organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(di-2-pyridylphosphino­yl)ethane

aChemistry, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Western Australia, Australia
*Correspondence e-mail: brian.skelton@uwa.edu.au

(Received 20 January 2009; accepted 9 February 2009; online 18 February 2009)

The crystal structure of the title compound, C22H20N4O2P2, consists of two independent half-mol­ecules, both of which lie on crystallographic inversion centres. There are no significant differences between the two mol­ecules.

Related literature

For the anti­tumour properties of metal complexes of bidentate tertiary phosphine ligands with pyridyl substituents, see: McKeage et al. (2000[McKeage, M. J., Berners-Price, S. J., Galettis, P., Bowen, R. J., Brouwer, W., Ding, L., Zhuang, L. & Baguley, B. C. (2000). Cancer Chemother. Pharmacol. 46, 343-350.]); Barnard & Berners-Price (2007[Barnard, P. J. & Berners-Price, S. J. (2007). Coord. Chem. Rev. 251, 1889-1902.]); Liu et al. (2008[Liu, J. J., Galettis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C., Baguley, B. C., Bowen, R. J., Berners-Price, S. J. & McKeage, M. J. (2008). J. Inorg. Biochem. 102, 303-310.]). The crystal structure of the parent 1,2-bis­(di-2-pyridylphosphino)ethane mol­ecule has been determined (Jones et al., 1999[Jones, N. D., MacFarlane, K. S., Smith, M. B., Schutte, R. P., Rettig, S. J. & James, B. R. (1999). Inorg. Chem. 38, 3956-3966.]). The structure of 1,2-bis­(di-phenyl­phosphino)ethane dioxide (Calcagno et al., 2000[Calcagno, P., Kariuki, B. M., Kitchin, S. J., Robinson, J. M. A., Philp, D. & Harris, K. D. M. (2000). Chem. Eur. J. 6, 2338-2349.]) is similar, with the two halves of the mol­ecule related by a pseudo-inversion centre, but this is not isomorphous with the title compound.

[Scheme 1]

Experimental

Crystal data
  • C22H20N4O2P2

  • Mr = 434.36

  • Triclinic, [P \overline 1]

  • a = 8.3760 (6) Å

  • b = 8.8496 (8) Å

  • c = 16.2332 (11) Å

  • α = 105.627 (7)°

  • β = 92.429 (5)°

  • γ = 112.559 (7)°

  • V = 1055.67 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 110 K

  • 0.22 × 0.10 × 0.06 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: Gaussian (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.968, Tmax = 0.988

  • 10983 measured reflections

  • 4842 independent reflections

  • 2698 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.112

  • S = 0.86

  • 4842 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Bidentate tertiary phosphine ligands with pyridyl substituents, such as 1,2-bis(di-2-pyridylphosphino)ethane (d2pype) are of interest because a number of studies have shown that metal complexes with these ligands exhibit selective anti-tumour properties (McKeage et al., 2000; Barnard and Berners-Price 2007; Liu et al., 2008). During the course of our work in this area, we obtained crystals of the phosphine oxide d2pypeO2 (I), which were suitable for X-ray diffraction studies.

Related literature top

For background on the antitumour properties of metal complexes of bidentate tertiary phosphine ligands with pyridyl substituents, see: McKeage et al. (2000); Barnard & Berners-Price (2007); Liu et al. (2008). The crystal structure of the parent 1,2-bis(di-2-pyridylphosphino)ethane molecule has been determined (Jones et al., 1999). The structure of 1,2-bis(di-phenylphosphino)ethane dioxide (Calcagno et al., 2000) is similar, with the two halfs of the molecule related by a pseudo-inversion centre, but this is not isomorphous with the title compound.

Experimental top

1,2-bis(di-2-pyridylphosphino)ethane (d2pype) was obtained from Strem Chemicals Inc. Single crystals of the title compound d2pypeO2 (I) suitable for X-ray crystallographic analysis were obtained as a by-product of slow evaporation of a solution of d2pype and copper (I) iodide (molar ratio 2:1) in acetonitrile-tetrahydrofuran mixture.

Refinement top

The assignments of the py ring N,C atoms were made on the basis of refinement and location of the H atoms. All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing and atom labelling for molecule n = 1. Displacement ellipsoids of non-H atoms are drawn at the 50% probablility level. The structure of the second, n = 2, molecule is very similar.
1,2-Bis(di-2-pyridylphosphinoyl)ethane top
Crystal data top
C22H20N4O2P2Z = 2
Mr = 434.36F(000) = 452
Triclinic, P1Dx = 1.366 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3760 (6) ÅCell parameters from 2539 reflections
b = 8.8496 (8) Åθ = 3.3–32.6°
c = 16.2332 (11) ŵ = 0.23 mm1
α = 105.627 (7)°T = 110 K
β = 92.429 (5)°Plate, colourless
γ = 112.559 (7)°0.22 × 0.10 × 0.06 mm
V = 1055.67 (16) Å3
Data collection top
Oxford Diffraction Gemini
diffractometer
4842 independent reflections
Radiation source: sealed tube2698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: gaussian
(CrysAlis RED; Oxford Diffraction, 2008)
h = 1010
Tmin = 0.968, Tmax = 0.988k = 1111
10983 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0495P)2]
where P = (Fo2 + 2Fc2)/3
4842 reflections(Δ/σ)max = 0.002
271 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C22H20N4O2P2γ = 112.559 (7)°
Mr = 434.36V = 1055.67 (16) Å3
Triclinic, P1Z = 2
a = 8.3760 (6) ÅMo Kα radiation
b = 8.8496 (8) ŵ = 0.23 mm1
c = 16.2332 (11) ÅT = 110 K
α = 105.627 (7)°0.22 × 0.10 × 0.06 mm
β = 92.429 (5)°
Data collection top
Oxford Diffraction Gemini
diffractometer
4842 independent reflections
Absorption correction: gaussian
(CrysAlis RED; Oxford Diffraction, 2008)
2698 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.988Rint = 0.059
10983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.86Δρmax = 0.43 e Å3
4842 reflectionsΔρmin = 0.34 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.18196 (9)0.21056 (9)0.45935 (4)0.02233 (18)
O10.3253 (2)0.3074 (2)0.53572 (11)0.0272 (4)
C1110.2511 (3)0.0876 (3)0.37091 (16)0.0217 (6)
N1120.1239 (3)0.0366 (3)0.30732 (14)0.0267 (5)
C1130.1759 (4)0.1218 (4)0.24034 (17)0.0320 (7)
H1130.08790.21090.1950.038*
C1140.3487 (4)0.0891 (4)0.23254 (18)0.0320 (7)
H1140.37820.15280.18310.038*
C1150.4767 (4)0.0385 (4)0.29857 (19)0.0372 (8)
H1150.59690.06410.29570.045*
C1160.4284 (3)0.1287 (4)0.36902 (18)0.0313 (7)
H1160.51460.21720.41530.038*
C1210.1197 (3)0.3509 (3)0.41523 (15)0.0227 (6)
N1220.0518 (3)0.2959 (3)0.38395 (15)0.0300 (6)
C1230.0959 (4)0.4009 (4)0.35135 (19)0.0352 (7)
H1230.2160.36610.32980.042*
C1240.0236 (4)0.5571 (4)0.34727 (17)0.0310 (7)
H1240.01420.62630.32280.037*
C1250.1972 (4)0.6111 (4)0.37892 (17)0.0316 (7)
H1250.28160.71840.37730.038*
C1260.2464 (3)0.5055 (3)0.41316 (16)0.0256 (6)
H1260.36590.53880.43510.031*
C100.0180 (3)0.0583 (3)0.47773 (16)0.0242 (6)
H10A0.07860.1210.51420.029*
H10B0.09620.01240.42160.029*
P20.68020 (8)0.27338 (9)0.04404 (4)0.02132 (18)
O20.7095 (2)0.3187 (2)0.03767 (11)0.0278 (4)
C2110.6499 (3)0.4398 (3)0.12649 (16)0.0213 (6)
N2120.6135 (3)0.4071 (3)0.20118 (14)0.0279 (5)
C2130.6005 (4)0.5335 (4)0.26420 (18)0.0327 (7)
H2130.57580.51380.31790.039*
C2140.6210 (3)0.6903 (4)0.2556 (2)0.0358 (7)
H2140.61110.77590.30250.043*
C2150.6559 (3)0.7211 (4)0.1781 (2)0.0347 (7)
H2150.66950.82770.17020.042*
C2160.6707 (3)0.5931 (4)0.11223 (19)0.0299 (7)
H2160.69490.610.0580.036*
C2210.8672 (3)0.2545 (3)0.09411 (16)0.0218 (6)
N2220.8365 (3)0.1354 (3)0.13511 (14)0.0285 (5)
C2230.9776 (4)0.1286 (4)0.17259 (18)0.0335 (7)
H2230.95940.04570.20220.04*
C2241.1484 (4)0.2342 (4)0.17114 (18)0.0330 (7)
H2241.24390.22270.19840.04*
C2251.1771 (3)0.3559 (4)0.12949 (18)0.0342 (7)
H2251.29290.43160.12810.041*
C2261.0340 (3)0.3661 (4)0.08959 (17)0.0278 (6)
H2261.04980.44810.05960.033*
C200.4938 (3)0.0766 (3)0.03363 (16)0.0212 (6)
H20A0.48740.05540.09050.025*
H20B0.38530.08760.01590.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0206 (4)0.0253 (4)0.0224 (4)0.0096 (3)0.0051 (3)0.0090 (3)
O10.0232 (9)0.0318 (11)0.0235 (10)0.0099 (9)0.0022 (8)0.0063 (8)
C1110.0238 (14)0.0239 (15)0.0205 (13)0.0105 (12)0.0034 (11)0.0107 (12)
N1120.0328 (13)0.0261 (14)0.0234 (12)0.0148 (11)0.0026 (10)0.0073 (11)
C1130.0433 (18)0.0298 (17)0.0235 (15)0.0168 (15)0.0002 (13)0.0072 (13)
C1140.0463 (18)0.0262 (17)0.0295 (16)0.0186 (15)0.0148 (14)0.0115 (14)
C1150.0328 (16)0.0311 (18)0.050 (2)0.0137 (14)0.0224 (15)0.0120 (16)
C1160.0261 (15)0.0256 (17)0.0358 (17)0.0058 (13)0.0070 (13)0.0063 (14)
C1210.0250 (14)0.0237 (15)0.0201 (14)0.0105 (12)0.0067 (11)0.0066 (12)
N1220.0216 (12)0.0288 (14)0.0420 (14)0.0083 (11)0.0007 (10)0.0181 (12)
C1230.0262 (15)0.0337 (19)0.0480 (19)0.0103 (14)0.0022 (13)0.0197 (15)
C1240.0354 (16)0.0282 (17)0.0341 (16)0.0159 (14)0.0042 (13)0.0128 (14)
C1250.0342 (16)0.0201 (16)0.0361 (17)0.0037 (13)0.0084 (13)0.0126 (13)
C1260.0239 (14)0.0268 (16)0.0232 (14)0.0083 (12)0.0031 (11)0.0065 (12)
C100.0213 (14)0.0279 (16)0.0256 (14)0.0110 (12)0.0061 (11)0.0104 (12)
P20.0193 (3)0.0198 (4)0.0227 (4)0.0056 (3)0.0010 (3)0.0071 (3)
O20.0289 (10)0.0251 (11)0.0265 (10)0.0079 (9)0.0018 (8)0.0084 (9)
C2110.0125 (12)0.0214 (15)0.0253 (14)0.0052 (11)0.0033 (11)0.0037 (12)
N2120.0272 (12)0.0358 (15)0.0220 (12)0.0161 (11)0.0015 (10)0.0070 (11)
C2130.0332 (16)0.044 (2)0.0234 (15)0.0229 (15)0.0014 (12)0.0042 (14)
C2140.0262 (15)0.0336 (19)0.0426 (19)0.0162 (14)0.0004 (14)0.0008 (15)
C2150.0232 (15)0.0180 (16)0.057 (2)0.0052 (12)0.0057 (14)0.0069 (15)
C2160.0195 (14)0.0267 (17)0.0400 (17)0.0058 (12)0.0060 (12)0.0104 (14)
C2210.0225 (14)0.0214 (15)0.0208 (14)0.0089 (12)0.0039 (11)0.0053 (12)
N2220.0250 (12)0.0265 (14)0.0348 (13)0.0087 (11)0.0012 (10)0.0141 (11)
C2230.0295 (16)0.0307 (18)0.0421 (18)0.0093 (14)0.0003 (13)0.0191 (15)
C2240.0234 (15)0.0388 (19)0.0399 (18)0.0134 (14)0.0027 (13)0.0169 (15)
C2250.0196 (14)0.0389 (19)0.0412 (18)0.0069 (13)0.0058 (13)0.0155 (15)
C2260.0240 (14)0.0279 (17)0.0321 (16)0.0069 (13)0.0059 (12)0.0157 (13)
C200.0185 (13)0.0212 (15)0.0226 (14)0.0072 (11)0.0002 (11)0.0067 (11)
Geometric parameters (Å, º) top
P1—O11.4917 (18)P2—O21.4897 (18)
P1—C101.799 (3)P2—C201.798 (2)
P1—C1211.809 (3)P2—C2111.811 (3)
P1—C1111.815 (3)P2—C2211.819 (3)
C111—N1121.344 (3)C211—N2121.341 (3)
C111—C1161.391 (3)C211—C2161.384 (4)
N112—C1131.339 (3)N212—C2131.340 (3)
C113—C1141.381 (4)C213—C2141.378 (4)
C113—H1130.95C213—H2130.95
C114—C1151.377 (4)C214—C2151.378 (4)
C114—H1140.95C214—H2140.95
C115—C1161.380 (4)C215—C2161.382 (4)
C115—H1150.95C215—H2150.95
C116—H1160.95C216—H2160.95
C121—N1221.352 (3)C221—N2221.343 (3)
C121—C1261.383 (4)C221—C2261.386 (3)
N122—C1231.339 (3)N222—C2231.336 (3)
C123—C1241.382 (4)C223—C2241.382 (4)
C123—H1230.95C223—H2230.95
C124—C1251.371 (4)C224—C2251.372 (4)
C124—H1240.95C224—H2240.95
C125—C1261.381 (4)C225—C2261.383 (4)
C125—H1250.95C225—H2250.95
C126—H1260.95C226—H2260.95
C10—C10i1.516 (5)C20—C20ii1.536 (5)
C10—H10A0.99C20—H20A0.99
C10—H10B0.99C20—H20B0.99
O1—P1—C10115.87 (11)O2—P2—C20115.28 (11)
O1—P1—C121112.56 (12)O2—P2—C211111.60 (12)
C10—P1—C121105.88 (12)C20—P2—C211106.06 (11)
O1—P1—C111110.98 (11)O2—P2—C221112.89 (11)
C10—P1—C111105.53 (12)C20—P2—C221106.09 (12)
C121—P1—C111105.23 (11)C211—P2—C221104.05 (11)
N112—C111—C116123.1 (2)N212—C211—C216123.4 (2)
N112—C111—P1116.64 (18)N212—C211—P2116.2 (2)
C116—C111—P1120.2 (2)C216—C211—P2120.4 (2)
C113—N112—C111116.4 (2)C213—N212—C211116.5 (2)
N112—C113—C114124.6 (3)N212—C213—C214123.8 (3)
N112—C113—H113117.7N212—C213—H213118.1
C114—C113—H113117.7C214—C213—H213118.1
C115—C114—C113118.0 (3)C215—C214—C213119.1 (3)
C115—C114—H114121C215—C214—H214120.5
C113—C114—H114121C213—C214—H214120.5
C114—C115—C116119.3 (3)C214—C215—C216118.2 (3)
C114—C115—H115120.4C214—C215—H215120.9
C116—C115—H115120.4C216—C215—H215120.9
C115—C116—C111118.7 (3)C215—C216—C211119.0 (3)
C115—C116—H116120.6C215—C216—H216120.5
C111—C116—H116120.6C211—C216—H216120.5
N122—C121—C126123.0 (2)N222—C221—C226123.4 (2)
N122—C121—P1117.2 (2)N222—C221—P2118.23 (18)
C126—C121—P1119.86 (19)C226—C221—P2118.36 (19)
C123—N122—C121116.5 (2)C223—N222—C221116.2 (2)
N122—C123—C124123.6 (3)N222—C223—C224124.3 (3)
N122—C123—H123118.2N222—C223—H223117.8
C124—C123—H123118.2C224—C223—H223117.8
C125—C124—C123119.3 (3)C225—C224—C223118.6 (2)
C125—C124—H124120.4C225—C224—H224120.7
C123—C124—H124120.4C223—C224—H224120.7
C124—C125—C126118.4 (3)C224—C225—C226118.7 (3)
C124—C125—H125120.8C224—C225—H225120.6
C126—C125—H125120.8C226—C225—H225120.6
C125—C126—C121119.3 (2)C225—C226—C221118.8 (2)
C125—C126—H126120.4C225—C226—H226120.6
C121—C126—H126120.4C221—C226—H226120.6
C10i—C10—P1111.2 (2)C20ii—C20—P2111.1 (2)
C10i—C10—H10A109.4C20ii—C20—H20A109.4
P1—C10—H10A109.4P2—C20—H20A109.4
C10i—C10—H10B109.4C20ii—C20—H20B109.4
P1—C10—H10B109.4P2—C20—H20B109.4
H10A—C10—H10B108H20A—C20—H20B108
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC22H20N4O2P2
Mr434.36
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)8.3760 (6), 8.8496 (8), 16.2332 (11)
α, β, γ (°)105.627 (7), 92.429 (5), 112.559 (7)
V3)1055.67 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.22 × 0.10 × 0.06
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionGaussian
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.968, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10983, 4842, 2698
Rint0.059
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.112, 0.86
No. of reflections4842
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), publCIF (Westrip, 2009).

 

Footnotes

Present Address: Laboratório de Química Bioinorgánica, Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Venezuela.

Acknowledgements

The authors thank the Australian Research Council for financial assistance.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBarnard, P. J. & Berners-Price, S. J. (2007). Coord. Chem. Rev. 251, 1889–1902.  Web of Science CrossRef CAS Google Scholar
First citationCalcagno, P., Kariuki, B. M., Kitchin, S. J., Robinson, J. M. A., Philp, D. & Harris, K. D. M. (2000). Chem. Eur. J. 6, 2338–2349.  CrossRef PubMed CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationJones, N. D., MacFarlane, K. S., Smith, M. B., Schutte, R. P., Rettig, S. J. & James, B. R. (1999). Inorg. Chem. 38, 3956–3966.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, J. J., Galettis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C., Baguley, B. C., Bowen, R. J., Berners-Price, S. J. & McKeage, M. J. (2008). J. Inorg. Biochem. 102, 303–310.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcKeage, M. J., Berners-Price, S. J., Galettis, P., Bowen, R. J., Brouwer, W., Ding, L., Zhuang, L. & Baguley, B. C. (2000). Cancer Chemother. Pharmacol. 46, 343–350.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds