organic compounds
(S,S)-N,N′-Bis(1-carboxy-2-methylpropyl)ethylenediammonium dihalide cyclopentanol tetrasolvate (halide = bromide/chloride ≃ 1:12)
aDepartment of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 14, 11000 Belgrade, Serbia, bDepartamento de Química Inorgánica y Analítica, ESCET, Universidad, Rey Juan Carlos, 28933 Móstoles, Madrid, Spain, and cFaculty of Chemistry, University of Belgrade, Studentski trg 12-14, PO Box 158, 11000 Belgrade, Serbia
*Correspondence e-mail: goran@chem.bg.ac.yu
In the 12H26N2O42+·2(Br0.085Cl0.915)−·4C5H9OH, the complete cation is generated by crystallographic twofold symmetry. Contamination of the chloride counter-anion with bromide occured during the preparation, due to the use of 1,2-dibromoethane. One of the solvent molecules is disordered, with occupancies 0.53 (3):0.47 (3). The crystal packing is stabilized by an infinite two dimensional ⋯X⋯H—N—H⋯X⋯ hydrogen-bonding network (X: Br−/Cl− ≃ 1:12). In addition, O—H⋯X and O—H⋯O hydrogen bonds involving solvent molecules are observed.
of the title compound, CRelated literature
For dihydrochloride salts of the analog ethylenediamine-N,N′-diacetic acid and ethylenediamine-N,N′-di-3-propionic acid, see: Mistryukov et al. (1987); Shkol'nikova et al. (1989, 1990, 1992). For bond lengths and angles in ethylenediammonium-N,N′-di-3-propanoic acid dichloride and similar compounds, see: Kaluderović et al. (2004, 2007). For the synthesis, see: Schoenberg et al. (1968).
Experimental
Crystal data
|
Data collection: CrysAlisPro (Oxford Diffraction, 2009); cell CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809006679/fj2196sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809006679/fj2196Isup2.hkl
(S,S)-ethylenediammonium-N,N'-di-2-(3-methyl)-butanoic acid dihalide is obtained as earlier described in literature (Schoenberg et al.,1968), by combining the solutions of L-valine and 1,2-dibromoethane. The title compound is obtained unintentionally. The goal was to synthesize a dicyclopentyl ester of (S,S)-ethylenediammonium-N,N'-di-2-(3-methyl)-butanoic acid dichloride. Thionyl chloride (4.0 ml, 55 mmol) was introduced into a flask containing cyclopentanol (50 ml, anhydrous conditions) over 1 h. After that (S,S)-ethylenediammonium-N,N'-di-2-(3-methyl)-butanoic acid dihalide (calculated for X=Cl: 2.0 g, 6.00 mmol) was added to the flask and the suspension was refluxed 16 h. The mixture was filtered off and the filtrate was left for a few days at 4 °C yielding crystals suitable for X-ray measurements.
The H atoms connected to the nitrogen and oxygen atoms were found in difference maps and yielded reasonable bond lengths and angles (O—H bond length: 0.86 (3) – 0.95 (2) Å); N—H bond length: 0.88 (2) and 0.93 (2) Å), all other H atoms were positioned geometrically and treated as riding, with C—H bonding lengths constrained to 0.98–1.00 Å. The two positions of the disordered Cl- versus Br-atoms were determined from the difference map and refined anisotropically with occupancies of 0.915 (Cl) and 0.085 (Br).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. ORTEP representation of [(H4eddv)X2].4C5H9OH. The structure contains a 1:12 Br/Cl (X) disorder. The figure displays the Cl-part of this disorder (Cl1). Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. | |
Fig. 2. Network of H-bonding. |
C12H26N2O42+·2(Br0.09Cl0.91−)·4(C5H10O) | F(000) = 745.4 |
Mr = 685.41 | Dx = 1.202 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2y | Cell parameters from 12428 reflections |
a = 21.2037 (5) Å | θ = 2.9–32.3° |
b = 5.2166 (1) Å | µ = 0.39 mm−1 |
c = 17.2517 (5) Å | T = 130 K |
β = 97.037 (2)° | Needles, colourless |
V = 1893.86 (8) Å3 | 0.7 × 0.04 × 0.04 mm |
Z = 2 |
Oxford Diffraction CCD Oxford Xcalibur S diffractometer | 5795 independent reflections |
Graphite monochromator | 4851 reflections with I > 2σ(I) |
Detector resolution: 16.356 pixels mm-1 | Rint = 0.035 |
ω and ϕ scans | θmax = 30.5°, θmin = 2.9° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −30→30 |
Tmin = 0.981, Tmax = 0.985 | k = −7→7 |
28298 measured reflections | l = −24→24 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0675P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max = 0.001 |
5795 reflections | Δρmax = 0.62 e Å−3 |
232 parameters | Δρmin = −0.37 e Å−3 |
92 restraints | Absolute structure: Flack (1983), 2602 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.04 (2) |
C12H26N2O42+·2(Br0.09Cl0.91−)·4(C5H10O) | V = 1893.86 (8) Å3 |
Mr = 685.41 | Z = 2 |
Monoclinic, C2 | Mo Kα radiation |
a = 21.2037 (5) Å | µ = 0.39 mm−1 |
b = 5.2166 (1) Å | T = 130 K |
c = 17.2517 (5) Å | 0.7 × 0.04 × 0.04 mm |
β = 97.037 (2)° |
Oxford Diffraction CCD Oxford Xcalibur S diffractometer | 5795 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | 4851 reflections with I > 2σ(I) |
Tmin = 0.981, Tmax = 0.985 | Rint = 0.035 |
28298 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.104 | Δρmax = 0.62 e Å−3 |
S = 0.98 | Δρmin = −0.37 e Å−3 |
5795 reflections | Absolute structure: Flack (1983), 2602 Friedel pairs |
232 parameters | Absolute structure parameter: −0.04 (2) |
92 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.597627 (15) | 0.42698 (6) | −0.072483 (19) | 0.02203 (10) | 0.914 (2) |
Br1 | 0.597627 (15) | 0.42698 (6) | −0.072483 (19) | 0.02203 (10) | 0.086 (2) |
O1 | 0.63329 (7) | 0.1414 (3) | 0.23276 (8) | 0.0340 (3) | |
O2 | 0.58689 (6) | 0.3389 (2) | 0.12648 (7) | 0.0267 (3) | |
O3 | 0.52079 (7) | 0.6832 (3) | −0.22443 (9) | 0.0422 (4) | |
O4 | 0.40459 (9) | 0.5428 (4) | −0.29775 (10) | 0.0513 (5) | |
N1 | 0.58713 (5) | −0.0783 (3) | 0.03571 (7) | 0.0172 (2) | |
C1 | 0.51770 (7) | −0.1047 (4) | 0.04083 (9) | 0.0201 (3) | |
H1A | 0.5029 | 0.0396 | 0.0712 | 0.024* | |
H1B | 0.5094 | −0.2666 | 0.0677 | 0.024* | |
C2 | 0.62661 (6) | −0.0867 (4) | 0.11390 (8) | 0.0184 (3) | |
H2 | 0.6129 | −0.2374 | 0.1435 | 0.022* | |
C3 | 0.61327 (8) | 0.1557 (3) | 0.15757 (10) | 0.0205 (3) | |
C4 | 0.69721 (7) | −0.1218 (3) | 0.10265 (10) | 0.0224 (4) | |
H4 | 0.6993 | −0.2621 | 0.0636 | 0.027* | |
C5 | 0.72565 (9) | 0.1159 (4) | 0.07002 (13) | 0.0325 (4) | |
H5A | 0.7252 | 0.2571 | 0.1074 | 0.049* | |
H5B | 0.7006 | 0.1637 | 0.0206 | 0.049* | |
H5C | 0.7696 | 0.0805 | 0.061 | 0.049* | |
C6 | 0.73642 (9) | −0.2077 (4) | 0.17799 (12) | 0.0352 (5) | |
H6A | 0.7802 | −0.2417 | 0.168 | 0.053* | |
H6B | 0.718 | −0.3643 | 0.1971 | 0.053* | |
H6C | 0.7364 | −0.0724 | 0.2174 | 0.053* | |
C7 | 0.56429 (12) | 0.8890 (5) | −0.23271 (13) | 0.0457 (6) | |
H7 | 0.5722 | 0.9917 | −0.1835 | 0.055* | |
C8 | 0.53654 (16) | 1.0530 (6) | −0.29992 (19) | 0.0644 (8) | |
H8A | 0.4897 | 1.0364 | −0.3083 | 0.077* | |
H8B | 0.5477 | 1.2354 | −0.2903 | 0.077* | |
C9 | 0.5648 (3) | 0.9555 (15) | −0.3675 (2) | 0.137 (2) | |
H9A | 0.5313 | 0.8773 | −0.405 | 0.164* | |
H9B | 0.5837 | 1.0998 | −0.394 | 0.164* | |
C10 | 0.6126 (5) | 0.7700 (16) | −0.3447 (4) | 0.065 (3) | 0.53 (3) |
H10A | 0.6514 | 0.8074 | −0.3693 | 0.078* | 0.53 (3) |
H10B | 0.5974 | 0.5964 | −0.3608 | 0.078* | 0.53 (3) |
C10B | 0.6295 (7) | 0.875 (6) | −0.3364 (7) | 0.120 (6) | 0.47 (3) |
H10C | 0.6441 | 0.7349 | −0.3687 | 0.144* | 0.47 (3) |
H10D | 0.6594 | 1.0202 | −0.3365 | 0.144* | 0.47 (3) |
C11 | 0.62670 (13) | 0.7854 (7) | −0.2568 (2) | 0.0678 (8) | |
H11A | 0.6369 | 0.6143 | −0.2337 | 0.081* | |
H11B | 0.6625 | 0.9036 | −0.2408 | 0.081* | |
C12 | 0.38374 (13) | 0.6636 (5) | −0.37004 (13) | 0.0477 (6) | |
H12 | 0.3969 | 0.8479 | −0.3686 | 0.057* | |
C13 | 0.40779 (19) | 0.5284 (12) | −0.4380 (2) | 0.115 (2) | |
H13A | 0.446 | 0.4245 | −0.4205 | 0.138* | |
H13B | 0.4182 | 0.6525 | −0.478 | 0.138* | |
C14 | 0.3485 (2) | 0.3475 (7) | −0.47177 (19) | 0.0811 (11) | |
H14A | 0.3321 | 0.3974 | −0.5259 | 0.097* | |
H14B | 0.3616 | 0.1653 | −0.4716 | 0.097* | |
C15 | 0.30020 (19) | 0.3870 (9) | −0.41962 (19) | 0.0827 (11) | |
H15A | 0.3037 | 0.2558 | −0.3779 | 0.099* | |
H15B | 0.257 | 0.3791 | −0.4488 | 0.099* | |
C16 | 0.31332 (17) | 0.6412 (7) | −0.38706 (19) | 0.0699 (9) | |
H16A | 0.2933 | 0.6627 | −0.3386 | 0.084* | |
H16B | 0.2964 | 0.7743 | −0.4249 | 0.084* | |
H1N | 0.5902 (10) | 0.065 (4) | 0.0092 (12) | 0.018 (5)* | |
H2N | 0.6002 (12) | −0.213 (4) | 0.0066 (14) | 0.044 (7)* | |
H4O | 0.4439 (15) | 0.568 (6) | −0.2807 (17) | 0.060 (9)* | |
H3O | 0.5371 (13) | 0.581 (6) | −0.1818 (14) | 0.062 (9)* | |
H1O | 0.627 (3) | −0.029 (6) | 0.250 (4) | 0.23 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.02064 (15) | 0.01766 (14) | 0.02759 (17) | 0.00010 (16) | 0.00212 (11) | 0.00040 (17) |
Br1 | 0.02064 (15) | 0.01766 (14) | 0.02759 (17) | 0.00010 (16) | 0.00212 (11) | 0.00040 (17) |
O1 | 0.0468 (8) | 0.0297 (7) | 0.0232 (7) | 0.0082 (6) | −0.0050 (6) | −0.0016 (5) |
O2 | 0.0360 (7) | 0.0161 (5) | 0.0271 (6) | 0.0043 (5) | −0.0004 (5) | −0.0021 (5) |
O3 | 0.0404 (8) | 0.0446 (9) | 0.0399 (9) | −0.0104 (7) | −0.0017 (7) | 0.0096 (7) |
O4 | 0.0491 (10) | 0.0571 (10) | 0.0427 (10) | −0.0191 (9) | −0.0137 (8) | 0.0288 (8) |
N1 | 0.0150 (5) | 0.0144 (5) | 0.0218 (6) | −0.0013 (7) | 0.0011 (4) | −0.0021 (8) |
C1 | 0.0136 (6) | 0.0233 (9) | 0.0234 (7) | −0.0005 (6) | 0.0017 (5) | 0.0009 (7) |
C2 | 0.0182 (6) | 0.0148 (6) | 0.0214 (6) | −0.0010 (8) | −0.0008 (5) | 0.0001 (8) |
C3 | 0.0189 (7) | 0.0184 (7) | 0.0241 (8) | −0.0038 (6) | 0.0018 (6) | −0.0020 (6) |
C4 | 0.0170 (6) | 0.0190 (10) | 0.0302 (8) | 0.0027 (5) | −0.0004 (6) | −0.0008 (6) |
C5 | 0.0180 (8) | 0.0337 (10) | 0.0461 (12) | 0.0008 (7) | 0.0057 (8) | 0.0089 (9) |
C6 | 0.0255 (9) | 0.0337 (11) | 0.0439 (12) | 0.0065 (8) | −0.0057 (8) | 0.0047 (9) |
C7 | 0.0586 (13) | 0.0411 (15) | 0.0388 (11) | −0.0170 (11) | 0.0114 (10) | −0.0112 (10) |
C8 | 0.075 (2) | 0.0423 (14) | 0.079 (2) | 0.0001 (14) | 0.0223 (16) | 0.0113 (14) |
C9 | 0.146 (4) | 0.217 (7) | 0.055 (2) | 0.058 (5) | 0.040 (2) | 0.043 (3) |
C10 | 0.082 (5) | 0.067 (5) | 0.053 (4) | −0.013 (3) | 0.039 (4) | −0.018 (3) |
C10B | 0.075 (6) | 0.197 (15) | 0.097 (7) | 0.001 (10) | 0.043 (5) | −0.011 (10) |
C11 | 0.0410 (14) | 0.076 (2) | 0.086 (2) | −0.0124 (14) | 0.0061 (14) | 0.0102 (18) |
C12 | 0.0605 (15) | 0.0477 (14) | 0.0316 (11) | −0.0060 (12) | −0.0078 (10) | 0.0176 (10) |
C13 | 0.085 (3) | 0.205 (6) | 0.056 (2) | 0.059 (3) | 0.0158 (18) | 0.038 (3) |
C14 | 0.132 (3) | 0.0586 (19) | 0.0527 (17) | −0.0053 (19) | 0.011 (2) | −0.0057 (14) |
C15 | 0.097 (2) | 0.085 (3) | 0.0592 (18) | −0.005 (2) | −0.0168 (17) | 0.0057 (18) |
C16 | 0.075 (2) | 0.071 (2) | 0.0564 (17) | 0.0054 (17) | −0.0213 (15) | 0.0075 (16) |
O1—C3 | 1.317 (2) | C8—C9 | 1.466 (5) |
O1—H1O | 0.95 (2) | C8—H8A | 0.99 |
O2—C3 | 1.200 (2) | C8—H8B | 0.99 |
O3—C7 | 1.434 (3) | C9—C10 | 1.421 (9) |
O3—H3O | 0.939 (17) | C9—C10B | 1.472 (12) |
O4—C12 | 1.419 (2) | C9—H9A | 0.99 |
O4—H4O | 0.86 (3) | C9—H9B | 0.99 |
N1—C1 | 1.4919 (18) | C10—C11 | 1.512 (8) |
N1—C2 | 1.4986 (18) | C10—H10A | 0.99 |
N1—H1N | 0.88 (2) | C10—H10B | 0.99 |
N1—H2N | 0.925 (17) | C10B—C11 | 1.458 (11) |
C1—C1i | 1.513 (3) | C10B—H10C | 0.99 |
C1—H1A | 0.99 | C10B—H10D | 0.99 |
C1—H1B | 0.99 | C11—H11A | 0.99 |
C2—C3 | 1.516 (3) | C11—H11B | 0.99 |
C2—C4 | 1.544 (2) | C12—C16 | 1.491 (4) |
C2—H2 | 1 | C12—C13 | 1.510 (5) |
C4—C5 | 1.517 (2) | C12—H12 | 1 |
C4—C6 | 1.522 (3) | C13—C14 | 1.622 (6) |
C4—H4 | 1 | C13—H13A | 0.99 |
C5—H5A | 0.98 | C13—H13B | 0.99 |
C5—H5B | 0.98 | C14—C15 | 1.458 (5) |
C5—H5C | 0.98 | C14—H14A | 0.99 |
C6—H6A | 0.98 | C14—H14B | 0.99 |
C6—H6B | 0.98 | C15—C16 | 1.454 (5) |
C6—H6C | 0.98 | C15—H15A | 0.99 |
C7—C8 | 1.502 (4) | C15—H15B | 0.99 |
C7—C11 | 1.533 (4) | C16—H16A | 0.99 |
C7—H7 | 1 | C16—H16B | 0.99 |
C3—O1—H1O | 108 (4) | C8—C9—H9A | 109.4 |
C7—O3—H3O | 108.9 (19) | C10B—C9—H9A | 133.1 |
C12—O4—H4O | 115 (2) | C10—C9—H9B | 109.4 |
C1—N1—C2 | 112.98 (11) | C8—C9—H9B | 109.4 |
C1—N1—H1N | 104.2 (14) | C10B—C9—H9B | 88.7 |
C2—N1—H1N | 114.9 (14) | H9A—C9—H9B | 108 |
C1—N1—H2N | 109.0 (16) | C9—C10—C11 | 106.7 (4) |
C2—N1—H2N | 107.1 (17) | C9—C10—H10A | 110.4 |
H1N—N1—H2N | 108.5 (18) | C11—C10—H10A | 110.4 |
N1—C1—C1i | 108.99 (15) | C9—C10—H10B | 110.4 |
N1—C1—H1A | 109.9 | C11—C10—H10B | 110.4 |
C1i—C1—H1A | 109.9 | H10A—C10—H10B | 108.6 |
N1—C1—H1B | 109.9 | C11—C10B—C9 | 106.9 (7) |
C1i—C1—H1B | 109.9 | C11—C10B—H10C | 110.3 |
H1A—C1—H1B | 108.3 | C9—C10B—H10C | 110.3 |
N1—C2—C3 | 107.77 (15) | C11—C10B—H10D | 110.3 |
N1—C2—C4 | 109.49 (12) | C9—C10B—H10D | 110.3 |
C3—C2—C4 | 113.84 (14) | H10C—C10B—H10D | 108.6 |
N1—C2—H2 | 108.5 | C10B—C11—C7 | 106.2 (5) |
C3—C2—H2 | 108.5 | C7—C11—C10 | 102.7 (4) |
C4—C2—H2 | 108.5 | C10B—C11—H11A | 129.4 |
O2—C3—O1 | 124.15 (16) | C7—C11—H11A | 111.2 |
O2—C3—C2 | 123.18 (15) | C10—C11—H11A | 111.2 |
O1—C3—C2 | 112.66 (14) | C10B—C11—H11B | 86.8 |
C5—C4—C6 | 110.92 (15) | C7—C11—H11B | 111.2 |
C5—C4—C2 | 112.68 (14) | C10—C11—H11B | 111.2 |
C6—C4—C2 | 111.35 (15) | H11A—C11—H11B | 109.1 |
C5—C4—H4 | 107.2 | O4—C12—C16 | 109.6 (2) |
C6—C4—H4 | 107.2 | O4—C12—C13 | 112.1 (3) |
C2—C4—H4 | 107.2 | C16—C12—C13 | 103.6 (3) |
C4—C5—H5A | 109.5 | O4—C12—H12 | 110.4 |
C4—C5—H5B | 109.5 | C16—C12—H12 | 110.4 |
H5A—C5—H5B | 109.5 | C13—C12—H12 | 110.4 |
C4—C5—H5C | 109.5 | C12—C13—C14 | 103.3 (3) |
H5A—C5—H5C | 109.5 | C12—C13—H13A | 111.1 |
H5B—C5—H5C | 109.5 | C14—C13—H13A | 111.1 |
C4—C6—H6A | 109.5 | C12—C13—H13B | 111.1 |
C4—C6—H6B | 109.5 | C14—C13—H13B | 111.1 |
H6A—C6—H6B | 109.5 | H13A—C13—H13B | 109.1 |
C4—C6—H6C | 109.5 | C15—C14—C13 | 105.6 (3) |
H6A—C6—H6C | 109.5 | C15—C14—H14A | 110.6 |
H6B—C6—H6C | 109.5 | C13—C14—H14A | 110.6 |
O3—C7—C8 | 107.9 (2) | C15—C14—H14B | 110.6 |
O3—C7—C11 | 110.5 (2) | C13—C14—H14B | 110.6 |
C8—C7—C11 | 105.2 (2) | H14A—C14—H14B | 108.8 |
O3—C7—H7 | 111 | C14—C15—C16 | 104.6 (4) |
C8—C7—H7 | 111 | C14—C15—H15A | 110.8 |
C11—C7—H7 | 111 | C16—C15—H15A | 110.8 |
C9—C8—C7 | 104.9 (3) | C14—C15—H15B | 110.8 |
C9—C8—H8A | 110.8 | C16—C15—H15B | 110.8 |
C7—C8—H8A | 110.8 | H15A—C15—H15B | 108.9 |
C9—C8—H8B | 110.8 | C15—C16—C12 | 106.7 (3) |
C7—C8—H8B | 110.8 | C15—C16—H16A | 110.4 |
H8A—C8—H8B | 108.8 | C12—C16—H16A | 110.4 |
C10—C9—C8 | 111.3 (4) | C15—C16—H16B | 110.4 |
C8—C9—C10B | 105.3 (7) | C12—C16—H16B | 110.4 |
C10—C9—H9A | 109.4 | H16A—C16—H16B | 108.6 |
Symmetry code: (i) −x+1, y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···Cl1 | 0.88 (2) | 2.37 (2) | 3.253 (2) | 175 (2) |
N1—H2N···Cl1ii | 0.93 (2) | 2.32 (2) | 3.209 (2) | 161 (2) |
N1—H2N···Br1ii | 0.93 (2) | 2.32 (2) | 3.209 (2) | 161 (2) |
N1—H1N···Br1 | 0.88 (2) | 2.37 (2) | 3.253 (2) | 175 (2) |
O1—H1O···O4iii | 0.95 (4) | 2.50 (4) | 3.446 (3) | 172 (5) |
O4—H4O···O3 | 0.86 (3) | 1.89 (3) | 2.728 (2) | 165 (3) |
O3—H3O···Cl1 | 0.94 (3) | 2.29 (3) | 3.204 (2) | 163 (2) |
O3—H3O···Br1 | 0.94 (3) | 2.29 (3) | 3.204 (2) | 163 (2) |
C1—H1A···O2 | 0.99 | 2.47 | 3.027 (2) | 115 |
C1—H1B···Cl1iii | 0.99 | 2.79 | 3.5460 (18) | 134 |
C2—H2···O2ii | 1.00 | 2.29 | 3.127 (2) | 141 |
C6—H6C···O1 | 0.98 | 2.50 | 3.082 (3) | 118 |
Symmetry codes: (ii) x, y−1, z; (iii) −x+1, y−1, −z. |
Experimental details
Crystal data | |
Chemical formula | C12H26N2O42+·2(Br0.09Cl0.91−)·4(C5H10O) |
Mr | 685.41 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 130 |
a, b, c (Å) | 21.2037 (5), 5.2166 (1), 17.2517 (5) |
β (°) | 97.037 (2) |
V (Å3) | 1893.86 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.39 |
Crystal size (mm) | 0.7 × 0.04 × 0.04 |
Data collection | |
Diffractometer | Oxford Diffraction CCD Oxford Xcalibur S diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.981, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28298, 5795, 4851 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.714 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.104, 0.98 |
No. of reflections | 5795 |
No. of parameters | 232 |
No. of restraints | 92 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.62, −0.37 |
Absolute structure | Flack (1983), 2602 Friedel pairs |
Absolute structure parameter | −0.04 (2) |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···Cl1 | 0.88 (2) | 2.37 (2) | 3.253 (2) | 175 (2) |
N1—H2N···Cl1i | 0.93 (2) | 2.32 (2) | 3.209 (2) | 161 (2) |
N1—H2N···Br1i | 0.93 (2) | 2.32 (2) | 3.209 (2) | 161 (2) |
N1—H1N···Br1 | 0.88 (2) | 2.37 (2) | 3.253 (2) | 175 (2) |
O1—H1O···O4ii | 0.95 (4) | 2.50 (4) | 3.446 (3) | 172 (5) |
O4—H4O···O3 | 0.86 (3) | 1.89 (3) | 2.728 (2) | 165 (3) |
O3—H3O···Cl1 | 0.94 (3) | 2.29 (3) | 3.204 (2) | 163 (2) |
O3—H3O···Br1 | 0.94 (3) | 2.29 (3) | 3.204 (2) | 163 (2) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, y−1, −z. |
Acknowledgements
The authors are grateful to the Ministry of Science and Technological Development of the Republic of Serbia for financial support (grant No. 142010).
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kaluderović, G. N., Gómez-Ruiz, S., Schmidt, H. & Steinborn, D. (2007). Acta Cryst. E63, o3491. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kaluderović, G. N., Heinemann, F. W., Knežević, N. Ž., Trifunović, S. R. & Sabo, T. J. (2004). J. Chem. Crystallogr. 34, 185–189. Google Scholar
Mistryukov, V. E., Mikhailov, Yu. N., Sergeev, A. V., Zhuravlov, M. G., Schelokov, R. N., Chernov, A. P., Fodorov, V. A. & Brekhovskikh, M. N. (1987). Dokl. Akad. Nauk SSSR, 295, 1390–1393. CAS Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Schoenberg, L. N., Cooke, D. W. & Liu, C. F. (1968). Inorg. Chem. 7, 2386–2393. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shkol'nikova, L. M., Ilyukhin, A. B., Gasparyan, A. V., Zavodnik, V. E., Poznyak, A. L. & Makarevich, S. S. (1990). Kristallografiya, 35, 1421–1424. CAS Google Scholar
Shkol'nikova, L. M., Sotman, S. S., Poznyak, A. L. & Stoplyanskaya, L. V. (1992). Kristallografiya, 37, 692–695. CAS Google Scholar
Shkol'nikova, L. M., Suyarov, N. D., Gasparyan, A. V., Poznyak, A. L., Zavodnik, V. E. & Dyaltova, N. M. (1989). Zh. Strukt. Khim. 30, 92–104. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dihydrochloride salts of the analog ethylenediamine-N,N'-diacetic acid and ethylenediamine-N,N'-di-3-propionic acid are reported in the literature, see (Shkol'nikova et al., 1989; Shkol'nikova et al., 1990; Shkol'nikova et al., 1992; Mistryukov et al., 1987).
Crude (S,S)-ethylenediammonium-N,N'-di-2-(3-methyl)-butanoic acid dihalide, [(H4eddv)X2], obtained from the reaction of L-valine and 1,2-dibromethane (Schoenberg et al.,1968), was used for the synthesis of dicyclopentyl ester. The title compound is isolated from the mother liquor as a mixture of Cl and Br salts. The structure consists of several species: one dicationic, C12H26N2O42+, 0.17 Br– and 1.83 Cl– anions and four cyclopentanol molecules (Fig. 1). Bond lengths and angles are comparable with those of ethylenediammonium-N,N'-di-3-propanoic acid dichloride and similar compounds (Kaluđerović et al., 2004, 2007). All of the mentioned species are stabilizing the structure by intramolecular and intermolecular H-bonds (Table 1). The solvent molecules are involved in hydrogen bonding, through O4–H4O···O3 atoms (Fig. 2). Furthermore, the H3O atom bonded to O3 is participating in hydrogen bonding with X atom (X: Br–/Cl– ≈ 1:12), which is on the other side interacting via hydrogen bond with the H1N–N1 moiety. The cyclopentyl rings are in envelope conformations.