organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diiso­propyl [(benzoyl­amino)­(phen­yl)meth­yl]phospho­nate

aThe Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005, People's Republic of China, bDepartment of Pharmaceutical Science, Medical College, Xiamen University, Xiamen 361005, People's Republic of China, and cDepartment of Chemistry, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: fangmj@xmu.edu.cn

(Received 13 February 2009; accepted 21 February 2009; online 28 February 2009)

The title compound, C20H26NO4P, has been obtained by the reaction of benzoyl chloride and diisoprop­yl[amino­(phen­yl)meth­yl]phospho­nate. The dihedral angle between the planes of the benzoyl­amino group and the phenyl ring is 77.0 (2)°. The crystal structure is stabilized by strong inter­molecular N—H⋯O hydrogen bonds between the doubly bonded phosphoryl O atom and the amide N atom which link the mol­ecules into pairs about a center of symmetry.

Related literature

For the biological activity and pharmaceutical inter­est of α-hydroxy­phospho­nic acid esters, see: Stowasser et al. (1992[Stowasser, B., Budt, K.-H., Jian-Qi, L., Peyman, A. & Ruppert, D. (1992). Tetrahedron Lett. 33, 6625-6628. ]); Chen et al. (1995[Chen, R., Liu, L. & Zhang, Z. (1995). Heteroatom. Chem. 6, 503-506.]). For their use as reagents in the synthesis of enol ethers and α-ketophospho­nates, see: Babak & Rahman (2001[Babak, K. & Rahman, N. (2001). Synth. Commun. 31, 2245-2250.]). For the synthesis, see: Drescher et al. (1995[Drescher, M., Hammerschmidt, F. & Kählig, H. (1995). Synthesis, 10, 1267-1272.]). For bond lengths and angles in related compunds, see: Smaardijk et al. (1985[Smaardijk, Ab. A., Noorda, S., van Bolhuis, F. & Wynberg, H. (1985). Tetrahedron Lett. 26, 493-496.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26NO4P

  • Mr = 375.39

  • Triclinic, [P \overline 1]

  • a = 10.839 (4) Å

  • b = 10.925 (5) Å

  • c = 11.057 (5) Å

  • α = 61.364 (8)°

  • β = 83.362 (8)°

  • γ = 60.470 (6)°

  • V = 987.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 273 K

  • 0.28 × 0.21 × 0.05 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.992

  • 4991 measured reflections

  • 3411 independent reflections

  • 2509 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.174

  • S = 0.98

  • 3411 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.05 2.895 (3) 165
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years α-hydroxyphosphonic acids esters have attracted much attention due to their wide biological activity (Stowasser et al., 1992) and pharmaceutical interest (Chen et al., 1995). They are useful reagents for the synthesis of enol ethers and α-ketophosphonates (Babak et al., 2001). Bond lengths and angles in the title compound, (I), are in agreement with the values reported for related compounds (Smaardijk et al., 1985). The dihedral angle between the planes of the benzoylamino group and phenyl ring is 103.0 (2)° (Fig. 1). The amide N atom is involved in a hydrogen-bonding interaction with the phosphoryl O atom of a neighboring molecule linking the molecules into pairs around a centerof symmetry (Table 1 and Fig. 2).

Related literature top

For the biological activity and pharmaceutical interest of α-hydroxyphosphonic acid esters, see: Stowasser et al. (1992); Chen et al. (1995). For their use as reagents in the synthesis of enol ethers and α-ketophosphonates, see: Babak & Rahman (2001). For the synthesis, see: Drescher et al. (1995). For bond lengths and angles in related compunds, see: Smaardijk et al. (1985).

Experimental top

A solution of dry dichloromethane (20 ml) containing (amino-phenyl-methyl)-phosphonic acid diisopropyl ester (1 mmol, 0.27 g) and triethylamine (0.4 ml) was added dropwise to a solution of dichloromethane (10 ml) containing benzoyl chloride (1.2 mmol, 0.17 g). The reaction mixture was stirred for 6 h at room temperature and the solvent was then removed under reduced pressure to give a residue, which was extracted with ethyl acetate (3 × 15 ml). The solution was dried over anhydrous MgSO4 and concentrated under vacuum to obtain a slurry residue, which was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 2:1) to give (I) as a colorless amorphous solid (Drescher, et al., 1995). Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a petroleum ether /dichloromethane solution (1:1 v/v).

Refinement top

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H = 0.93 (aromatic), 0.96 (CH3) or 0.98 (CH), N—H = 0.86 Å and Uiso(H) = 1.2Ueq (aromatic C, CH and N) or 1.5Ueq (methyl C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule showing the anisotropic displacement parameters of the non-hydrogen atoms at the 30% probability level. The H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of title compound, showing the N—H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted. [Symmetry code: (i) -x + 1, -y + 2, -z + 1)].
[Figure 3] Fig. 3. The formation of the title compound.
Diisopropyl [(benzoylamino)(phenyl)methyl]phosphonate top
Crystal data top
C20H26NO4PZ = 2
Mr = 375.39F(000) = 400
Triclinic, P1Dx = 1.263 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.839 (4) ÅCell parameters from 1689 reflections
b = 10.925 (5) Åθ = 2.3–27.7°
c = 11.057 (5) ŵ = 0.16 mm1
α = 61.364 (8)°T = 273 K
β = 83.362 (8)°Chunk, colorless
γ = 60.470 (6)°0.28 × 0.21 × 0.05 mm
V = 987.3 (7) Å3
Data collection top
Bruker APEX area-detector
diffractometer
3411 independent reflections
Radiation source: fine-focus sealed tube2509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.956, Tmax = 0.992k = 1212
4991 measured reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.097P)2]
where P = (Fo2 + 2Fc2)/3
3411 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C20H26NO4Pγ = 60.470 (6)°
Mr = 375.39V = 987.3 (7) Å3
Triclinic, P1Z = 2
a = 10.839 (4) ÅMo Kα radiation
b = 10.925 (5) ŵ = 0.16 mm1
c = 11.057 (5) ÅT = 273 K
α = 61.364 (8)°0.28 × 0.21 × 0.05 mm
β = 83.362 (8)°
Data collection top
Bruker APEX area-detector
diffractometer
3411 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2509 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.992Rint = 0.042
4991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 0.98Δρmax = 0.60 e Å3
3411 reflectionsΔρmin = 0.44 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.73254 (8)0.85680 (9)0.47527 (8)0.0311 (3)
N10.6453 (2)0.6827 (3)0.6988 (3)0.0310 (6)
H1A0.55660.75770.67180.037*
O10.8049 (2)0.4184 (2)0.8105 (3)0.0546 (7)
C10.6797 (3)0.5282 (4)0.7762 (3)0.0339 (7)
O20.6331 (2)1.0278 (2)0.4252 (2)0.0412 (6)
C20.5598 (3)0.4933 (3)0.8226 (3)0.0336 (7)
O30.6811 (2)0.7980 (2)0.3986 (2)0.0400 (6)
C30.5965 (4)0.3371 (4)0.9147 (4)0.0505 (9)
H3A0.69280.25720.94240.061*
O40.8922 (2)0.8119 (2)0.4564 (2)0.0401 (6)
C40.4921 (4)0.2969 (5)0.9671 (4)0.0602 (11)
H4A0.51820.19061.03130.072*
C50.3507 (4)0.4130 (5)0.9247 (4)0.0514 (9)
H5A0.28040.38590.96030.062*
C60.3123 (4)0.5681 (4)0.8304 (4)0.0549 (10)
H6A0.21580.64720.80060.066*
C70.4171 (3)0.6079 (4)0.7792 (4)0.0505 (9)
H7A0.39050.71420.71420.061*
C80.7582 (3)0.7231 (3)0.6607 (3)0.0305 (7)
H8A0.84700.62200.68120.037*
C90.7819 (3)0.7826 (3)0.7489 (3)0.0307 (7)
C100.6722 (3)0.9170 (4)0.7536 (3)0.0431 (8)
H10A0.58440.97680.69610.052*
C110.6917 (4)0.9627 (4)0.8423 (4)0.0531 (9)
H11A0.61661.05230.84560.064*
C120.8210 (4)0.8774 (5)0.9261 (4)0.0562 (10)
H12A0.83360.90950.98560.067*
C130.9309 (4)0.7456 (5)0.9221 (4)0.0526 (9)
H13A1.01910.68790.97840.063*
C140.9111 (3)0.6979 (4)0.8344 (3)0.0398 (8)
H14A0.98620.60700.83290.048*
C150.7424 (4)0.6316 (4)0.4291 (4)0.0435 (8)
H15A0.79900.55810.52300.052*
C160.6184 (4)0.6079 (5)0.4248 (4)0.0608 (10)
H16A0.56150.62550.49420.091*
H16B0.65380.50000.44320.091*
H16C0.56040.68320.33420.091*
C170.8383 (4)0.6056 (5)0.3243 (4)0.0635 (11)
H17A0.91610.62090.33280.095*
H17B0.78410.68150.23190.095*
H17C0.87580.49790.34090.095*
C180.9332 (4)0.9289 (4)0.3580 (4)0.0458 (8)
H18A0.87311.03070.35930.055*
C190.9101 (5)0.9581 (6)0.2149 (4)0.0810 (14)
H19A0.81011.00150.18750.121*
H19B0.96580.85830.21310.121*
H19C0.93931.03340.15130.121*
C201.0845 (4)0.8639 (6)0.4093 (5)0.0816 (14)
H20A1.09160.85100.50090.122*
H20B1.11620.93730.34700.122*
H20C1.14380.76120.41330.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0254 (4)0.0278 (5)0.0360 (5)0.0115 (3)0.0062 (3)0.0149 (4)
N10.0210 (12)0.0262 (13)0.0398 (14)0.0105 (10)0.0066 (11)0.0139 (12)
O10.0308 (12)0.0297 (13)0.0752 (18)0.0100 (10)0.0017 (12)0.0102 (13)
C10.0348 (17)0.0299 (17)0.0363 (17)0.0170 (14)0.0064 (14)0.0150 (15)
O20.0342 (11)0.0288 (12)0.0497 (13)0.0118 (9)0.0050 (10)0.0155 (11)
C20.0407 (17)0.0328 (17)0.0343 (17)0.0228 (15)0.0099 (14)0.0176 (15)
O30.0379 (12)0.0357 (12)0.0442 (12)0.0141 (10)0.0030 (10)0.0217 (11)
C30.049 (2)0.036 (2)0.054 (2)0.0231 (17)0.0061 (18)0.0111 (18)
O40.0284 (11)0.0367 (12)0.0448 (13)0.0162 (10)0.0120 (10)0.0142 (11)
C40.075 (3)0.050 (2)0.055 (2)0.046 (2)0.011 (2)0.011 (2)
C50.059 (2)0.073 (3)0.052 (2)0.051 (2)0.0245 (19)0.035 (2)
C60.0391 (19)0.055 (2)0.077 (3)0.0298 (18)0.0200 (19)0.032 (2)
C70.0383 (18)0.0377 (19)0.070 (2)0.0226 (16)0.0128 (18)0.0197 (19)
C80.0236 (14)0.0258 (16)0.0400 (17)0.0107 (12)0.0052 (13)0.0164 (15)
C90.0266 (15)0.0321 (17)0.0336 (16)0.0164 (13)0.0097 (13)0.0155 (15)
C100.0386 (18)0.0392 (19)0.0472 (19)0.0152 (15)0.0013 (16)0.0216 (17)
C110.057 (2)0.050 (2)0.059 (2)0.0245 (19)0.012 (2)0.035 (2)
C120.080 (3)0.068 (3)0.052 (2)0.053 (2)0.019 (2)0.036 (2)
C130.052 (2)0.066 (2)0.044 (2)0.040 (2)0.0010 (18)0.018 (2)
C140.0338 (17)0.0424 (19)0.0400 (17)0.0211 (15)0.0077 (15)0.0163 (16)
C150.0454 (19)0.0363 (18)0.048 (2)0.0177 (15)0.0026 (17)0.0213 (17)
C160.064 (2)0.068 (3)0.072 (3)0.041 (2)0.019 (2)0.043 (2)
C170.058 (2)0.068 (3)0.082 (3)0.033 (2)0.033 (2)0.052 (3)
C180.0456 (19)0.044 (2)0.049 (2)0.0285 (17)0.0128 (17)0.0182 (18)
C190.095 (3)0.108 (4)0.050 (2)0.073 (3)0.020 (2)0.023 (3)
C200.063 (3)0.094 (3)0.074 (3)0.056 (3)0.006 (2)0.013 (3)
Geometric parameters (Å, º) top
P1—O21.456 (2)C10—H10A0.9300
P1—O31.559 (2)C11—C121.369 (5)
P1—O41.567 (2)C11—H11A0.9300
P1—C81.809 (3)C12—C131.361 (5)
N1—C11.337 (4)C12—H12A0.9300
N1—C81.451 (4)C13—C141.379 (5)
N1—H1A0.8600C13—H13A0.9300
O1—C11.226 (3)C14—H14A0.9300
C1—C21.498 (4)C15—C161.498 (5)
C2—C31.365 (4)C15—C171.500 (5)
C2—C71.370 (4)C15—H15A0.9800
O3—C151.460 (4)C16—H16A0.9600
C3—C41.380 (5)C16—H16B0.9600
C3—H3A0.9300C16—H16C0.9600
O4—C181.460 (4)C17—H17A0.9600
C4—C51.363 (5)C17—H17B0.9600
C4—H4A0.9300C17—H17C0.9600
C5—C61.358 (5)C18—C201.482 (5)
C5—H5A0.9300C18—C191.483 (5)
C6—C71.380 (5)C18—H18A0.9800
C6—H6A0.9300C19—H19A0.9600
C7—H7A0.9300C19—H19B0.9600
C8—C91.507 (4)C19—H19C0.9600
C8—H8A0.9800C20—H20A0.9600
C9—C141.378 (4)C20—H20B0.9600
C9—C101.382 (4)C20—H20C0.9600
C10—C111.370 (4)
O2—P1—O3109.31 (12)C10—C11—H11A119.7
O2—P1—O4114.66 (12)C13—C12—C11119.9 (3)
O3—P1—O4108.59 (12)C13—C12—H12A120.0
O2—P1—C8116.66 (13)C11—C12—H12A120.0
O3—P1—C8107.29 (13)C12—C13—C14119.7 (3)
O4—P1—C899.67 (12)C12—C13—H13A120.1
C1—N1—C8119.7 (2)C14—C13—H13A120.1
C1—N1—H1A120.1C9—C14—C13121.2 (3)
C8—N1—H1A120.1C9—C14—H14A119.4
O1—C1—N1121.6 (3)C13—C14—H14A119.4
O1—C1—C2120.7 (3)O3—C15—C16106.6 (3)
N1—C1—C2117.7 (3)O3—C15—C17108.8 (3)
C3—C2—C7118.6 (3)C16—C15—C17113.3 (3)
C3—C2—C1117.3 (3)O3—C15—H15A109.4
C7—C2—C1124.1 (3)C16—C15—H15A109.4
C15—O3—P1126.33 (19)C17—C15—H15A109.4
C2—C3—C4120.6 (3)C15—C16—H16A109.5
C2—C3—H3A119.7C15—C16—H16B109.5
C4—C3—H3A119.7H16A—C16—H16B109.5
C18—O4—P1123.20 (19)C15—C16—H16C109.5
C5—C4—C3120.0 (3)H16A—C16—H16C109.5
C5—C4—H4A120.0H16B—C16—H16C109.5
C3—C4—H4A120.0C15—C17—H17A109.5
C6—C5—C4120.1 (3)C15—C17—H17B109.5
C6—C5—H5A119.9H17A—C17—H17B109.5
C4—C5—H5A119.9C15—C17—H17C109.5
C5—C6—C7119.7 (3)H17A—C17—H17C109.5
C5—C6—H6A120.2H17B—C17—H17C109.5
C7—C6—H6A120.2O4—C18—C20106.7 (3)
C2—C7—C6121.0 (3)O4—C18—C19110.1 (3)
C2—C7—H7A119.5C20—C18—C19113.7 (4)
C6—C7—H7A119.5O4—C18—H18A108.7
N1—C8—C9112.6 (2)C20—C18—H18A108.7
N1—C8—P1112.04 (18)C19—C18—H18A108.7
C9—C8—P1113.18 (19)C18—C19—H19A109.5
N1—C8—H8A106.1C18—C19—H19B109.5
C9—C8—H8A106.1H19A—C19—H19B109.5
P1—C8—H8A106.1C18—C19—H19C109.5
C14—C9—C10118.1 (3)H19A—C19—H19C109.5
C14—C9—C8120.7 (3)H19B—C19—H19C109.5
C10—C9—C8121.0 (2)C18—C20—H20A109.5
C11—C10—C9120.5 (3)C18—C20—H20B109.5
C11—C10—H10A119.7H20A—C20—H20B109.5
C9—C10—H10A119.7C18—C20—H20C109.5
C12—C11—C10120.5 (3)H20A—C20—H20C109.5
C12—C11—H11A119.7H20B—C20—H20C109.5
C8—N1—C1—O13.5 (4)O2—P1—C8—N182.0 (2)
C8—N1—C1—C2175.2 (2)O3—P1—C8—N140.9 (2)
O1—C1—C2—C36.2 (4)O4—P1—C8—N1153.99 (19)
N1—C1—C2—C3172.5 (3)O2—P1—C8—C946.6 (2)
O1—C1—C2—C7174.3 (3)O3—P1—C8—C9169.52 (19)
N1—C1—C2—C77.0 (4)O4—P1—C8—C977.4 (2)
O2—P1—O3—C15173.2 (2)N1—C8—C9—C14116.7 (3)
O4—P1—O3—C1561.0 (3)P1—C8—C9—C14115.0 (3)
C8—P1—O3—C1545.8 (3)N1—C8—C9—C1058.9 (4)
C7—C2—C3—C42.5 (5)P1—C8—C9—C1069.4 (3)
C1—C2—C3—C4177.0 (3)C14—C9—C10—C110.7 (5)
O2—P1—O4—C1819.8 (3)C8—C9—C10—C11174.9 (3)
O3—P1—O4—C18102.8 (2)C9—C10—C11—C121.0 (5)
C8—P1—O4—C18145.1 (2)C10—C11—C12—C130.4 (6)
C2—C3—C4—C51.4 (6)C11—C12—C13—C140.5 (6)
C3—C4—C5—C60.3 (6)C10—C9—C14—C130.2 (5)
C4—C5—C6—C70.8 (5)C8—C9—C14—C13175.8 (3)
C3—C2—C7—C62.0 (5)C12—C13—C14—C90.8 (5)
C1—C2—C7—C6177.4 (3)P1—O3—C15—C16136.8 (3)
C5—C6—C7—C20.4 (6)P1—O3—C15—C17100.8 (3)
C1—N1—C8—C9101.9 (3)P1—O4—C18—C20156.8 (3)
C1—N1—C8—P1129.2 (2)P1—O4—C18—C1979.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.052.895 (3)165
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC20H26NO4P
Mr375.39
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)10.839 (4), 10.925 (5), 11.057 (5)
α, β, γ (°)61.364 (8), 83.362 (8), 60.470 (6)
V3)987.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.28 × 0.21 × 0.05
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.956, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
4991, 3411, 2509
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.174, 0.98
No. of reflections3411
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.44

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.052.895 (3)165.4
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 40806032) and the Scientific Research Foundation of the Third Institute of Oceanography, SOA (No. 2009005).

References

First citationBabak, K. & Rahman, N. (2001). Synth. Commun. 31, 2245–2250.  Web of Science CrossRef Google Scholar
First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, R., Liu, L. & Zhang, Z. (1995). Heteroatom. Chem. 6, 503–506.  CrossRef CAS Web of Science Google Scholar
First citationDrescher, M., Hammerschmidt, F. & Kählig, H. (1995). Synthesis, 10, 1267–1272.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmaardijk, Ab. A., Noorda, S., van Bolhuis, F. & Wynberg, H. (1985). Tetrahedron Lett. 26, 493–496.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStowasser, B., Budt, K.-H., Jian-Qi, L., Peyman, A. & Ruppert, D. (1992). Tetrahedron Lett. 33, 6625–6628.   CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds