organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-2-methyl-N-phenyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 17 January 2009; accepted 2 February 2009; online 6 February 2009)

There are two mol­ecules in the asymmetric unit of the title compound, C13H12ClNO2S, with similar conformations. The orientations of the ortho-methyl groups in the sulfonyl benzene rings are in the direction of the N—H bonds of the sulfonamide groups. In the crystal, the mol­ecules are each linked into centrosymmetric dimers through N—H⋯O hydrogen bonds and packed into a layered structure diagonally in the bc plane.

Related literature

For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Gowda et al. (2008a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1692.],b[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1825.], 2009[Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65. Submitted.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.])

[Scheme 1]

Experimental

Crystal data
  • C13H12ClNO2S

  • Mr = 281.75

  • Triclinic, [P \overline 1]

  • a = 8.609 (1) Å

  • b = 11.143 (1) Å

  • c = 14.726 (2) Å

  • α = 98.618 (7)°

  • β = 90.951 (8)°

  • γ = 105.79 (1)°

  • V = 1341.6 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.93 mm−1

  • T = 299 (2) K

  • 0.33 × 0.23 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.350, Tmax = 0.729

  • 7620 measured reflections

  • 4784 independent reflections

  • 2980 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.176

  • S = 1.03

  • 4784 reflections

  • 333 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.91 (5) 2.02 (5) 2.922 (4) 175 (4)
N2—H2N⋯O3ii 0.88 (4) 2.03 (5) 2.906 (4) 173 (4)
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+1, -z+1.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of substituent effects on the structures of N-(aryl)-arylsulfonamides, the structure of N-(phenyl)-2-methyl-4-chlorobenzenesulfonamide (NP2M4CBSA) has been determined (Gowda et al. 2008a,b, 2009). The asymmetric unit of NP2M4CBSA contains 2 molecules. The orientations of the ortho- methyl groups in the sulfonyl benzene rings are in the direction of the N—H bonds of the sulfonamido groups (Fig. 1). The opposite signs of the C—S—N—C torsion angles in the two independent molecules, -61.9 (4)° (molecule 1) and 69.7 (4)° (molecule 2), indicates that they have opposite chirality, although the choice of the chirality of the second molecule relative to the first may be arbitary. The two benzene rings in NP2M4CBSA are tilted relative to each other by 86.6 (2)° in the molecule 1 and 83.0 (2)° in molecule 2, compared with the values of 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) for N-(phenyl)-2,4-dimethylbenzenesulfonamide (NP24DMBSA) (Gowda et al., 2009). The other bond parameters in NP2M4CBSA are similar to those observed for N-(2-methylphenyl)-benzenesulfonamide (Gowda et al., 2008a), NP24DMBSA and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007; Gowda et al., 2008b). The crystal packing of molecules in NP2M4CBSA via intermolecular N—H···O hydrogen bonds (Table 1) is shown in Fig.2.

Related literature top

For related structures, see: Gelbrich et al. (2007); Gowda et al. (2008a,b, 2009); Perlovich et al. (2006)

Experimental top

The solution of m-chlorotoluene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2-methyl-4-chlorobenzenesulfonylchloride was treated with aniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid N-(phenyl)-2-methyl-4-chlorobenzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms of the NH groups were located in a diffrerence map and their positions refined, with N—H = 0.88 (4)–0.91 (5) Å. The carbon-bound H atoms were positioned with idealized geometry and refined using a riding model, with C—H distances 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). For methyl group Uiso(H) = 1.5 Ueq.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
4-Chloro-2-methyl-N-phenylbenzenesulfonamide top
Crystal data top
C13H12ClNO2SZ = 4
Mr = 281.75F(000) = 584
Triclinic, P1Dx = 1.395 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 8.609 (1) ÅCell parameters from 25 reflections
b = 11.143 (1) Åθ = 5.6–21.8°
c = 14.726 (2) ŵ = 3.93 mm1
α = 98.618 (7)°T = 299 K
β = 90.951 (8)°Prism, colourless
γ = 105.79 (1)°0.33 × 0.23 × 0.08 mm
V = 1341.6 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2980 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 67.0°, θmin = 3.0°
ω/2θ scansh = 1010
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.350, Tmax = 0.729l = 177
7620 measured reflections3 standard reflections every 120 min
4784 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0962P)2 + 0.1233P]
where P = (Fo2 + 2Fc2)/3
4784 reflections(Δ/σ)max = 0.005
333 parametersΔρmax = 0.41 e Å3
12 restraintsΔρmin = 0.42 e Å3
Crystal data top
C13H12ClNO2Sγ = 105.79 (1)°
Mr = 281.75V = 1341.6 (3) Å3
Triclinic, P1Z = 4
a = 8.609 (1) ÅCu Kα radiation
b = 11.143 (1) ŵ = 3.93 mm1
c = 14.726 (2) ÅT = 299 K
α = 98.618 (7)°0.33 × 0.23 × 0.08 mm
β = 90.951 (8)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2980 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.045
Tmin = 0.350, Tmax = 0.7293 standard reflections every 120 min
7620 measured reflections intensity decay: 1.0%
4784 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05712 restraints
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.41 e Å3
4784 reflectionsΔρmin = 0.42 e Å3
333 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.4618 (4)0.43860 (18)0.24063 (15)0.1670 (10)
S10.46343 (11)0.96896 (11)0.15504 (7)0.0586 (3)
O10.4383 (4)1.0364 (3)0.2403 (2)0.0802 (9)
O20.3532 (3)0.9562 (3)0.07717 (19)0.0722 (8)
N10.6377 (4)1.0345 (3)0.1199 (2)0.0611 (9)
H1N0.647 (5)1.039 (4)0.059 (3)0.073*
C10.4664 (4)0.8182 (4)0.1749 (3)0.0565 (10)
C20.4758 (8)0.7240 (5)0.1044 (3)0.0907 (16)
C30.4778 (10)0.6088 (5)0.1273 (4)0.120 (2)
H30.48760.54440.08160.144*
C40.4653 (7)0.5877 (5)0.2179 (4)0.0910 (16)
C50.4560 (6)0.6791 (5)0.2862 (3)0.0768 (13)
H50.44940.66420.34670.092*
C60.4563 (5)0.7946 (5)0.2653 (3)0.0663 (11)
H60.44950.85860.31220.080*
C70.7894 (4)1.0635 (3)0.1698 (3)0.0522 (9)
C80.9247 (5)1.0883 (4)0.1201 (3)0.0701 (12)
H80.91511.08480.05670.084*
C91.0763 (6)1.1187 (5)0.1656 (4)0.0865 (15)
H91.16851.13580.13230.104*
C101.0914 (6)1.1239 (5)0.2591 (4)0.0834 (15)
H101.19331.14400.28910.100*
C110.9570 (6)1.0995 (4)0.3074 (3)0.0718 (12)
H110.96711.10260.37070.086*
C120.8054 (5)1.0701 (4)0.2639 (3)0.0653 (11)
H120.71411.05470.29800.078*
C130.4894 (9)0.7419 (4)0.0007 (3)0.102 (2)
H13A0.58340.80970.00500.123*
H13B0.39470.76160.02050.123*
H13C0.49850.66530.03570.123*
Cl20.1160 (4)0.3570 (3)0.99174 (14)0.1919 (12)
S20.06931 (11)0.32374 (9)0.57752 (8)0.0560 (3)
O30.1468 (3)0.4185 (3)0.5635 (2)0.0703 (8)
O40.1553 (3)0.1953 (3)0.5486 (2)0.0727 (8)
N20.0946 (4)0.3586 (3)0.5248 (2)0.0581 (9)
H2N0.114 (5)0.431 (4)0.503 (3)0.070*
C140.0126 (5)0.3404 (4)0.6948 (3)0.0569 (10)
C150.0592 (7)0.4573 (4)0.7478 (4)0.0803 (13)
C160.0983 (8)0.4591 (6)0.8395 (4)0.115 (2)
H160.14570.53590.87700.138*
C170.0679 (8)0.3489 (7)0.8762 (4)0.110 (2)
C180.0041 (7)0.2348 (6)0.8243 (4)0.0906 (16)
H180.02670.16120.85020.109*
C190.0424 (5)0.2309 (4)0.7334 (3)0.0679 (11)
H190.08940.15330.69670.081*
C200.2114 (4)0.2902 (3)0.5100 (2)0.0477 (8)
C210.1911 (5)0.1719 (4)0.5338 (3)0.0610 (10)
H210.09980.13460.56320.073*
C220.3085 (6)0.1093 (4)0.5135 (3)0.0692 (12)
H220.29540.02920.52860.083*
C230.4443 (6)0.1657 (5)0.4708 (3)0.0742 (13)
H230.52310.12380.45740.089*
C240.4630 (5)0.2827 (5)0.4484 (3)0.0723 (12)
H240.55510.32090.42010.087*
C250.3464 (4)0.3451 (4)0.4674 (3)0.0577 (10)
H250.35960.42470.45130.069*
C260.0961 (9)0.5821 (4)0.7100 (4)0.111 (2)
H26A0.15300.57490.65480.133*
H26B0.16190.64860.75500.133*
H26C0.00330.60100.69650.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.280 (3)0.1079 (13)0.1210 (15)0.0456 (15)0.0296 (16)0.0575 (11)
S10.0529 (5)0.0868 (7)0.0417 (5)0.0282 (5)0.0004 (4)0.0114 (5)
O10.092 (2)0.114 (3)0.0494 (17)0.0576 (19)0.0072 (15)0.0056 (16)
O20.0544 (16)0.121 (3)0.0516 (17)0.0361 (16)0.0077 (13)0.0244 (16)
N10.0573 (19)0.085 (2)0.0421 (18)0.0178 (17)0.0045 (15)0.0176 (17)
C10.052 (2)0.076 (3)0.039 (2)0.0125 (18)0.0021 (16)0.0133 (18)
C20.146 (5)0.079 (3)0.047 (3)0.030 (3)0.012 (3)0.017 (2)
C30.230 (8)0.074 (3)0.057 (3)0.036 (4)0.021 (4)0.018 (3)
C40.123 (4)0.081 (3)0.066 (3)0.017 (3)0.006 (3)0.025 (3)
C50.082 (3)0.098 (4)0.053 (3)0.018 (3)0.012 (2)0.030 (3)
C60.059 (2)0.091 (3)0.048 (2)0.015 (2)0.0018 (19)0.018 (2)
C70.057 (2)0.051 (2)0.049 (2)0.0156 (17)0.0071 (17)0.0100 (16)
C80.062 (3)0.088 (3)0.062 (3)0.026 (2)0.003 (2)0.009 (2)
C90.058 (3)0.112 (4)0.089 (4)0.024 (3)0.002 (3)0.012 (3)
C100.070 (3)0.080 (3)0.096 (4)0.025 (2)0.029 (3)0.001 (3)
C110.081 (3)0.063 (3)0.065 (3)0.012 (2)0.025 (2)0.010 (2)
C120.065 (3)0.074 (3)0.050 (2)0.007 (2)0.0075 (19)0.015 (2)
C130.226 (7)0.068 (3)0.026 (2)0.061 (4)0.018 (3)0.0116 (19)
Cl20.244 (3)0.239 (3)0.0830 (12)0.035 (2)0.0157 (15)0.0602 (15)
S20.0490 (5)0.0529 (5)0.0731 (7)0.0173 (4)0.0041 (4)0.0259 (5)
O30.0608 (16)0.0743 (19)0.095 (2)0.0364 (14)0.0125 (15)0.0398 (16)
O40.0641 (17)0.0545 (17)0.097 (2)0.0071 (13)0.0088 (16)0.0213 (15)
N20.0595 (19)0.0517 (19)0.078 (2)0.0282 (16)0.0181 (17)0.0319 (17)
C140.057 (2)0.055 (2)0.066 (3)0.0187 (18)0.0156 (19)0.0258 (19)
C150.103 (4)0.063 (3)0.073 (3)0.019 (3)0.007 (3)0.015 (2)
C160.152 (6)0.096 (4)0.081 (4)0.010 (4)0.001 (4)0.009 (3)
C170.131 (5)0.131 (6)0.071 (4)0.027 (4)0.003 (4)0.041 (4)
C180.093 (4)0.103 (4)0.089 (4)0.029 (3)0.011 (3)0.053 (3)
C190.070 (3)0.063 (3)0.079 (3)0.021 (2)0.007 (2)0.032 (2)
C200.053 (2)0.0466 (19)0.046 (2)0.0183 (16)0.0057 (16)0.0085 (15)
C210.062 (2)0.057 (2)0.070 (3)0.0214 (19)0.001 (2)0.019 (2)
C220.081 (3)0.057 (2)0.076 (3)0.032 (2)0.010 (2)0.008 (2)
C230.076 (3)0.089 (3)0.070 (3)0.051 (3)0.004 (2)0.001 (2)
C240.063 (3)0.087 (3)0.078 (3)0.032 (2)0.015 (2)0.024 (3)
C250.056 (2)0.061 (2)0.058 (2)0.0166 (18)0.0001 (18)0.0164 (19)
C260.171 (6)0.045 (3)0.104 (4)0.007 (3)0.003 (4)0.010 (3)
Geometric parameters (Å, º) top
Cl1—C41.735 (6)Cl2—C171.727 (6)
S1—O11.415 (3)S2—O41.417 (3)
S1—O21.441 (3)S2—O31.431 (3)
S1—N11.611 (4)S2—N21.604 (3)
S1—C11.754 (4)S2—C141.756 (4)
N1—C71.419 (5)N2—C201.419 (4)
N1—H1N0.91 (5)N2—H2N0.88 (4)
C1—C21.382 (6)C14—C191.385 (5)
C1—C61.395 (5)C14—C151.389 (6)
C2—C31.380 (7)C15—C161.383 (7)
C2—C131.571 (6)C15—C261.529 (7)
C3—C41.390 (7)C16—C171.378 (8)
C3—H30.9300C16—H160.9300
C4—C51.340 (7)C17—C181.360 (8)
C5—C61.367 (6)C18—C191.366 (7)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—H190.9300
C7—C81.372 (5)C20—C251.367 (5)
C7—C121.380 (5)C20—C211.381 (5)
C8—C91.388 (6)C21—C221.389 (5)
C8—H80.9300C21—H210.9300
C9—C101.372 (7)C22—C231.379 (6)
C9—H90.9300C22—H220.9300
C10—C111.353 (7)C23—C241.361 (6)
C10—H100.9300C23—H230.9300
C11—C121.377 (6)C24—C251.378 (5)
C11—H110.9300C24—H240.9300
C12—H120.9300C25—H250.9300
C13—H13A0.9600C26—H26A0.9600
C13—H13B0.9600C26—H26B0.9600
C13—H13C0.9600C26—H26C0.9600
O1—S1—O2118.88 (18)O4—S2—O3118.30 (18)
O1—S1—N1110.6 (2)O4—S2—N2110.14 (19)
O2—S1—N1103.80 (17)O3—S2—N2104.50 (17)
O1—S1—C1106.88 (19)O4—S2—C14107.02 (18)
O2—S1—C1109.17 (19)O3—S2—C14109.55 (19)
N1—S1—C1107.02 (18)N2—S2—C14106.81 (18)
C7—N1—S1126.6 (3)C20—N2—S2128.7 (3)
C7—N1—H1N113 (3)C20—N2—H2N116 (3)
S1—N1—H1N119 (3)S2—N2—H2N115 (3)
C2—C1—C6120.1 (4)C19—C14—C15120.7 (4)
C2—C1—S1122.2 (3)C19—C14—S2117.1 (3)
C6—C1—S1117.7 (3)C15—C14—S2122.3 (3)
C3—C2—C1117.7 (4)C16—C15—C14117.3 (5)
C3—C2—C13118.5 (4)C16—C15—C26119.1 (5)
C1—C2—C13123.8 (4)C14—C15—C26123.6 (5)
C2—C3—C4120.8 (5)C17—C16—C15121.0 (6)
C2—C3—H3119.6C17—C16—H16119.5
C4—C3—H3119.6C15—C16—H16119.5
C5—C4—C3121.4 (5)C18—C17—C16121.4 (6)
C5—C4—Cl1120.5 (4)C18—C17—Cl2119.5 (5)
C3—C4—Cl1118.0 (4)C16—C17—Cl2119.1 (6)
C4—C5—C6118.7 (4)C17—C18—C19118.4 (5)
C4—C5—H5120.6C17—C18—H18120.8
C6—C5—H5120.6C19—C18—H18120.8
C5—C6—C1121.2 (4)C18—C19—C14121.1 (5)
C5—C6—H6119.4C18—C19—H19119.4
C1—C6—H6119.4C14—C19—H19119.4
C8—C7—C12119.8 (4)C25—C20—C21120.2 (3)
C8—C7—N1116.9 (4)C25—C20—N2116.9 (3)
C12—C7—N1123.3 (4)C21—C20—N2123.0 (3)
C7—C8—C9119.3 (4)C20—C21—C22119.3 (4)
C7—C8—H8120.4C20—C21—H21120.4
C9—C8—H8120.4C22—C21—H21120.4
C10—C9—C8120.7 (5)C23—C22—C21120.1 (4)
C10—C9—H9119.7C23—C22—H22120.0
C8—C9—H9119.7C21—C22—H22120.0
C11—C10—C9119.5 (4)C24—C23—C22119.9 (4)
C11—C10—H10120.2C24—C23—H23120.1
C9—C10—H10120.2C22—C23—H23120.1
C10—C11—C12120.9 (4)C23—C24—C25120.5 (4)
C10—C11—H11119.6C23—C24—H24119.7
C12—C11—H11119.6C25—C24—H24119.7
C11—C12—C7119.9 (4)C20—C25—C24120.1 (4)
C11—C12—H12120.1C20—C25—H25119.9
C7—C12—H12120.1C24—C25—H25119.9
C2—C13—H13A109.5C15—C26—H26A109.5
C2—C13—H13B109.5C15—C26—H26B109.5
H13A—C13—H13B109.5H26A—C26—H26B109.5
C2—C13—H13C109.5C15—C26—H26C109.5
H13A—C13—H13C109.5H26A—C26—H26C109.5
H13B—C13—H13C109.5H26B—C26—H26C109.5
O1—S1—N1—C754.0 (4)O4—S2—N2—C2046.3 (4)
O2—S1—N1—C7177.4 (3)O3—S2—N2—C20174.3 (3)
C1—S1—N1—C762.0 (4)C14—S2—N2—C2069.6 (4)
O1—S1—C1—C2174.7 (4)O4—S2—C14—C196.9 (4)
O2—S1—C1—C244.9 (5)O3—S2—C14—C19136.3 (3)
N1—S1—C1—C266.8 (4)N2—S2—C14—C19111.1 (3)
O1—S1—C1—C64.2 (4)O4—S2—C14—C15173.1 (4)
O2—S1—C1—C6134.0 (3)O3—S2—C14—C1543.7 (4)
N1—S1—C1—C6114.2 (3)N2—S2—C14—C1568.9 (4)
C6—C1—C2—C31.2 (8)C19—C14—C15—C160.3 (7)
S1—C1—C2—C3179.9 (5)S2—C14—C15—C16179.7 (4)
C6—C1—C2—C13179.3 (5)C19—C14—C15—C26179.9 (5)
S1—C1—C2—C131.7 (8)S2—C14—C15—C260.1 (7)
C1—C2—C3—C42.1 (10)C14—C15—C16—C170.5 (9)
C13—C2—C3—C4179.7 (6)C26—C15—C16—C17179.6 (6)
C2—C3—C4—C52.0 (11)C15—C16—C17—C181.3 (11)
C2—C3—C4—Cl1177.8 (6)C15—C16—C17—Cl2178.9 (5)
C3—C4—C5—C61.0 (9)C16—C17—C18—C191.8 (10)
Cl1—C4—C5—C6178.9 (4)Cl2—C17—C18—C19179.4 (4)
C4—C5—C6—C10.1 (7)C17—C18—C19—C141.5 (8)
C2—C1—C6—C50.3 (7)C15—C14—C19—C180.8 (7)
S1—C1—C6—C5179.2 (3)S2—C14—C19—C18179.2 (4)
S1—N1—C7—C8163.5 (3)S2—N2—C20—C25176.1 (3)
S1—N1—C7—C1217.8 (6)S2—N2—C20—C215.9 (6)
C12—C7—C8—C90.5 (6)C25—C20—C21—C220.5 (6)
N1—C7—C8—C9179.2 (4)N2—C20—C21—C22177.4 (4)
C7—C8—C9—C100.1 (7)C20—C21—C22—C230.7 (6)
C8—C9—C10—C110.2 (8)C21—C22—C23—C240.2 (7)
C9—C10—C11—C120.3 (7)C22—C23—C24—C250.5 (7)
C10—C11—C12—C70.9 (7)C21—C20—C25—C240.2 (6)
C8—C7—C12—C111.0 (6)N2—C20—C25—C24178.2 (4)
N1—C7—C12—C11179.7 (4)C23—C24—C25—C200.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.91 (5)2.02 (5)2.922 (4)175 (4)
N2—H2N···O3ii0.88 (4)2.03 (5)2.906 (4)173 (4)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H12ClNO2S
Mr281.75
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)8.609 (1), 11.143 (1), 14.726 (2)
α, β, γ (°)98.618 (7), 90.951 (8), 105.79 (1)
V3)1341.6 (3)
Z4
Radiation typeCu Kα
µ (mm1)3.93
Crystal size (mm)0.33 × 0.23 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.350, 0.729
No. of measured, independent and
observed [I > 2σ(I)] reflections
7620, 4784, 2980
Rint0.045
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.176, 1.03
No. of reflections4784
No. of parameters333
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.42

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.91 (5)2.02 (5)2.922 (4)175 (4)
N2—H2N···O3ii0.88 (4)2.03 (5)2.906 (4)173 (4)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z+1.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65. Submitted.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds