organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(E)-2-(5,7-Di­chloro-8-hy­droxy­quinolin-2-yl)vin­yl]-4-hy­droxy­phenyl acetate

aDepartment of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicz St., 80952 Gdańsk, Poland, and bDepartment of Organic Chemistry, University of Silesia, 9 Szkolna St., 40007 Katowice, Poland
*Correspondence e-mail: lukas_ponikiewski@vp.pl

(Received 17 November 2008; accepted 15 January 2009; online 11 February 2009)

The two symmetry independent mol­ecules of the title compound, C19H13Cl2NO4, show similar conformations with the acetyl group twisted strongly relative to the remaining, virtually flat (r.m.s. deviations = 0.0173 and 0.0065 Å), part of the mol­ecule. The hydroxyl groups of the 8-hydroxy­quinoline residues are involved in intra­molecular O—H⋯N hydrogen bonds, which, in one case, forms a part of a three-center inter­action. Inter­molecular O—H⋯O hydrogen bonds assemble the mol­ecules into a one-dimensional polymeric structure extended along the a axis. The 4-hydroxy­phenyl group of one mol­ecule forms an O—H⋯O hydrogen bond, in which the hydroxyl H atom is disordered, with its inversion center counterpart.

Related literature

For the biological activity and applications of chloro­quino­lines, see: O'Neill et al. (1998[O'Neill, P. M., Bray, P. G., Hawley, S. R., Ward, S. A. & Park, B. K. (1998). Pharmacol. Ther. 77, 29-58.]); Blauer et al. (1998[Blauer, G., Akkawi, M., Fleischhacker, W. & Hiessboeck, R. (1998). Chirality, 10, 556-563.]); Egan et al. (2000[Egan, T. J., Hunter, R., Kaschula, C. H., Marques, H. M., Misplon, A. & Walden, J. (2000). J. Med. Chem. 43, 283-291.]); Zouhiri et al. (2000[Zouhiri, F., Mouscadet, J. F., Mekouar, K., Desmaele, D., Savoure, D., Leh, H., Subra, F., Bret, M. L., Auclair, C. & d'Angelo, J. (2000). J. Med. Chem. 43, 1533-1540.]). For the structure of a similar compound, see: Chojnacki et al. (2007[Chojnacki, J., Skop, P., Pladzyk, A. & Nycz, J. E. (2007). Acta Cryst. E63, o4773-o4774.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13Cl2NO4

  • Mr = 390.20

  • Triclinic, [P \overline 1]

  • a = 7.3274 (15) Å

  • b = 10.449 (2) Å

  • c = 21.550 (4) Å

  • α = 84.89 (3)°

  • β = 89.50 (3)°

  • γ = 87.31 (3)°

  • V = 1641.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 120 (2) K

  • 0.36 × 0.29 × 0.11 mm

Data collection
  • Oxford Diffraction KM4CCD κ-geometry diffractometer

  • Absorption correction: none

  • 13404 measured reflections

  • 7118 independent reflections

  • 5533 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.109

  • S = 1.06

  • 7118 reflections

  • 491 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.78 (3) 2.14 (3) 2.667 (2) 125 (3)
O2—H2⋯O8 0.88 (3) 1.84 (3) 2.675 (2) 159 (3)
O5—H5⋯N2 0.77 (3) 2.20 (3) 2.692 (2) 122 (3)
O5—H5⋯O4i 0.77 (3) 2.38 (3) 2.990 (2) 138 (3)
O6—H6A⋯O6ii 0.829 (19) 2.12 (3) 2.892 (3) 156 (5)
O6—H6B⋯O4i 0.844 (10) 2.445 (11) 3.130 (3) 138.9 (18)
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

5,7-Dichloro-2-methylquinolin-8-ol (chlorquinaldol) is a well known antiseptic and generally chloroquinolines are a class of compounds of great interest from a synthetic, theoretical and practical point of view (O'Neill et al., 1998; Blauer et al., 1998; Egan et al., 2000). Styryl derivatives of chloroquinolines have recently attracted special attention due to their antiviral activity (Zouhiri et al., 2000).

The title compound was synthesized in the reaction of 2,5-dihydroxybenzaldehyde with an equimolar quantity of 5,7-dichloro-2-methylquinolin-8-ol in Ac2O followed by partial hydrolysis in py/H2O system (Fig. 3).

The molecular structure of title compound is presented in Fig.1. Both molecules from the asymmetric unit exist in an E configuration with respect to the ethenyl C=C bond [C10δb C11 = 1.328 (3)Å and C29δb C30 - 1.330 (3) Å]. The dihedral angles between the phenyl and quinoline rings are 5.22 (8)° and 9.80 (8)°.

The crystal structure is stabilized by intramolecular and intermolecular hydrogen bonding. Intramolecular O—H···N contacts result in the formation of planar five-membered rings (O1/H1/N1/C8/C7 and O5/H5/N2/C27/C26). The intermolecular interactions O2—H2···O8 and O5—H5···O4i (symmetry codes: (i) x + 1, y, z) assemble molecules into one-dimensional polymeric structure extended along the a axis. These assemblies are further joined via O6—H6A···O6Aii [symmetry code: (ii) -x + 2, -y + 1, -z] hydrogen bonds in which the H atoms are disordered and have 0.5 occupancy (Fig. 2.) An alternative position of the H6A could not be located from a difference Fourier map.

Related literature top

For the biological activity and applications of chloroquinolines, see: O'Neill et al. (1998); Blauer et al. (1998); Egan et al. (2000); Zouhiri et al. (2000). For the structure of a similar compound, see: Chojnacki et al. (2007).

Experimental top

To the solution of 5,7-dichloro-2-methylquinolin-8-ol (1.14 g, 5 mmol) in Ac2O (25 ml) at 303 K, 2,5-dihydroxybenzaldehyde (0.69 g, 5 mmol) was added. The reaction mixture was stirred at 373 K for 16 h. Next, the solvent was evaporated and the py/H2O system (4:1, 20 ml) was added and the reaction mixture was stirred at 373 K for 3 h. The solvent was evaporated and residue was purified by crystallization using EtOH, THF and finally CH3CN.

Refinement top

Carbon-bound H atoms were included in idealized positions and refined as riding atoms with aromatic and methylene C—H = 0.95 Å, methyl C—H = 0.98Å and Uiso(H) = 1.2 Ue.g(C) for aromatic and methylene C—H and Uiso(H) = 1.5 Ueq(C) for methyl group. The OH group H atoms H1, H2, H5 were located in a difference Fourier map and fully refined. The O6—H group is disordered. In one site (50% occupancy) it is involved in strong O6—H6A···O6(-x + 2, -y + 1, -z) hydrogen bonding. H6A was located in a difference Fourier map and in the refinement process the O6—H6A distance was restrained to 0.82 (2) Å and isotropic displacement parameter refined. An alternative position of this H atom (H6B) could not be determined from difference Fourier maps. Position of this H atom was calculated assuming its H-bond interaction with O4 and restrained intramolecular distances O6—H6B 0.85 (1), H30A···H6B 2.20 (1) and C32···H6B 1.83 (1) Å. Isotropic displacement parameter of H6A was refined.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Structure of 3-[(E)-2-(5,7-dichloro-8-hydroxyquinolin-2-yl)vinyl]-4-hydroxyphenyl acetate showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonds between 3-[(E)-2-(5,7-dichloro-8-hydroxyquinolin-2-yl)vinyl]-4-hydroxyphenyl acetate molecules. For clarity, all H atoms, except O—H, have been omitted. Symmetry code for the atoms designated with A: 2 - x,1 - y,-z.
[Figure 3] Fig. 3. Preparation of the title compound.
3-[(E)-2-(5,7-Dichloro-8-hydroxyquinolin-2-yl)vinyl]-4-hydroxyphenyl acetate top
Crystal data top
C19H13Cl2NO4Z = 4
Mr = 390.20F(000) = 800
Triclinic, P1Dx = 1.579 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3274 (15) ÅCell parameters from 8303 reflections
b = 10.449 (2) Åθ = 2.0–32.3°
c = 21.550 (4) ŵ = 0.42 mm1
α = 84.89 (3)°T = 120 K
β = 89.50 (3)°Block, orange
γ = 87.31 (3)°0.36 × 0.29 × 0.11 mm
V = 1641.6 (6) Å3
Data collection top
Oxford Diffraction KM4CCD κ-geometry
diffractometer
5533 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 27.0°, θmin = 4.1°
Detector resolution: 8.1883 pixels mm-1h = 89
ω scans, 0.75 deg widthk = 1310
13404 measured reflectionsl = 2727
7118 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0649P)2]
where P = (Fo2 + 2Fc2)/3
7118 reflections(Δ/σ)max = 0.001
491 parametersΔρmax = 0.54 e Å3
4 restraintsΔρmin = 0.24 e Å3
Crystal data top
C19H13Cl2NO4γ = 87.31 (3)°
Mr = 390.20V = 1641.6 (6) Å3
Triclinic, P1Z = 4
a = 7.3274 (15) ÅMo Kα radiation
b = 10.449 (2) ŵ = 0.42 mm1
c = 21.550 (4) ÅT = 120 K
α = 84.89 (3)°0.36 × 0.29 × 0.11 mm
β = 89.50 (3)°
Data collection top
Oxford Diffraction KM4CCD κ-geometry
diffractometer
5533 reflections with I > 2σ(I)
13404 measured reflectionsRint = 0.024
7118 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0434 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.54 e Å3
7118 reflectionsΔρmin = 0.24 e Å3
491 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.05058 (7)0.48122 (4)0.39447 (2)0.02868 (13)
Cl20.32326 (7)0.14842 (5)0.55244 (2)0.02702 (13)
Cl30.51139 (7)1.02105 (4)0.29549 (2)0.02920 (13)
Cl40.34086 (7)0.64476 (4)0.46981 (2)0.02556 (12)
N10.0213 (2)0.00314 (15)0.34122 (7)0.0220 (3)
N20.6083 (2)0.55562 (14)0.25358 (7)0.0206 (3)
O10.0315 (2)0.24598 (15)0.31376 (7)0.0275 (3)
H10.059 (4)0.177 (3)0.3008 (13)0.049 (9)*
O20.2381 (2)0.12385 (13)0.14624 (7)0.0324 (4)
H20.306 (4)0.101 (3)0.1151 (13)0.051 (8)*
O30.22826 (19)0.64374 (13)0.17441 (7)0.0272 (3)
O40.0706 (2)0.66859 (14)0.15324 (8)0.0415 (4)
O50.6377 (2)0.80890 (14)0.22189 (7)0.0280 (3)
H50.671 (4)0.746 (3)0.2085 (13)0.054 (9)*
O60.8761 (2)0.47684 (14)0.05196 (8)0.0320 (3)
H6B0.936 (2)0.4981 (17)0.0825 (5)0.11 (3)*0.50
H6A0.918 (7)0.495 (5)0.0166 (13)0.057 (18)*0.50
O70.74929 (18)0.04271 (12)0.07725 (6)0.0263 (3)
O80.44540 (19)0.00398 (14)0.06726 (7)0.0315 (3)
C10.0496 (3)0.11986 (18)0.35315 (9)0.0229 (4)
C20.1381 (3)0.15372 (18)0.40825 (9)0.0245 (4)
H2A0.15880.24190.41500.029*
C30.1942 (3)0.06119 (18)0.45183 (9)0.0229 (4)
H3A0.25280.08460.48890.027*
C40.2139 (2)0.17651 (18)0.48241 (9)0.0206 (4)
C50.1781 (2)0.30041 (18)0.46866 (9)0.0220 (4)
H5A0.20920.37020.49750.026*
C60.0950 (3)0.32370 (18)0.41148 (9)0.0226 (4)
C70.0468 (3)0.22522 (18)0.36942 (9)0.0220 (4)
C80.0785 (2)0.09591 (18)0.38460 (9)0.0211 (4)
C90.1646 (2)0.07036 (17)0.44149 (9)0.0193 (4)
C100.0138 (3)0.22128 (18)0.30779 (9)0.0240 (4)
H10A0.00670.30810.31690.029*
C110.0983 (3)0.19915 (18)0.25467 (9)0.0233 (4)
H11A0.11830.11160.24670.028*
C120.1638 (2)0.29527 (18)0.20718 (9)0.0216 (4)
C130.2360 (3)0.25260 (18)0.15143 (9)0.0235 (4)
C140.2986 (3)0.33822 (19)0.10404 (9)0.0244 (4)
H14A0.34480.30750.06650.029*
C150.2936 (3)0.46913 (19)0.11148 (9)0.0250 (4)
H15A0.33720.52870.07950.030*
C160.2238 (3)0.51087 (18)0.16657 (9)0.0233 (4)
C170.1590 (3)0.42768 (18)0.21369 (9)0.0235 (4)
H17A0.11090.45980.25060.028*
C180.0700 (3)0.71436 (18)0.16649 (9)0.0260 (4)
C190.0972 (3)0.85296 (19)0.17313 (10)0.0330 (5)
H19A0.01430.89240.19000.050*
H19B0.12460.89690.13220.050*
H19C0.19920.86070.20150.050*
C200.5942 (2)0.42938 (17)0.26808 (9)0.0207 (4)
C210.5229 (3)0.38022 (18)0.32605 (9)0.0238 (4)
H21A0.51510.29000.33510.029*
C220.4651 (3)0.46163 (17)0.36918 (9)0.0231 (4)
H22A0.41760.42840.40820.028*
C230.4206 (3)0.69136 (18)0.39503 (9)0.0214 (4)
C240.4301 (2)0.81905 (18)0.37680 (9)0.0218 (4)
H24A0.38930.88140.40390.026*
C250.5008 (3)0.85796 (17)0.31761 (9)0.0217 (4)
C260.5643 (3)0.77065 (18)0.27752 (9)0.0216 (4)
C270.5491 (2)0.63696 (17)0.29608 (9)0.0201 (4)
C280.4767 (2)0.59576 (17)0.35519 (9)0.0200 (4)
C290.6498 (3)0.34132 (17)0.22142 (9)0.0218 (4)
H29A0.63860.25180.23190.026*
C300.7150 (3)0.37867 (17)0.16535 (9)0.0218 (4)
H30A0.73060.46820.15630.026*
C310.7652 (2)0.29585 (17)0.11613 (9)0.0203 (4)
C320.8451 (3)0.34769 (18)0.06051 (9)0.0236 (4)
C330.8925 (3)0.2713 (2)0.01282 (9)0.0280 (4)
H33A0.94920.30820.02390.034*
C340.8578 (3)0.1428 (2)0.01846 (9)0.0273 (4)
H34A0.88840.09050.01430.033*
C350.7775 (3)0.09090 (18)0.07278 (9)0.0228 (4)
C360.7329 (3)0.16355 (17)0.12123 (9)0.0214 (4)
H36A0.68020.12450.15820.026*
C370.5759 (3)0.07926 (19)0.07142 (9)0.0255 (4)
C380.5673 (3)0.22131 (19)0.06933 (10)0.0319 (5)
H38A0.49730.23930.03280.048*
H38B0.50760.25820.10720.048*
H38C0.69140.25970.06660.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0327 (3)0.0194 (2)0.0345 (3)0.00009 (19)0.0010 (2)0.0062 (2)
Cl20.0297 (3)0.0280 (3)0.0239 (2)0.00402 (19)0.0061 (2)0.00418 (19)
Cl30.0367 (3)0.0158 (2)0.0351 (3)0.00011 (19)0.0011 (2)0.00306 (19)
Cl40.0294 (3)0.0246 (2)0.0233 (2)0.00214 (19)0.00264 (19)0.00533 (19)
N10.0209 (8)0.0239 (8)0.0211 (8)0.0022 (6)0.0006 (6)0.0014 (7)
N20.0215 (8)0.0182 (8)0.0226 (8)0.0004 (6)0.0022 (6)0.0050 (6)
O10.0350 (8)0.0255 (8)0.0227 (7)0.0010 (6)0.0048 (6)0.0061 (6)
O20.0409 (9)0.0216 (7)0.0352 (9)0.0023 (6)0.0108 (7)0.0060 (6)
O30.0281 (8)0.0195 (7)0.0340 (8)0.0028 (6)0.0025 (6)0.0016 (6)
O40.0271 (8)0.0254 (8)0.0696 (12)0.0013 (6)0.0025 (8)0.0090 (8)
O50.0378 (9)0.0210 (7)0.0246 (8)0.0022 (6)0.0043 (6)0.0016 (6)
O60.0404 (9)0.0219 (7)0.0326 (9)0.0061 (6)0.0069 (7)0.0053 (7)
O70.0277 (8)0.0197 (7)0.0324 (8)0.0024 (5)0.0017 (6)0.0075 (6)
O80.0297 (8)0.0319 (8)0.0341 (8)0.0020 (6)0.0042 (6)0.0092 (7)
C10.0215 (10)0.0228 (10)0.0244 (10)0.0022 (7)0.0056 (8)0.0006 (8)
C20.0242 (10)0.0206 (10)0.0293 (11)0.0007 (8)0.0001 (8)0.0058 (8)
C30.0219 (10)0.0246 (10)0.0228 (10)0.0006 (7)0.0009 (8)0.0059 (8)
C40.0177 (9)0.0252 (10)0.0191 (9)0.0012 (7)0.0009 (7)0.0039 (8)
C50.0203 (10)0.0226 (10)0.0230 (10)0.0019 (7)0.0030 (8)0.0004 (8)
C60.0216 (10)0.0196 (9)0.0273 (10)0.0002 (7)0.0030 (8)0.0065 (8)
C70.0208 (10)0.0254 (10)0.0203 (9)0.0005 (7)0.0030 (8)0.0051 (8)
C80.0176 (9)0.0230 (9)0.0226 (10)0.0013 (7)0.0049 (7)0.0010 (8)
C90.0172 (9)0.0216 (9)0.0195 (9)0.0022 (7)0.0020 (7)0.0030 (7)
C100.0282 (11)0.0193 (9)0.0245 (10)0.0001 (8)0.0006 (8)0.0030 (8)
C110.0224 (10)0.0199 (9)0.0273 (10)0.0001 (7)0.0023 (8)0.0020 (8)
C120.0176 (9)0.0231 (9)0.0238 (10)0.0003 (7)0.0011 (8)0.0007 (8)
C130.0204 (10)0.0239 (10)0.0265 (10)0.0007 (7)0.0003 (8)0.0045 (8)
C140.0225 (10)0.0286 (10)0.0223 (10)0.0003 (8)0.0027 (8)0.0044 (8)
C150.0215 (10)0.0275 (10)0.0253 (10)0.0043 (8)0.0009 (8)0.0029 (8)
C160.0220 (10)0.0190 (9)0.0290 (10)0.0026 (7)0.0040 (8)0.0015 (8)
C170.0200 (10)0.0247 (10)0.0260 (10)0.0010 (7)0.0014 (8)0.0049 (8)
C180.0320 (12)0.0230 (10)0.0216 (10)0.0009 (8)0.0033 (8)0.0048 (8)
C190.0467 (14)0.0242 (11)0.0276 (11)0.0005 (9)0.0020 (10)0.0005 (9)
C200.0207 (10)0.0185 (9)0.0238 (10)0.0008 (7)0.0029 (8)0.0056 (8)
C210.0252 (10)0.0179 (9)0.0286 (10)0.0026 (7)0.0034 (8)0.0019 (8)
C220.0246 (10)0.0197 (9)0.0252 (10)0.0033 (7)0.0020 (8)0.0017 (8)
C230.0190 (9)0.0247 (10)0.0211 (9)0.0003 (7)0.0010 (7)0.0052 (8)
C240.0207 (10)0.0213 (9)0.0242 (10)0.0015 (7)0.0041 (8)0.0080 (8)
C250.0219 (10)0.0146 (8)0.0290 (10)0.0008 (7)0.0029 (8)0.0035 (8)
C260.0218 (10)0.0196 (9)0.0235 (10)0.0006 (7)0.0045 (8)0.0024 (8)
C270.0176 (9)0.0195 (9)0.0238 (10)0.0008 (7)0.0052 (7)0.0059 (8)
C280.0185 (9)0.0191 (9)0.0229 (10)0.0007 (7)0.0051 (7)0.0048 (7)
C290.0228 (10)0.0155 (9)0.0277 (10)0.0013 (7)0.0016 (8)0.0049 (8)
C300.0232 (10)0.0159 (9)0.0267 (10)0.0028 (7)0.0021 (8)0.0031 (8)
C310.0177 (9)0.0183 (9)0.0250 (10)0.0019 (7)0.0030 (7)0.0015 (8)
C320.0206 (10)0.0231 (10)0.0261 (10)0.0032 (7)0.0012 (8)0.0042 (8)
C330.0253 (11)0.0363 (11)0.0214 (10)0.0038 (8)0.0034 (8)0.0040 (9)
C340.0262 (11)0.0360 (11)0.0206 (10)0.0022 (8)0.0019 (8)0.0071 (9)
C350.0233 (10)0.0191 (9)0.0261 (10)0.0019 (7)0.0006 (8)0.0033 (8)
C360.0242 (10)0.0191 (9)0.0206 (9)0.0030 (7)0.0016 (8)0.0000 (7)
C370.0299 (11)0.0274 (10)0.0203 (10)0.0044 (8)0.0017 (8)0.0066 (8)
C380.0366 (12)0.0263 (11)0.0342 (12)0.0066 (9)0.0011 (9)0.0077 (9)
Geometric parameters (Å, º) top
Cl1—C61.7334 (19)C13—C141.386 (3)
Cl2—C41.744 (2)C14—C151.390 (3)
Cl3—C251.7334 (19)C14—H14A0.9500
Cl4—C231.745 (2)C15—C161.386 (3)
N1—C11.339 (2)C15—H15A0.9500
N1—C81.364 (2)C16—C171.373 (3)
N2—C201.337 (2)C17—H17A0.9500
N2—C271.359 (2)C18—C191.491 (3)
O1—C71.356 (2)C19—H19A0.9800
O1—H10.78 (3)C19—H19B0.9800
O2—C131.359 (2)C19—H19C0.9800
O2—H20.88 (3)C20—C211.413 (3)
O3—C181.349 (2)C20—C291.465 (3)
O3—C161.415 (2)C21—C221.366 (3)
O4—C181.203 (2)C21—H21A0.9500
O5—C261.345 (2)C22—C281.414 (3)
O5—H50.77 (3)C22—H22A0.9500
O6—C321.375 (2)C23—C241.362 (3)
O6—H6B0.844 (10)C23—C281.418 (3)
O6—H6A0.829 (19)C24—C251.406 (3)
O7—C371.354 (2)C24—H24A0.9500
O7—C351.416 (2)C25—C261.374 (3)
O8—C371.208 (2)C26—C271.428 (3)
C1—C21.413 (3)C27—C281.415 (3)
C1—C101.466 (3)C29—C301.328 (3)
C2—C31.362 (3)C29—H29A0.9500
C2—H2A0.9500C30—C311.461 (3)
C3—C91.418 (3)C30—H30A0.9500
C3—H3A0.9500C31—C321.405 (3)
C4—C51.367 (3)C31—C361.408 (2)
C4—C91.413 (3)C32—C331.389 (3)
C5—C61.405 (3)C33—C341.373 (3)
C5—H5A0.9500C33—H33A0.9500
C6—C71.366 (3)C34—C351.384 (3)
C7—C81.426 (3)C34—H34A0.9500
C8—C91.414 (3)C35—C361.373 (3)
C10—C111.330 (3)C36—H36A0.9500
C10—H10A0.9500C37—C381.493 (3)
C11—C121.463 (3)C38—H38A0.9800
C11—H11A0.9500C38—H38B0.9800
C12—C171.402 (3)C38—H38C0.9800
C12—C131.409 (3)
C1—N1—C8117.82 (16)C18—C19—H19B109.5
C20—N2—C27118.02 (16)H19A—C19—H19B109.5
C7—O1—H1103 (2)C18—C19—H19C109.5
C13—O2—H2112.3 (18)H19A—C19—H19C109.5
C18—O3—C16117.18 (15)H19B—C19—H19C109.5
C26—O5—H5104 (2)N2—C20—C21121.72 (17)
C32—O6—H6B109.3 (12)N2—C20—C29118.39 (17)
C32—O6—H6A110 (4)C21—C20—C29119.87 (17)
H6B—O6—H6A118 (4)C22—C21—C20120.43 (17)
C37—O7—C35117.40 (15)C22—C21—H21A119.8
N1—C1—C2121.63 (18)C20—C21—H21A119.8
N1—C1—C10118.84 (17)C21—C22—C28119.35 (18)
C2—C1—C10119.52 (17)C21—C22—H22A120.3
C3—C2—C1120.62 (18)C28—C22—H22A120.3
C3—C2—H2A119.7C24—C23—C28121.65 (18)
C1—C2—H2A119.7C24—C23—Cl4118.94 (15)
C2—C3—C9119.60 (18)C28—C23—Cl4119.40 (14)
C2—C3—H3A120.2C23—C24—C25119.58 (17)
C9—C3—H3A120.2C23—C24—H24A120.2
C5—C4—C9121.84 (18)C25—C24—H24A120.2
C5—C4—Cl2119.16 (15)C26—C25—C24121.94 (17)
C9—C4—Cl2119.00 (14)C26—C25—Cl3119.34 (15)
C4—C5—C6119.44 (18)C24—C25—Cl3118.70 (14)
C4—C5—H5A120.3O5—C26—C25121.47 (17)
C6—C5—H5A120.3O5—C26—C27120.29 (17)
C7—C6—C5121.55 (17)C25—C26—C27118.25 (18)
C7—C6—Cl1119.40 (15)N2—C27—C28123.85 (17)
C5—C6—Cl1119.05 (15)N2—C27—C26115.49 (17)
O1—C7—C6122.30 (17)C28—C27—C26120.66 (17)
O1—C7—C8118.63 (18)C22—C28—C27116.62 (17)
C6—C7—C8119.06 (18)C22—C28—C23125.54 (18)
N1—C8—C9124.12 (17)C27—C28—C23117.83 (17)
N1—C8—C7115.63 (17)C30—C29—C20124.17 (17)
C9—C8—C7120.25 (18)C30—C29—H29A117.9
C4—C9—C8117.80 (17)C20—C29—H29A117.9
C4—C9—C3126.01 (18)C29—C30—C31126.50 (17)
C8—C9—C3116.19 (18)C29—C30—H30A116.7
C11—C10—C1123.99 (18)C31—C30—H30A116.7
C11—C10—H10A118.0C32—C31—C36117.29 (17)
C1—C10—H10A118.0C32—C31—C30120.27 (16)
C10—C11—C12126.92 (18)C36—C31—C30122.42 (17)
C10—C11—H11A116.5O6—C32—C33118.40 (17)
C12—C11—H11A116.5O6—C32—C31120.19 (18)
C17—C12—C13117.82 (18)C33—C32—C31121.41 (17)
C17—C12—C11123.98 (18)C34—C33—C32120.34 (18)
C13—C12—C11118.20 (17)C34—C33—H33A119.8
O2—C13—C14121.97 (18)C32—C33—H33A119.8
O2—C13—C12116.57 (18)C33—C34—C35118.78 (19)
C14—C13—C12121.45 (17)C33—C34—H34A120.6
C13—C14—C15119.90 (18)C35—C34—H34A120.6
C13—C14—H14A120.0C36—C35—C34122.11 (18)
C15—C14—H14A120.0C36—C35—O7121.07 (17)
C16—C15—C14118.57 (18)C34—C35—O7116.78 (17)
C16—C15—H15A120.7C35—C36—C31120.05 (18)
C14—C15—H15A120.7C35—C36—H36A120.0
C17—C16—C15122.35 (18)C31—C36—H36A120.0
C17—C16—O3119.97 (17)O8—C37—O7123.06 (18)
C15—C16—O3117.62 (17)O8—C37—C38124.83 (19)
C16—C17—C12119.90 (18)O7—C37—C38112.10 (17)
C16—C17—H17A120.1C37—C38—H38A109.5
C12—C17—H17A120.1C37—C38—H38B109.5
O4—C18—O3122.59 (18)H38A—C38—H38B109.5
O4—C18—C19126.15 (19)C37—C38—H38C109.5
O3—C18—C19111.19 (18)H38A—C38—H38C109.5
C18—C19—H19A109.5H38B—C38—H38C109.5
C8—N1—C1—C21.0 (3)C27—N2—C20—C211.0 (3)
C8—N1—C1—C10178.83 (16)C27—N2—C20—C29177.25 (16)
N1—C1—C2—C31.4 (3)N2—C20—C21—C220.3 (3)
C10—C1—C2—C3178.34 (18)C29—C20—C21—C22177.92 (17)
C1—C2—C3—C90.5 (3)C20—C21—C22—C280.2 (3)
C9—C4—C5—C62.0 (3)C28—C23—C24—C251.4 (3)
Cl2—C4—C5—C6178.09 (14)Cl4—C23—C24—C25177.52 (14)
C4—C5—C6—C70.8 (3)C23—C24—C25—C261.2 (3)
C4—C5—C6—Cl1179.90 (14)C23—C24—C25—Cl3179.99 (14)
C5—C6—C7—O1179.23 (17)C24—C25—C26—O5177.55 (17)
Cl1—C6—C7—O11.5 (3)Cl3—C25—C26—O51.3 (3)
C5—C6—C7—C81.3 (3)C24—C25—C26—C273.0 (3)
Cl1—C6—C7—C8178.01 (14)Cl3—C25—C26—C27178.21 (14)
C1—N1—C8—C90.4 (3)C20—N2—C27—C281.2 (3)
C1—N1—C8—C7179.42 (17)C20—N2—C27—C26178.79 (16)
O1—C7—C8—N11.6 (3)O5—C26—C27—N21.7 (3)
C6—C7—C8—N1177.91 (17)C25—C26—C27—N2177.76 (16)
O1—C7—C8—C9178.25 (16)O5—C26—C27—C28178.26 (17)
C6—C7—C8—C92.2 (3)C25—C26—C27—C282.3 (3)
C5—C4—C9—C81.0 (3)C21—C22—C28—C270.0 (3)
Cl2—C4—C9—C8179.07 (13)C21—C22—C28—C23179.39 (18)
C5—C4—C9—C3179.37 (18)N2—C27—C28—C220.7 (3)
Cl2—C4—C9—C30.6 (3)C26—C27—C28—C22179.30 (16)
N1—C8—C9—C4179.03 (16)N2—C27—C28—C23179.81 (17)
C7—C8—C9—C41.1 (3)C26—C27—C28—C230.2 (3)
N1—C8—C9—C31.3 (3)C24—C23—C28—C22177.38 (18)
C7—C8—C9—C3178.55 (17)Cl4—C23—C28—C223.7 (3)
C2—C3—C9—C4179.58 (18)C24—C23—C28—C272.0 (3)
C2—C3—C9—C80.8 (3)Cl4—C23—C28—C27176.89 (13)
N1—C1—C10—C110.2 (3)N2—C20—C29—C300.4 (3)
C2—C1—C10—C11179.98 (18)C21—C20—C29—C30178.71 (18)
C1—C10—C11—C12179.48 (18)C20—C29—C30—C31177.19 (17)
C10—C11—C12—C175.4 (3)C29—C30—C31—C32175.38 (19)
C10—C11—C12—C13174.54 (19)C29—C30—C31—C366.1 (3)
C17—C12—C13—O2179.68 (17)C36—C31—C32—O6178.42 (17)
C11—C12—C13—O20.3 (3)C30—C31—C32—O60.2 (3)
C17—C12—C13—C140.7 (3)C36—C31—C32—C330.8 (3)
C11—C12—C13—C14179.21 (17)C30—C31—C32—C33179.41 (18)
O2—C13—C14—C15180.00 (18)O6—C32—C33—C34177.64 (18)
C12—C13—C14—C151.1 (3)C31—C32—C33—C341.6 (3)
C13—C14—C15—C160.6 (3)C32—C33—C34—C350.9 (3)
C14—C15—C16—C170.3 (3)C33—C34—C35—C360.5 (3)
C14—C15—C16—O3177.00 (16)C33—C34—C35—O7178.19 (17)
C18—O3—C16—C1779.5 (2)C37—O7—C35—C3676.0 (2)
C18—O3—C16—C15103.1 (2)C37—O7—C35—C34106.3 (2)
C15—C16—C17—C120.6 (3)C34—C35—C36—C311.3 (3)
O3—C16—C17—C12176.57 (16)O7—C35—C36—C31178.87 (16)
C13—C12—C17—C160.1 (3)C32—C31—C36—C350.6 (3)
C11—C12—C17—C16179.92 (18)C30—C31—C36—C35177.95 (17)
C16—O3—C18—O40.1 (3)C35—O7—C37—O85.6 (3)
C16—O3—C18—C19177.25 (17)C35—O7—C37—C38173.12 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.78 (3)2.14 (3)2.667 (2)125 (3)
O2—H2···O80.88 (3)1.84 (3)2.675 (2)159 (3)
O5—H5···N20.77 (3)2.20 (3)2.692 (2)122 (3)
O5—H5···O4i0.77 (3)2.38 (3)2.990 (2)138 (3)
O6—H6A···O6ii0.83 (2)2.12 (3)2.892 (3)156 (5)
O6—H6B···O4i0.84 (1)2.45 (1)3.130 (3)139 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H13Cl2NO4
Mr390.20
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.3274 (15), 10.449 (2), 21.550 (4)
α, β, γ (°)84.89 (3), 89.50 (3), 87.31 (3)
V3)1641.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.36 × 0.29 × 0.11
Data collection
DiffractometerOxford Diffraction KM4CCD κ-geometry
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13404, 7118, 5533
Rint0.024
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.06
No. of reflections7118
No. of parameters491
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.78 (3)2.14 (3)2.667 (2)125 (3)
O2—H2···O80.88 (3)1.84 (3)2.675 (2)159 (3)
O5—H5···N20.77 (3)2.20 (3)2.692 (2)122 (3)
O5—H5···O4i0.77 (3)2.38 (3)2.990 (2)138 (3)
O6—H6A···O6ii0.829 (19)2.12 (3)2.892 (3)156 (5)
O6—H6B···O4i0.844 (10)2.445 (11)3.130 (3)138.9 (18)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z.
 

Acknowledgements

The authors thank Dr Katarzyna Baranowska, Dr Jarosław Chojnacki and Antoni Konitz for helpful discussions during the preparation of the manuscript. We thank the ICN Polfa Rzeszow S. A. for a sample of 5,7-dichloro-2-methylquinolin-8-ol.

References

First citationBlauer, G., Akkawi, M., Fleischhacker, W. & Hiessboeck, R. (1998). Chirality, 10, 556–563.  Web of Science CrossRef CAS Google Scholar
First citationChojnacki, J., Skop, P., Pladzyk, A. & Nycz, J. E. (2007). Acta Cryst. E63, o4773–o4774.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEgan, T. J., Hunter, R., Kaschula, C. H., Marques, H. M., Misplon, A. & Walden, J. (2000). J. Med. Chem. 43, 283–291.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationO'Neill, P. M., Bray, P. G., Hawley, S. R., Ward, S. A. & Park, B. K. (1998). Pharmacol. Ther. 77, 29–58.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZouhiri, F., Mouscadet, J. F., Mekouar, K., Desmaele, D., Savoure, D., Leh, H., Subra, F., Bret, M. L., Auclair, C. & d'Angelo, J. (2000). J. Med. Chem. 43, 1533–1540.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds