2.1983 (17)
Ir1—Cl2 2.3407 (8)
Ir1—Cl1 2.3416 (7)
C24—Ir1—N2 88.46 (9)
C24—Ir1—N1 99.89 (9)
N2—Ir1—N1 171.15 (7)
C24—Ir1—O1 174.73 (8)
N2—Ir1—O1 95.21 (7)
N1—Ir1—O1 76.67 (7)
C24—Ir1—Cl2 91.26 (7)
N2—Ir1—Cl2 92.19 (6)
N1—Ir1—Cl2 90.59 (6)
O1—Ir1—Cl2 84.84 (6)
C24—Ir1—Cl1 91.73 (7)
N2—Ir1—Cl1 88.61 (6)
N1—Ir1—Cl1 88.19 (6)
O1—Ir1—Cl1 92.14 (6)
Cl2—Ir1—Cl1 176.93 (2)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Several studies have been reported in cyclometallation of orthometallated ligands such as anionic ppy (ppyH is 2–phenylpyridine). For instance, Rh(Hbzpy)(bzpy)Cl2 (bzpy is 2–pyridyl–2–phenonide) was obtained from the reaction of rhodium (III) chloride trihydrate with 2–benzoylpyridine (Hbzpy) in 2–methoxyethanol for 4 d at room temperature (de Geest & Steel, 1995). The orthometallated complex which they reported had a five–membered N,O metallacycle containing the chelated Hbzpy ligand and a six–membered N,C metallacycle containing the chelated bzpy ligand, on the basis of NMR chemical–shift analysis. Moveover, the structural study of the orthometallated RhIII complex was reported in order to make sure the stereochemistry (Tseng et al., 2005). However, the synthesis and structural study of the according iridium complex was never reported. We report herein the synthesis and characterization studies of the title orthometallated IrIII complex, (I), containing 2–pyridyl phenone.

In the orthometallated title compound, the Ir atom is hexacoordinated by two equivalents of 2–benzoylpyridine, forming a pseudo–octahedral geometry, with two Cl ligands in a trans orientation. The pyridyl N atom of the Hbzpy ligand is trans to the N atom of the bzpy ligand, where one of the ligands is κ2–(N,C)–cyclometallated and the other is κ2–(N,O)–coordinated. Cyclometallation leads to a boat conformation, with atoms Ir and C18 above the N2—C17—C19—C24 plane (Fig. 1). The pyridyl ring of the Hbzpy ligand and the phenyl ring of the bzpy ligand are mutually stacked [C1—N1—C24—C23 = 48.8 (2)°] (Table 1). The five-membered chelate ring deviates slightly from planarity [N1—C5—C6—O1 = -10.9 (3)°] and is inclined to the phenyl plane [C5—C6—C7—C12 = -39.1 (4)°]. There are no short intermolecular contacts.

Related literature top

For the synthesis and structure of Rh(Hbzpy)(bzpy)Cl2 (bzpy = 2-pyridyl-2-phenonide), see: de Geest & Steel (1995). For related literature, see: Tseng et al. (2005).

Experimental top

All procedures involving Ir(III) species were carried out under nitrogen gas atomosphere. 2-Benzoylpyridine (10.0 mmol) and 0.4 equiv. of IrCl3.H2O (Next Chimica) were heated in a 3:1 mixture of 2-ethoxyethanol and water. This slurry was heated to 100 °C for 24 hours. After cooling to room temperature, the precipitate was filtered off and washed with deionized water, followed by 2 portions of n-hexane and ether. The orange–reddish single crystals were obtained from the solutions of dichlomathane and n-hexane mixture (1:1) in 43% yield.

Refinement top

All H atoms bonded to C atoms were placed in calculated positions, with C—H = 0.96 Å, and treated as riding atoms, with Uiso(H) = 1.2Ueq(C). The solvent molecule CH2Cl2 was refined as disordered with an 80/20 occupancy for the two molecules.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound with displacement ellipsoids shown at the 50% probability level.
trans-(2-Benzoylpyridine-κ2N,O)dichlorido[2- (2-pyridylcarbonyl)phenyl-κ2C1,N]iridium(III) dichloromethane solvate top
Crystal data top
[Ir(C12H8NO)Cl2(C12H9NO)]·CH2Cl2Z = 2
Mr = 713.42F(000) = 688
Triclinic, P1Dx = 1.930 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8694 (9) ÅCell parameters from 8499 reflections
b = 11.4600 (11) Åθ = 2.3–28.3°
c = 13.2604 (13) ŵ = 5.90 mm1
α = 113.543 (2)°T = 294 K
β = 95.719 (2)°Equant, orange–red
γ = 90.641 (2)°0.13 × 0.13 × 0.08 mm
V = 1227.6 (2) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
6075 independent reflections
Radiation source: fine-focus sealed tube5416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.480, Tmax = 0.624k = 1515
14570 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.044H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
6075 reflections(Δ/σ)max = 0.003
325 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Ir(C12H8NO)Cl2(C12H9NO)]·CH2Cl2γ = 90.641 (2)°
Mr = 713.42V = 1227.6 (2) Å3
Triclinic, P1Z = 2
a = 8.8694 (9) ÅMo Kα radiation
b = 11.4600 (11) ŵ = 5.90 mm1
c = 13.2604 (13) ÅT = 294 K
α = 113.543 (2)°0.13 × 0.13 × 0.08 mm
β = 95.719 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
6075 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5416 reflections with I > 2σ(I)
Tmin = 0.480, Tmax = 0.624Rint = 0.032
14570 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.044H-atom parameters constrained
S = 0.85Δρmax = 0.65 e Å3
6075 reflectionsΔρmin = 0.52 e Å3
325 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.792178 (11)0.696938 (8)0.230068 (7)0.03493 (4)
Cl11.05493 (7)0.69691 (6)0.22304 (5)0.04395 (14)
Cl20.53142 (8)0.69236 (7)0.24425 (7)0.05771 (18)
Cl30.3748 (3)1.1051 (3)0.34837 (18)0.1197 (8)0.80
Cl3'0.4493 (10)1.0756 (13)0.3508 (9)0.146 (5)0.20
Cl40.5216 (4)1.0079 (3)0.1454 (3)0.1488 (12)0.80
Cl4'0.5595 (8)1.0593 (7)0.1793 (8)0.0678 (17)0.20
O10.8137 (2)0.65126 (17)0.37670 (14)0.0475 (4)
O21.0387 (2)0.98256 (19)0.15186 (16)0.0568 (5)
N10.7869 (2)0.50192 (19)0.16390 (16)0.0380 (5)
N20.8146 (2)0.88896 (19)0.31697 (16)0.0363 (4)
C10.8068 (3)0.4270 (3)0.0594 (2)0.0477 (6)
H1A0.81740.46450.00970.057*
C20.8123 (4)0.2965 (3)0.0224 (2)0.0530 (7)
H2A0.82410.24710.05130.064*
C30.8004 (4)0.2402 (3)0.0952 (2)0.0555 (7)
H3A0.80330.15230.07170.067*
C40.7840 (3)0.3160 (2)0.2038 (2)0.0459 (6)
H4A0.77780.27970.25480.055*
C50.7767 (3)0.4459 (2)0.23675 (19)0.0366 (5)
C60.7796 (3)0.5377 (2)0.3539 (2)0.0378 (5)
C70.7543 (3)0.4988 (2)0.4445 (2)0.0373 (5)
C80.8372 (3)0.5651 (3)0.5475 (2)0.0481 (6)
H8A0.90690.63080.55680.058*
C90.8169 (3)0.5345 (3)0.6353 (2)0.0537 (7)
H9A0.87510.57750.70310.064*
C100.7108 (3)0.4405 (3)0.6233 (2)0.0551 (7)
H10A0.69690.42020.68310.066*
C110.6252 (3)0.3764 (3)0.5236 (3)0.0533 (7)
H11A0.55170.31430.51670.064*
C120.6468 (3)0.4032 (3)0.4328 (2)0.0450 (6)
H12A0.59020.35790.36480.054*
C130.7676 (3)0.9380 (3)0.4180 (2)0.0471 (6)
H13A0.70840.88590.43900.057*
C140.8026 (3)1.0616 (3)0.4918 (2)0.0537 (7)
H14A0.76601.09280.56060.064*
C150.8931 (3)1.1386 (3)0.4622 (2)0.0518 (7)
H15A0.92211.22170.51160.062*
C160.9394 (3)1.0901 (2)0.3583 (2)0.0451 (6)
H16A0.99941.14090.33640.054*
C170.8971 (3)0.9661 (2)0.28598 (19)0.0360 (5)
C180.9372 (3)0.9224 (2)0.1688 (2)0.0387 (5)
C190.8380 (3)0.8238 (2)0.07782 (19)0.0347 (5)
C200.8219 (3)0.8370 (3)0.0232 (2)0.0449 (6)
H20A0.87990.89990.03170.054*
C210.7218 (4)0.7582 (3)0.1096 (2)0.0538 (7)
H21A0.71060.76770.17630.065*
C220.6371 (3)0.6638 (3)0.0963 (2)0.0558 (7)
H22A0.56850.60990.15460.067*
C230.6534 (3)0.6491 (3)0.0025 (2)0.0465 (6)
H23A0.59440.58600.00990.056*
C240.7564 (3)0.7267 (2)0.09154 (19)0.0353 (5)
C250.4019 (5)0.9802 (4)0.2225 (4)0.1002 (15)
H25A0.30500.95350.17870.120*
H25B0.43730.90950.23790.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.04842 (6)0.02687 (5)0.03220 (5)0.00222 (4)0.01063 (4)0.01344 (4)
Cl10.0475 (3)0.0455 (4)0.0425 (3)0.0045 (3)0.0056 (3)0.0214 (3)
Cl20.0544 (4)0.0489 (4)0.0736 (5)0.0046 (3)0.0270 (4)0.0242 (4)
Cl30.1304 (19)0.152 (2)0.0675 (10)0.0255 (16)0.0092 (13)0.0358 (11)
Cl3'0.109 (7)0.167 (8)0.096 (5)0.037 (6)0.024 (5)0.007 (5)
Cl40.149 (3)0.167 (3)0.169 (3)0.087 (2)0.083 (2)0.091 (3)
Cl4'0.044 (2)0.061 (3)0.109 (5)0.009 (2)0.018 (2)0.041 (3)
O10.0776 (13)0.0303 (9)0.0373 (9)0.0051 (9)0.0133 (9)0.0151 (7)
O20.0651 (12)0.0562 (13)0.0538 (11)0.0219 (10)0.0086 (10)0.0273 (10)
N10.0512 (12)0.0299 (11)0.0350 (10)0.0028 (9)0.0117 (9)0.0137 (8)
N20.0469 (12)0.0308 (11)0.0324 (10)0.0003 (9)0.0086 (9)0.0130 (8)
C10.0682 (18)0.0369 (15)0.0391 (14)0.0024 (13)0.0185 (13)0.0138 (11)
C20.075 (2)0.0367 (15)0.0416 (15)0.0030 (14)0.0187 (14)0.0066 (12)
C30.080 (2)0.0307 (14)0.0547 (17)0.0071 (14)0.0191 (15)0.0129 (12)
C40.0611 (17)0.0328 (14)0.0483 (15)0.0044 (12)0.0143 (13)0.0191 (11)
C50.0454 (13)0.0298 (12)0.0375 (12)0.0006 (10)0.0092 (10)0.0158 (10)
C60.0463 (14)0.0319 (13)0.0381 (13)0.0002 (10)0.0101 (11)0.0162 (10)
C70.0463 (14)0.0343 (13)0.0386 (13)0.0057 (10)0.0126 (11)0.0206 (10)
C80.0560 (17)0.0466 (16)0.0422 (14)0.0025 (13)0.0112 (12)0.0172 (12)
C90.0562 (17)0.067 (2)0.0419 (15)0.0082 (15)0.0104 (13)0.0252 (14)
C100.0626 (18)0.069 (2)0.0555 (17)0.0187 (15)0.0243 (14)0.0431 (16)
C110.0570 (17)0.0520 (18)0.0675 (19)0.0052 (14)0.0209 (15)0.0382 (15)
C120.0485 (15)0.0426 (15)0.0497 (15)0.0014 (12)0.0089 (12)0.0240 (12)
C130.0620 (17)0.0388 (15)0.0414 (14)0.0015 (12)0.0155 (12)0.0150 (11)
C140.0711 (19)0.0451 (17)0.0376 (14)0.0057 (14)0.0140 (13)0.0074 (12)
C150.0624 (18)0.0326 (14)0.0482 (16)0.0008 (13)0.0004 (13)0.0050 (12)
C160.0512 (15)0.0324 (14)0.0494 (15)0.0036 (11)0.0021 (12)0.0151 (11)
C170.0417 (13)0.0304 (12)0.0381 (12)0.0000 (10)0.0025 (10)0.0166 (10)
C180.0445 (14)0.0340 (13)0.0442 (13)0.0014 (10)0.0060 (11)0.0225 (11)
C190.0396 (13)0.0317 (12)0.0363 (12)0.0013 (10)0.0060 (10)0.0170 (10)
C200.0576 (16)0.0434 (15)0.0423 (14)0.0062 (12)0.0117 (12)0.0248 (12)
C210.072 (2)0.0552 (18)0.0359 (14)0.0118 (15)0.0021 (13)0.0203 (13)
C220.0597 (18)0.0560 (18)0.0416 (15)0.0008 (14)0.0089 (13)0.0125 (13)
C230.0472 (15)0.0422 (15)0.0481 (15)0.0083 (12)0.0005 (12)0.0176 (12)
C240.0386 (12)0.0334 (13)0.0350 (12)0.0005 (10)0.0074 (10)0.0142 (10)
C250.087 (3)0.069 (3)0.137 (4)0.010 (2)0.016 (3)0.040 (3)
Geometric parameters (Å, º) top
Ir1—C241.995 (2)C8—H8A0.9300
Ir1—N22.032 (2)C9—C101.372 (4)
Ir1—N12.047 (2)C9—H9A0.9300
Ir1—O12.1983 (17)C10—C111.370 (4)
Ir1—Cl22.3407 (8)C10—H10A0.9300
Ir1—Cl12.3416 (7)C11—C121.386 (4)
Cl3—C251.753 (5)C11—H11A0.9300
Cl3'—C251.621 (12)C12—H12A0.9300
Cl3'—Cl4'2.504 (17)C13—C141.372 (4)
Cl4—C251.656 (5)C13—H13A0.9300
Cl4'—C251.911 (9)C14—C151.379 (4)
O1—C61.239 (3)C14—H14A0.9300
O2—C181.220 (3)C15—C161.372 (4)
N1—C11.338 (3)C15—H15A0.9300
N1—C51.366 (3)C16—C171.381 (3)
N2—C171.349 (3)C16—H16A0.9300
N2—C131.342 (3)C17—C181.511 (3)
C1—C21.379 (4)C18—C191.478 (3)
C1—H1A0.9300C19—C241.402 (3)
C2—C31.370 (4)C19—C201.401 (3)
C2—H2A0.9300C20—C211.367 (4)
C3—C41.376 (4)C20—H20A0.9300
C3—H3A0.9300C21—C221.388 (4)
C4—C51.377 (3)C21—H21A0.9300
C4—H4A0.9300C22—C231.380 (4)
C5—C61.485 (3)C22—H22A0.9300
C6—C71.473 (3)C23—C241.395 (3)
C7—C81.394 (3)C23—H23A0.9300
C7—C121.395 (3)C25—H25A0.9600
C8—C91.370 (4)C25—H25B0.9600
C24—Ir1—N288.46 (9)C12—C11—H11A119.7
C24—Ir1—N199.89 (9)C7—C12—C11119.4 (3)
N2—Ir1—N1171.15 (7)C7—C12—H12A120.3
C24—Ir1—O1174.73 (8)C11—C12—H12A120.3
N2—Ir1—O195.21 (7)N2—C13—C14123.1 (3)
N1—Ir1—O176.67 (7)N2—C13—H13A118.5
C24—Ir1—Cl291.26 (7)C14—C13—H13A118.5
N2—Ir1—Cl292.19 (6)C13—C14—C15118.8 (3)
N1—Ir1—Cl290.59 (6)C13—C14—H14A120.6
O1—Ir1—Cl284.84 (6)C15—C14—H14A120.6
C24—Ir1—Cl191.73 (7)C16—C15—C14118.6 (2)
N2—Ir1—Cl188.61 (6)C16—C15—H15A120.7
N1—Ir1—Cl188.19 (6)C14—C15—H15A120.7
O1—Ir1—Cl192.14 (6)C15—C16—C17120.2 (3)
Cl2—Ir1—Cl1176.93 (2)C15—C16—H16A119.9
C25—Cl3'—Cl4'49.7 (4)C17—C16—H16A119.9
C25—Cl4'—Cl3'40.4 (4)N2—C17—C16121.1 (2)
C6—O1—Ir1112.63 (15)N2—C17—C18121.0 (2)
C1—N1—C5117.9 (2)C16—C17—C18117.8 (2)
C1—N1—Ir1125.79 (17)O2—C18—C19122.3 (2)
C5—N1—Ir1115.96 (16)O2—C18—C17117.7 (2)
C17—N2—C13118.2 (2)C19—C18—C17119.3 (2)
C17—N2—Ir1122.56 (17)C24—C19—C20120.9 (2)
C13—N2—Ir1118.29 (17)C24—C19—C18123.0 (2)
N1—C1—C2122.7 (2)C20—C19—C18115.9 (2)
N1—C1—H1A118.7C21—C20—C19120.6 (3)
C2—C1—H1A118.7C21—C20—H20A119.7
C1—C2—C3119.3 (3)C19—C20—H20A119.7
C1—C2—H2A120.4C20—C21—C22119.1 (3)
C3—C2—H2A120.4C20—C21—H21A120.5
C4—C3—C2118.9 (3)C22—C21—H21A120.5
C4—C3—H3A120.6C23—C22—C21120.7 (2)
C2—C3—H3A120.6C23—C22—H22A119.6
C5—C4—C3119.8 (2)C21—C22—H22A119.6
C5—C4—H4A120.1C22—C23—C24121.5 (2)
C3—C4—H4A120.1C22—C23—H23A119.2
N1—C5—C4121.3 (2)C24—C23—H23A119.2
N1—C5—C6114.1 (2)C23—C24—C19117.0 (2)
C4—C5—C6124.1 (2)C23—C24—Ir1121.60 (18)
O1—C6—C7118.8 (2)C19—C24—Ir1121.33 (17)
O1—C6—C5117.9 (2)Cl4—C25—Cl3'108.8 (5)
C7—C6—C5123.2 (2)Cl4—C25—Cl3117.7 (3)
C8—C7—C12118.9 (2)Cl3'—C25—Cl325.3 (3)
C8—C7—C6118.1 (2)Cl4—C25—Cl4'19.2 (3)
C12—C7—C6123.0 (2)Cl3'—C25—Cl4'89.9 (6)
C9—C8—C7120.7 (3)Cl3—C25—Cl4'99.2 (3)
C9—C8—H8A119.7Cl4—C25—H25A107.8
C7—C8—H8A119.7Cl3'—C25—H25A132.0
C10—C9—C8120.0 (3)Cl3—C25—H25A108.1
C10—C9—H9A120.0Cl4'—C25—H25A121.6
C8—C9—H9A120.0Cl4—C25—H25B107.2
C11—C10—C9120.3 (3)Cl3'—C25—H25B90.2
C11—C10—H10A119.9Cl3—C25—H25B108.2
C9—C10—H10A119.9Cl4'—C25—H25B111.5
C10—C11—C12120.7 (3)H25A—C25—H25B107.4
C10—C11—H11A119.7

Experimental details

Crystal data
Chemical formula[Ir(C12H8NO)Cl2(C12H9NO)]·CH2Cl2
Mr713.42
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.8694 (9), 11.4600 (11), 13.2604 (13)
α, β, γ (°)113.543 (2), 95.719 (2), 90.641 (2)
V3)1227.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)5.90
Crystal size (mm)0.13 × 0.13 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.480, 0.624
No. of measured, independent and
observed [I > 2σ(I)] reflections
14570, 6075, 5416
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.044, 0.85
No. of reflections6075
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.52

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ir1—C241.995 (2)Ir1—Cl22.3407 (8)
Ir1—N22.032 (2)Ir1—Cl12.3416 (7)
Ir1—N12.047 (2)O1—C61.239 (3)
Ir1—O12.1983 (17)O2—C181.220 (3)
C24—Ir1—N288.46 (9)N1—Ir1—Cl290.59 (6)
C24—Ir1—N199.89 (9)O1—Ir1—Cl284.84 (6)
N2—Ir1—N1171.15 (7)C24—Ir1—Cl191.73 (7)
C24—Ir1—O1174.73 (8)N2—Ir1—Cl188.61 (6)
N2—Ir1—O195.21 (7)N1—Ir1—Cl188.19 (6)
N1—Ir1—O176.67 (7)O1—Ir1—Cl192.14 (6)
C24—Ir1—Cl291.26 (7)Cl2—Ir1—Cl1176.93 (2)
N2—Ir1—Cl292.19 (6)
 

Acknowledgements

Financial support from the Ministry of Economic Affairs, Taiwan, is acknowledged.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationGeest, D. J. de & Steel, P. J. (1995). Aust. J. Chem. 48, 1573–1585.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTseng, M. C., Wang, S. P., Yu, Y. C., Sheu, S. Y. & Huang, W. L. (2005). Acta Cryst. E61, m2452–m2453.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds