organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o656-o657

(S,S)-N,N′-Bis(1-carb­­oxy-2-methyl­prop­yl)ethyl­enedi­ammonium dihalide cyclo­penta­nol tetra­solvate (halide = bromide/chloride ≃ 1:12)

aDepartment of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 14, 11000 Belgrade, Serbia, bDepartamento de Química Inorgánica y Analítica, ESCET, Universidad, Rey Juan Carlos, 28933 Móstoles, Madrid, Spain, and cFaculty of Chemistry, University of Belgrade, Studentski trg 12-14, PO Box 158, 11000 Belgrade, Serbia
*Correspondence e-mail: goran@chem.bg.ac.yu

(Received 5 February 2009; accepted 23 February 2009; online 28 February 2009)

In the crystal structure of the title compound, C12H26N2O42+·2(Br0.085Cl0.915)·4C5H9OH, the complete cation is generated by crystallographic twofold symmetry. Contamination of the chloride counter-anion with bromide occured during the preparation, due to the use of 1,2-dibromo­ethane. One of the solvent mol­ecules is disordered, with occupancies 0.53 (3):0.47 (3). The crystal packing is stabilized by an infinite two dimensional ⋯X⋯H—N—H⋯X⋯ hydrogen-bonding network (X: Br/Cl ≃ 1:12). In addition, O—H⋯X and O—H⋯O hydrogen bonds involving solvent mol­ecules are observed.

Related literature

For dihydro­chloride salts of the analog ethyl­enediamine-N,N′-diacetic acid and ethyl­enediamine-N,N′-di-3-propionic acid, see: Mistryukov et al. (1987[Mistryukov, V. E., Mikhailov, Yu. N., Sergeev, A. V., Zhuravlov, M. G., Schelokov, R. N., Chernov, A. P., Fodorov, V. A. & Brekhovskikh, M. N. (1987). Dokl. Akad. Nauk SSSR, 295, 1390-1393.]); Shkol'nikova et al. (1989[Shkol'nikova, L. M., Suyarov, N. D., Gasparyan, A. V., Poznyak, A. L., Zavodnik, V. E. & Dyaltova, N. M. (1989). Zh. Strukt. Khim. 30, 92-104.], 1990[Shkol'nikova, L. M., Ilyukhin, A. B., Gasparyan, A. V., Zavodnik, V. E., Poznyak, A. L. & Makarevich, S. S. (1990). Kristallografiya, 35, 1421-1424.], 1992[Shkol'nikova, L. M., Sotman, S. S., Poznyak, A. L. & Stoplyanskaya, L. V. (1992). Kristallografiya, 37, 692-695.]). For bond lengths and angles in ethyl­enediammonium-N,N′-di-3-propanoic acid dichloride and similar compounds, see: Kaluderović et al. (2004[Kaluderović, G. N., Heinemann, F. W., Knežević, N. Ž., Trifunović, S. R. & Sabo, T. J. (2004). J. Chem. Crystallogr. 34, 185-189.], 2007[Kaluderović, G. N., Gómez-Ruiz, S., Schmidt, H. & Steinborn, D. (2007). Acta Cryst. E63, o3491.]). For the synthesis, see: Schoenberg et al. (1968[Schoenberg, L. N., Cooke, D. W. & Liu, C. F. (1968). Inorg. Chem. 7, 2386-2393.]).

[Scheme 1]

Experimental

Crystal data
  • C12H26N2O42+·2(Br0.09Cl0.91)·4C5H10O

  • Mr = 685.41

  • Monoclinic, C 2

  • a = 21.2037 (5) Å

  • b = 5.2166 (1) Å

  • c = 17.2517 (5) Å

  • β = 97.037 (2)°

  • V = 1893.86 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 130 K

  • 0.7 × 0.04 × 0.04 mm

Data collection
  • Oxford Diffraction CCD Oxford Xcalibur S diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.981, Tmax = 0.985

  • 28298 measured reflections

  • 5795 independent reflections

  • 4851 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.104

  • S = 0.98

  • 5795 reflections

  • 232 parameters

  • 92 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2602 Friedel pairs

  • Flack parameter: −0.04 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NX1 0.88 (2) 2.37 (2) 3.253 (2) 175 (2)
N1—H2NX1i 0.93 (2) 2.32 (2) 3.209 (2) 161 (2)
O1—H1O⋯O4ii 0.95 (4) 2.50 (4) 3.446 (3) 172 (5)
O4—H4O⋯O3 0.86 (3) 1.89 (3) 2.728 (2) 165 (3)
O3—H3O⋯Cl1 0.94 (3) 2.29 (3) 3.204 (2) 163 (2)
O3—H3O⋯Br1 0.94 (3) 2.29 (3) 3.204 (2) 163 (2)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, y-1, -z. X1 is the disordered Cl/Br atom.

Data collection: CrysAlisPro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dihydrochloride salts of the analog ethylenediamine-N,N'-diacetic acid and ethylenediamine-N,N'-di-3-propionic acid are reported in the literature, see (Shkol'nikova et al., 1989; Shkol'nikova et al., 1990; Shkol'nikova et al., 1992; Mistryukov et al., 1987).

Crude (S,S)-ethylenediammonium-N,N'-di-2-(3-methyl)-butanoic acid dihalide, [(H4eddv)X2], obtained from the reaction of L-valine and 1,2-dibromethane (Schoenberg et al.,1968), was used for the synthesis of dicyclopentyl ester. The title compound is isolated from the mother liquor as a mixture of Cl and Br salts. The structure consists of several species: one dicationic, C12H26N2O42+, 0.17 Br and 1.83 Cl anions and four cyclopentanol molecules (Fig. 1). Bond lengths and angles are comparable with those of ethylenediammonium-N,N'-di-3-propanoic acid dichloride and similar compounds (Kaluđerović et al., 2004, 2007). All of the mentioned species are stabilizing the structure by intramolecular and intermolecular H-bonds (Table 1). The solvent molecules are involved in hydrogen bonding, through O4–H4O···O3 atoms (Fig. 2). Furthermore, the H3O atom bonded to O3 is participating in hydrogen bonding with X atom (X: Br/Cl 1:12), which is on the other side interacting via hydrogen bond with the H1N–N1 moiety. The cyclopentyl rings are in envelope conformations.

Related literature top

For dihydrochloride salts of the analog ethylenediamine-N,N'-diacetic acid and ethylenediamine-N,N'-di-3-propionic acid, see: Mistryukov et al. (1987); Shkol'nikova et al. (1989, 1990, 1992). For bond lengths and angles in ethylenediammonium-N,N'-di-3-propanoic acid dichloride and similar compounds, see: Kaluđerović et al. (2004); Kaluderović et al. (2007). For the synthesis, see: Schoenberg et al. (1968);

Experimental top

(S,S)-ethylenediammonium-N,N'-di-2-(3-methyl)-butanoic acid dihalide is obtained as earlier described in literature (Schoenberg et al.,1968), by combining the solutions of L-valine and 1,2-dibromoethane. The title compound is obtained unintentionally. The goal was to synthesize a dicyclopentyl ester of (S,S)-ethylenediammonium-N,N'-di-2-(3-methyl)-butanoic acid dichloride. Thionyl chloride (4.0 ml, 55 mmol) was introduced into a flask containing cyclopentanol (50 ml, anhydrous conditions) over 1 h. After that (S,S)-ethylenediammonium-N,N'-di-2-(3-methyl)-butanoic acid dihalide (calculated for X=Cl: 2.0 g, 6.00 mmol) was added to the flask and the suspension was refluxed 16 h. The mixture was filtered off and the filtrate was left for a few days at 4 °C yielding crystals suitable for X-ray measurements.

Refinement top

The H atoms connected to the nitrogen and oxygen atoms were found in difference maps and yielded reasonable bond lengths and angles (O—H bond length: 0.86 (3) – 0.95 (2) Å); N—H bond length: 0.88 (2) and 0.93 (2) Å), all other H atoms were positioned geometrically and treated as riding, with C—H bonding lengths constrained to 0.98–1.00 Å. The two positions of the disordered Cl- versus Br-atoms were determined from the difference map and refined anisotropically with occupancies of 0.915 (Cl) and 0.085 (Br).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP representation of [(H4eddv)X2].4C5H9OH. The structure contains a 1:12 Br/Cl (X) disorder. The figure displays the Cl-part of this disorder (Cl1). Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Network of H-bonding.
(S,S)-N,N'-Bis(1-carboxy-2- methylpropyl)ethylenediammonium 0.09-bromide 0.91-chloride cyclopentanol tetrasolvate top
Crystal data top
C12H26N2O42+·2(Br0.09Cl0.91)·4(C5H10O)F(000) = 745.4
Mr = 685.41Dx = 1.202 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 12428 reflections
a = 21.2037 (5) Åθ = 2.9–32.3°
b = 5.2166 (1) ŵ = 0.39 mm1
c = 17.2517 (5) ÅT = 130 K
β = 97.037 (2)°Needles, colourless
V = 1893.86 (8) Å30.7 × 0.04 × 0.04 mm
Z = 2
Data collection top
Oxford Diffraction CCD Oxford Xcalibur S
diffractometer
5795 independent reflections
Graphite monochromator4851 reflections with I > 2σ(I)
Detector resolution: 16.356 pixels mm-1Rint = 0.035
ω and ϕ scansθmax = 30.5°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 3030
Tmin = 0.981, Tmax = 0.985k = 77
28298 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0675P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
5795 reflectionsΔρmax = 0.62 e Å3
232 parametersΔρmin = 0.37 e Å3
92 restraintsAbsolute structure: Flack (1983), 2602 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (2)
Crystal data top
C12H26N2O42+·2(Br0.09Cl0.91)·4(C5H10O)V = 1893.86 (8) Å3
Mr = 685.41Z = 2
Monoclinic, C2Mo Kα radiation
a = 21.2037 (5) ŵ = 0.39 mm1
b = 5.2166 (1) ÅT = 130 K
c = 17.2517 (5) Å0.7 × 0.04 × 0.04 mm
β = 97.037 (2)°
Data collection top
Oxford Diffraction CCD Oxford Xcalibur S
diffractometer
5795 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
4851 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.035
28298 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104Δρmax = 0.62 e Å3
S = 0.98Δρmin = 0.37 e Å3
5795 reflectionsAbsolute structure: Flack (1983), 2602 Friedel pairs
232 parametersAbsolute structure parameter: 0.04 (2)
92 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.597627 (15)0.42698 (6)0.072483 (19)0.02203 (10)0.914 (2)
Br10.597627 (15)0.42698 (6)0.072483 (19)0.02203 (10)0.086 (2)
O10.63329 (7)0.1414 (3)0.23276 (8)0.0340 (3)
O20.58689 (6)0.3389 (2)0.12648 (7)0.0267 (3)
O30.52079 (7)0.6832 (3)0.22443 (9)0.0422 (4)
O40.40459 (9)0.5428 (4)0.29775 (10)0.0513 (5)
N10.58713 (5)0.0783 (3)0.03571 (7)0.0172 (2)
C10.51770 (7)0.1047 (4)0.04083 (9)0.0201 (3)
H1A0.50290.03960.07120.024*
H1B0.50940.26660.06770.024*
C20.62661 (6)0.0867 (4)0.11390 (8)0.0184 (3)
H20.61290.23740.14350.022*
C30.61327 (8)0.1557 (3)0.15757 (10)0.0205 (3)
C40.69721 (7)0.1218 (3)0.10265 (10)0.0224 (4)
H40.69930.26210.06360.027*
C50.72565 (9)0.1159 (4)0.07002 (13)0.0325 (4)
H5A0.72520.25710.10740.049*
H5B0.70060.16370.02060.049*
H5C0.76960.08050.0610.049*
C60.73642 (9)0.2077 (4)0.17799 (12)0.0352 (5)
H6A0.78020.24170.1680.053*
H6B0.7180.36430.19710.053*
H6C0.73640.07240.21740.053*
C70.56429 (12)0.8890 (5)0.23271 (13)0.0457 (6)
H70.57220.99170.18350.055*
C80.53654 (16)1.0530 (6)0.29992 (19)0.0644 (8)
H8A0.48971.03640.30830.077*
H8B0.54771.23540.29030.077*
C90.5648 (3)0.9555 (15)0.3675 (2)0.137 (2)
H9A0.53130.87730.4050.164*
H9B0.58371.09980.3940.164*
C100.6126 (5)0.7700 (16)0.3447 (4)0.065 (3)0.53 (3)
H10A0.65140.80740.36930.078*0.53 (3)
H10B0.59740.59640.36080.078*0.53 (3)
C10B0.6295 (7)0.875 (6)0.3364 (7)0.120 (6)0.47 (3)
H10C0.64410.73490.36870.144*0.47 (3)
H10D0.65941.02020.33650.144*0.47 (3)
C110.62670 (13)0.7854 (7)0.2568 (2)0.0678 (8)
H11A0.63690.61430.23370.081*
H11B0.66250.90360.24080.081*
C120.38374 (13)0.6636 (5)0.37004 (13)0.0477 (6)
H120.39690.84790.36860.057*
C130.40779 (19)0.5284 (12)0.4380 (2)0.115 (2)
H13A0.4460.42450.42050.138*
H13B0.41820.65250.4780.138*
C140.3485 (2)0.3475 (7)0.47177 (19)0.0811 (11)
H14A0.33210.39740.52590.097*
H14B0.36160.16530.47160.097*
C150.30020 (19)0.3870 (9)0.41962 (19)0.0827 (11)
H15A0.30370.25580.37790.099*
H15B0.2570.37910.44880.099*
C160.31332 (17)0.6412 (7)0.38706 (19)0.0699 (9)
H16A0.29330.66270.33860.084*
H16B0.29640.77430.42490.084*
H1N0.5902 (10)0.065 (4)0.0092 (12)0.018 (5)*
H2N0.6002 (12)0.213 (4)0.0066 (14)0.044 (7)*
H4O0.4439 (15)0.568 (6)0.2807 (17)0.060 (9)*
H3O0.5371 (13)0.581 (6)0.1818 (14)0.062 (9)*
H1O0.627 (3)0.029 (6)0.250 (4)0.23 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02064 (15)0.01766 (14)0.02759 (17)0.00010 (16)0.00212 (11)0.00040 (17)
Br10.02064 (15)0.01766 (14)0.02759 (17)0.00010 (16)0.00212 (11)0.00040 (17)
O10.0468 (8)0.0297 (7)0.0232 (7)0.0082 (6)0.0050 (6)0.0016 (5)
O20.0360 (7)0.0161 (5)0.0271 (6)0.0043 (5)0.0004 (5)0.0021 (5)
O30.0404 (8)0.0446 (9)0.0399 (9)0.0104 (7)0.0017 (7)0.0096 (7)
O40.0491 (10)0.0571 (10)0.0427 (10)0.0191 (9)0.0137 (8)0.0288 (8)
N10.0150 (5)0.0144 (5)0.0218 (6)0.0013 (7)0.0011 (4)0.0021 (8)
C10.0136 (6)0.0233 (9)0.0234 (7)0.0005 (6)0.0017 (5)0.0009 (7)
C20.0182 (6)0.0148 (6)0.0214 (6)0.0010 (8)0.0008 (5)0.0001 (8)
C30.0189 (7)0.0184 (7)0.0241 (8)0.0038 (6)0.0018 (6)0.0020 (6)
C40.0170 (6)0.0190 (10)0.0302 (8)0.0027 (5)0.0004 (6)0.0008 (6)
C50.0180 (8)0.0337 (10)0.0461 (12)0.0008 (7)0.0057 (8)0.0089 (9)
C60.0255 (9)0.0337 (11)0.0439 (12)0.0065 (8)0.0057 (8)0.0047 (9)
C70.0586 (13)0.0411 (15)0.0388 (11)0.0170 (11)0.0114 (10)0.0112 (10)
C80.075 (2)0.0423 (14)0.079 (2)0.0001 (14)0.0223 (16)0.0113 (14)
C90.146 (4)0.217 (7)0.055 (2)0.058 (5)0.040 (2)0.043 (3)
C100.082 (5)0.067 (5)0.053 (4)0.013 (3)0.039 (4)0.018 (3)
C10B0.075 (6)0.197 (15)0.097 (7)0.001 (10)0.043 (5)0.011 (10)
C110.0410 (14)0.076 (2)0.086 (2)0.0124 (14)0.0061 (14)0.0102 (18)
C120.0605 (15)0.0477 (14)0.0316 (11)0.0060 (12)0.0078 (10)0.0176 (10)
C130.085 (3)0.205 (6)0.056 (2)0.059 (3)0.0158 (18)0.038 (3)
C140.132 (3)0.0586 (19)0.0527 (17)0.0053 (19)0.011 (2)0.0057 (14)
C150.097 (2)0.085 (3)0.0592 (18)0.005 (2)0.0168 (17)0.0057 (18)
C160.075 (2)0.071 (2)0.0564 (17)0.0054 (17)0.0213 (15)0.0075 (16)
Geometric parameters (Å, º) top
O1—C31.317 (2)C8—C91.466 (5)
O1—H1O0.95 (2)C8—H8A0.99
O2—C31.200 (2)C8—H8B0.99
O3—C71.434 (3)C9—C101.421 (9)
O3—H3O0.939 (17)C9—C10B1.472 (12)
O4—C121.419 (2)C9—H9A0.99
O4—H4O0.86 (3)C9—H9B0.99
N1—C11.4919 (18)C10—C111.512 (8)
N1—C21.4986 (18)C10—H10A0.99
N1—H1N0.88 (2)C10—H10B0.99
N1—H2N0.925 (17)C10B—C111.458 (11)
C1—C1i1.513 (3)C10B—H10C0.99
C1—H1A0.99C10B—H10D0.99
C1—H1B0.99C11—H11A0.99
C2—C31.516 (3)C11—H11B0.99
C2—C41.544 (2)C12—C161.491 (4)
C2—H21C12—C131.510 (5)
C4—C51.517 (2)C12—H121
C4—C61.522 (3)C13—C141.622 (6)
C4—H41C13—H13A0.99
C5—H5A0.98C13—H13B0.99
C5—H5B0.98C14—C151.458 (5)
C5—H5C0.98C14—H14A0.99
C6—H6A0.98C14—H14B0.99
C6—H6B0.98C15—C161.454 (5)
C6—H6C0.98C15—H15A0.99
C7—C81.502 (4)C15—H15B0.99
C7—C111.533 (4)C16—H16A0.99
C7—H71C16—H16B0.99
C3—O1—H1O108 (4)C8—C9—H9A109.4
C7—O3—H3O108.9 (19)C10B—C9—H9A133.1
C12—O4—H4O115 (2)C10—C9—H9B109.4
C1—N1—C2112.98 (11)C8—C9—H9B109.4
C1—N1—H1N104.2 (14)C10B—C9—H9B88.7
C2—N1—H1N114.9 (14)H9A—C9—H9B108
C1—N1—H2N109.0 (16)C9—C10—C11106.7 (4)
C2—N1—H2N107.1 (17)C9—C10—H10A110.4
H1N—N1—H2N108.5 (18)C11—C10—H10A110.4
N1—C1—C1i108.99 (15)C9—C10—H10B110.4
N1—C1—H1A109.9C11—C10—H10B110.4
C1i—C1—H1A109.9H10A—C10—H10B108.6
N1—C1—H1B109.9C11—C10B—C9106.9 (7)
C1i—C1—H1B109.9C11—C10B—H10C110.3
H1A—C1—H1B108.3C9—C10B—H10C110.3
N1—C2—C3107.77 (15)C11—C10B—H10D110.3
N1—C2—C4109.49 (12)C9—C10B—H10D110.3
C3—C2—C4113.84 (14)H10C—C10B—H10D108.6
N1—C2—H2108.5C10B—C11—C7106.2 (5)
C3—C2—H2108.5C7—C11—C10102.7 (4)
C4—C2—H2108.5C10B—C11—H11A129.4
O2—C3—O1124.15 (16)C7—C11—H11A111.2
O2—C3—C2123.18 (15)C10—C11—H11A111.2
O1—C3—C2112.66 (14)C10B—C11—H11B86.8
C5—C4—C6110.92 (15)C7—C11—H11B111.2
C5—C4—C2112.68 (14)C10—C11—H11B111.2
C6—C4—C2111.35 (15)H11A—C11—H11B109.1
C5—C4—H4107.2O4—C12—C16109.6 (2)
C6—C4—H4107.2O4—C12—C13112.1 (3)
C2—C4—H4107.2C16—C12—C13103.6 (3)
C4—C5—H5A109.5O4—C12—H12110.4
C4—C5—H5B109.5C16—C12—H12110.4
H5A—C5—H5B109.5C13—C12—H12110.4
C4—C5—H5C109.5C12—C13—C14103.3 (3)
H5A—C5—H5C109.5C12—C13—H13A111.1
H5B—C5—H5C109.5C14—C13—H13A111.1
C4—C6—H6A109.5C12—C13—H13B111.1
C4—C6—H6B109.5C14—C13—H13B111.1
H6A—C6—H6B109.5H13A—C13—H13B109.1
C4—C6—H6C109.5C15—C14—C13105.6 (3)
H6A—C6—H6C109.5C15—C14—H14A110.6
H6B—C6—H6C109.5C13—C14—H14A110.6
O3—C7—C8107.9 (2)C15—C14—H14B110.6
O3—C7—C11110.5 (2)C13—C14—H14B110.6
C8—C7—C11105.2 (2)H14A—C14—H14B108.8
O3—C7—H7111C14—C15—C16104.6 (4)
C8—C7—H7111C14—C15—H15A110.8
C11—C7—H7111C16—C15—H15A110.8
C9—C8—C7104.9 (3)C14—C15—H15B110.8
C9—C8—H8A110.8C16—C15—H15B110.8
C7—C8—H8A110.8H15A—C15—H15B108.9
C9—C8—H8B110.8C15—C16—C12106.7 (3)
C7—C8—H8B110.8C15—C16—H16A110.4
H8A—C8—H8B108.8C12—C16—H16A110.4
C10—C9—C8111.3 (4)C15—C16—H16B110.4
C8—C9—C10B105.3 (7)C12—C16—H16B110.4
C10—C9—H9A109.4H16A—C16—H16B108.6
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.88 (2)2.37 (2)3.253 (2)175 (2)
N1—H2N···Cl1ii0.93 (2)2.32 (2)3.209 (2)161 (2)
N1—H2N···Br1ii0.93 (2)2.32 (2)3.209 (2)161 (2)
N1—H1N···Br10.88 (2)2.37 (2)3.253 (2)175 (2)
O1—H1O···O4iii0.95 (4)2.50 (4)3.446 (3)172 (5)
O4—H4O···O30.86 (3)1.89 (3)2.728 (2)165 (3)
O3—H3O···Cl10.94 (3)2.29 (3)3.204 (2)163 (2)
O3—H3O···Br10.94 (3)2.29 (3)3.204 (2)163 (2)
C1—H1A···O20.992.473.027 (2)115
C1—H1B···Cl1iii0.992.793.5460 (18)134
C2—H2···O2ii1.002.293.127 (2)141
C6—H6C···O10.982.503.082 (3)118
Symmetry codes: (ii) x, y1, z; (iii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC12H26N2O42+·2(Br0.09Cl0.91)·4(C5H10O)
Mr685.41
Crystal system, space groupMonoclinic, C2
Temperature (K)130
a, b, c (Å)21.2037 (5), 5.2166 (1), 17.2517 (5)
β (°) 97.037 (2)
V3)1893.86 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.7 × 0.04 × 0.04
Data collection
DiffractometerOxford Diffraction CCD Oxford Xcalibur S
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.981, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
28298, 5795, 4851
Rint0.035
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.104, 0.98
No. of reflections5795
No. of parameters232
No. of restraints92
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.37
Absolute structureFlack (1983), 2602 Friedel pairs
Absolute structure parameter0.04 (2)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.88 (2)2.37 (2)3.253 (2)175 (2)
N1—H2N···Cl1i0.93 (2)2.32 (2)3.209 (2)161 (2)
N1—H2N···Br1i0.93 (2)2.32 (2)3.209 (2)161 (2)
N1—H1N···Br10.88 (2)2.37 (2)3.253 (2)175 (2)
O1—H1O···O4ii0.95 (4)2.50 (4)3.446 (3)172 (5)
O4—H4O···O30.86 (3)1.89 (3)2.728 (2)165 (3)
O3—H3O···Cl10.94 (3)2.29 (3)3.204 (2)163 (2)
O3—H3O···Br10.94 (3)2.29 (3)3.204 (2)163 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y1, z.
 

Acknowledgements

The authors are grateful to the Ministry of Science and Technological Development of the Republic of Serbia for financial support (grant No. 142010).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaluderović, G. N., Gómez-Ruiz, S., Schmidt, H. & Steinborn, D. (2007). Acta Cryst. E63, o3491.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaluderović, G. N., Heinemann, F. W., Knežević, N. Ž., Trifunović, S. R. & Sabo, T. J. (2004). J. Chem. Crystallogr. 34, 185–189.  Google Scholar
First citationMistryukov, V. E., Mikhailov, Yu. N., Sergeev, A. V., Zhuravlov, M. G., Schelokov, R. N., Chernov, A. P., Fodorov, V. A. & Brekhovskikh, M. N. (1987). Dokl. Akad. Nauk SSSR, 295, 1390–1393.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSchoenberg, L. N., Cooke, D. W. & Liu, C. F. (1968). Inorg. Chem. 7, 2386–2393.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShkol'nikova, L. M., Ilyukhin, A. B., Gasparyan, A. V., Zavodnik, V. E., Poznyak, A. L. & Makarevich, S. S. (1990). Kristallografiya, 35, 1421–1424.  CAS Google Scholar
First citationShkol'nikova, L. M., Sotman, S. S., Poznyak, A. L. & Stoplyanskaya, L. V. (1992). Kristallografiya, 37, 692–695.  CAS Google Scholar
First citationShkol'nikova, L. M., Suyarov, N. D., Gasparyan, A. V., Poznyak, A. L., Zavodnik, V. E. & Dyaltova, N. M. (1989). Zh. Strukt. Khim. 30, 92–104.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o656-o657
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds