organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(4-bromo­phen­yl)-6-(4-eth­oxy­phen­yl)-2-oxo­cyclo­hex-3-ene­carboxyl­ate

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDivisión de Estudios de Posgrado, Facultad de Ciencias Químicas, UANL, Guerreo y Progreso S/N, Col. Treviño, CP, 64570 Monterrey, NL, Mexico
*Correspondence e-mail: h.aurangzeb@yahoo.com

(Received 27 December 2008; accepted 28 January 2009; online 6 February 2009)

The title compound, C23H23BrO4, is an inter­mediate in the synthesis of fused heterocycles. In the title mol­ecule, the cyclo­hexene ring has a distorted half-chair conformation. The bromo­phenyl ring and the mean plane of the cyclo­hexene ring form a dihedral angle of 13.8 (3)°, whereas the benzene and cyclo­hexene rings are approximately perpendicular [88.44 (17)°]. There are only weak C—H⋯O and C—H⋯π inter­molecular inter­actions.

Related literature

For applications of cyclo­hexenones, see: Eddington et al. (2000[Eddington, N. D., Cox, D. S., Roberts, R. R., Stables, J. P., Powell, C. B. & Scott, A. R. (2000). Curr. Med. Chem. 7, 417-436.]); Li & Strobel (2001[Li, J. Y. & Strobel, G. A. (2001). Phytochemistry, 57, 261-265.]); Luu et al. (2000[Luu, B., Aguilar, J. L. G. D. & Junges, C. G. (2000). Molecules, 5, 1439-1460.]); Padmavathi et al. (2000[Padmavathi, V., Reddy, B. J. M., Balaiah, A., Reddy, K. V. & Reddy, D. B. (2000). Molecules, 5, 1281-1286.], 2001[Padmavathi, V., Sharmila, K., Reddy, A. S. & Reddy, D. B. (2001). Indian J. Chem. Sect. B, 40, 11-14.]).

[Scheme 1]

Experimental

Crystal data
  • C23H23BrO4

  • Mr = 443.32

  • Monoclinic, P 21 /c

  • a = 12.792 (4) Å

  • b = 14.537 (4) Å

  • c = 12.114 (4) Å

  • β = 113.88 (2)°

  • V = 2059.8 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 298 (2) K

  • 0.50 × 0.50 × 0.08 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: gaussian (XSCANS; Bruker, 1999[Bruker (1999). XSCANS Users Manual. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.246, Tmax = 0.941

  • 7765 measured reflections

  • 3630 independent reflections

  • 2088 reflections with I > 2σ(I)

  • Rint = 0.054

  • 3 standard reflections every 97 reflections intensity decay: 6.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.175

  • S = 1.01

  • 3630 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1i 0.93 2.42 3.163 (6) 137
C8—H8A⋯O2ii 0.97 2.59 3.244 (6) 125
C15—H15B⋯O2 0.96 2.58 3.062 (13) 111
C23—H23ACgiii 0.96 2.90 3.741 (6) 147
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z.

Data collection: XSCANS (Bruker, 1999[Bruker (1999). XSCANS Users Manual. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL-Plus.

Supporting information


Comment top

Cyclohexenones are either prepared from natural sources or entirely via synthetic routes. The reason for their preparation is a variety of medical effects. The molecules provide anticonvulsant, antimalarial, antiinflamatory and cardiovascular effects (Eddington et al., 2000). Cyclohexenones are also important intermediates for many biologically active compounds (Padmavathi et al., 2001; Padmavathi et al., 2000). A series of novel compounds have been synthesized, known as cyclohexenoic long chain fatty alcohols, which are used in the treatment of neurological disorders (Luu et al., 2000). A number of their derivatives have fungicidal and antitumor activities (Li & Strobel, 2001).

In the title compound, C23H23BrO4 (Scheme 1, Fig. 1), the two rings, i.e. bromophenyl [C1-C6] and the cyclohexene [C7-C12], are slightly twisted' with the dihedral angle of 13.8 (3)°. Cyclohexene [C7- C12], is approximately perpendicular to the benzene ring [C16-C21] [88.44 (17)°]. The title molecule has two asymmetric carbon atoms C9 and C12 that are in RS and SR configurations, respectively. The comformation of the cyclohexene ring is distorted half chair [Θ = 50.6 (10) and Φ = 138.9 (13)°, compared with the ideal values of Θ = 50.0 and Φ = 150.0°].

As indicated by intermolecular contacts. there are only weak intermolecular interactions X—H···O and C—H···π (Table 1). The crystal packing is shown in Fig. 2.

Related literature top

For applications of cyclohexenones, see: Eddington et al. (2000); Li & Strobel (2001); Luu et al. (2000); Padmavathi et al. (2000, 2001).

Experimental top

Ethyl 4-(4-bromophenyl)-6-(4-ethoxyphenyl)-2-oxocyclhex-3-enecarboxylate was synthesized by refluxing ethyl acetoacetate (0.39 g, 0.40 ml, 3 mmol) with 1-(4-bromophenyl)-3-(4-ethoxyphenyl) prop-2-ene-1-one (3 mmol, 0.990 g) for 2 h in 10–15 ml of ethanol in presence of 0.5 ml 10% NaOH. The reaction mixture was then poured while having been stirred intensively into 200 ml of ice-cold water. The mixture was kept at room temperature until the reaction product separated as a solid, which was filtered off and recrystallized from ethanol (yield 65%, m.p. 400 K).

Refinement top

All the hydrogen atoms have been found in a difference Fourier map, nevertheless, they were placed in idealized positions and refined as riding atoms at constrained distances: aromatic C—H = 0.93, Cmethylene—H=0.97, Cmethine—H=0.98 and methyl C—H = 0.96 Å, while UisoH=1.5UeqCmethyl or 1.2UeqCaryl/methylene/methine.

Computing details top

Data collection: XSCANS (Bruker, 1999); cell refinement: XSCANS (Bruker, 1999); data reduction: XSCANS (Bruker, 1999); program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-Plus (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom labeling scheme. The displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed along the c axis showing weak C—H···O and C—H···π interactions
Ethyl 4-(4-bromophenyl)-6-(4-ethoxyphenyl)-2-oxocyclohex-3-enecarboxylate top
Crystal data top
C23H23BrO4F(000) = 912
Mr = 443.32Dx = 1.430 Mg m3
Monoclinic, P21/cMelting point: 400 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.792 (4) ÅCell parameters from 91 reflections
b = 14.537 (4) Åθ = 4.6–12.4°
c = 12.114 (4) ŵ = 2.02 mm1
β = 113.88 (2)°T = 298 K
V = 2059.8 (11) Å3Plate, colourless
Z = 40.50 × 0.50 × 0.08 mm
Data collection top
Bruker P4
diffractometer
2088 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω scansh = 1415
Absorption correction: gaussian
(XSCANS; Bruker, 1999)
k = 117
Tmin = 0.246, Tmax = 0.941l = 1414
7765 measured reflections3 standard reflections every 97 reflections
3630 independent reflections intensity decay: 6.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0744P)2 + 1.4731P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3630 reflectionsΔρmax = 0.44 e Å3
254 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXTL-Plus (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (10)
Crystal data top
C23H23BrO4V = 2059.8 (11) Å3
Mr = 443.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.792 (4) ŵ = 2.02 mm1
b = 14.537 (4) ÅT = 298 K
c = 12.114 (4) Å0.50 × 0.50 × 0.08 mm
β = 113.88 (2)°
Data collection top
Bruker P4
diffractometer
2088 reflections with I > 2σ(I)
Absorption correction: gaussian
(XSCANS; Bruker, 1999)
Rint = 0.054
Tmin = 0.246, Tmax = 0.9413 standard reflections every 97 reflections
7765 measured reflections intensity decay: 6.4%
3630 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.01Δρmax = 0.44 e Å3
3630 reflectionsΔρmin = 0.41 e Å3
254 parameters
Special details top

Experimental. Absorption correction based on 6 crystal faces Faces used: 001, 00–1, 20–1, -201, 010, 0–10

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.12714 (6)0.10565 (5)1.01969 (7)0.1061 (4)
O10.5590 (3)0.4373 (2)0.7177 (4)0.0864 (11)
O20.6752 (4)0.3470 (3)0.5468 (4)0.1049 (13)
O30.7863 (4)0.3351 (3)0.7398 (4)0.0901 (11)
O40.8559 (3)0.0461 (2)0.5587 (3)0.0662 (9)
C10.2279 (4)0.1456 (4)0.9511 (5)0.0673 (13)
C20.2177 (5)0.2318 (4)0.9038 (5)0.0777 (15)
H2A0.16190.27150.90680.093*
C30.2889 (4)0.2597 (3)0.8525 (5)0.0700 (13)
H3A0.28090.31850.82000.084*
C40.3099 (4)0.0866 (3)0.9484 (5)0.0687 (13)
H4A0.31740.02810.98180.082*
C50.3812 (4)0.1153 (3)0.8955 (5)0.0635 (12)
H5A0.43620.07490.89220.076*
C60.3739 (4)0.2020 (3)0.8474 (4)0.0534 (11)
C70.4524 (4)0.2326 (3)0.7936 (4)0.0523 (10)
C80.5179 (4)0.1615 (3)0.7592 (4)0.0591 (12)
H8A0.54650.11620.82340.071*
H8B0.46600.13020.68710.071*
C90.6161 (5)0.1980 (3)0.7360 (6)0.0819 (16)
H9A0.67330.21200.81710.098*
C100.4667 (4)0.3220 (3)0.7762 (5)0.0649 (13)
H10A0.42490.36470.79880.078*
C110.5422 (4)0.3557 (3)0.7250 (5)0.0664 (13)
C120.5970 (5)0.2855 (3)0.6760 (6)0.0923 (19)
H12A0.53680.27170.59650.111*
C130.6893 (5)0.3258 (3)0.6454 (7)0.0745 (15)
C140.8792 (5)0.3710 (5)0.7141 (8)0.122 (3)
H14A0.93720.39630.78730.147*
H14B0.85100.42030.65540.147*
C150.9299 (8)0.2991 (7)0.6667 (11)0.176 (4)
H15A0.99150.32470.65060.264*
H15B0.87280.27480.59340.264*
H15C0.95870.25060.72510.264*
C160.6757 (5)0.1277 (3)0.6896 (5)0.0666 (13)
C170.6243 (4)0.0920 (4)0.5765 (6)0.0792 (15)
H17A0.54880.10820.52980.095*
C180.6789 (4)0.0329 (4)0.5277 (5)0.0737 (14)
H18A0.64110.00990.44990.088*
C190.7853 (5)0.0997 (3)0.7578 (5)0.0791 (15)
H19A0.82210.12050.83680.095*
C200.8414 (5)0.0416 (4)0.7115 (5)0.0747 (14)
H20A0.91600.02400.75930.090*
C210.7896 (4)0.0092 (3)0.5964 (4)0.0574 (11)
C220.8162 (5)0.0624 (4)0.4328 (5)0.0775 (14)
H22A0.79850.00460.38910.093*
H22B0.74750.09970.40510.093*
C230.9080 (5)0.1110 (4)0.4114 (6)0.0858 (17)
H23A0.88390.12200.32650.129*
H23B0.92370.16870.45360.129*
H23C0.97590.07390.44020.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1224 (6)0.1085 (6)0.1275 (7)0.0075 (4)0.0918 (5)0.0037 (4)
O10.107 (3)0.0405 (19)0.126 (3)0.0019 (18)0.061 (2)0.0037 (19)
O20.105 (3)0.111 (3)0.100 (3)0.012 (3)0.042 (3)0.002 (3)
O30.085 (3)0.084 (3)0.100 (3)0.009 (2)0.036 (3)0.000 (2)
O40.068 (2)0.065 (2)0.072 (2)0.0053 (16)0.0340 (18)0.0070 (17)
C10.076 (3)0.067 (3)0.072 (3)0.006 (3)0.043 (3)0.012 (3)
C20.085 (4)0.072 (4)0.093 (4)0.016 (3)0.054 (3)0.005 (3)
C30.080 (3)0.054 (3)0.086 (4)0.012 (2)0.044 (3)0.003 (2)
C40.075 (3)0.051 (3)0.086 (4)0.000 (2)0.039 (3)0.001 (2)
C50.062 (3)0.051 (3)0.084 (4)0.002 (2)0.037 (3)0.005 (2)
C60.060 (3)0.041 (2)0.061 (3)0.004 (2)0.025 (2)0.005 (2)
C70.057 (3)0.041 (2)0.058 (3)0.0010 (19)0.022 (2)0.003 (2)
C80.065 (3)0.042 (2)0.078 (3)0.005 (2)0.037 (3)0.003 (2)
C90.106 (4)0.048 (3)0.124 (5)0.007 (3)0.080 (4)0.005 (3)
C100.067 (3)0.050 (3)0.083 (4)0.003 (2)0.036 (3)0.004 (2)
C110.071 (3)0.047 (3)0.079 (4)0.000 (2)0.028 (3)0.000 (2)
C120.111 (4)0.049 (3)0.153 (6)0.006 (3)0.091 (4)0.003 (3)
C130.081 (4)0.052 (3)0.101 (5)0.010 (3)0.048 (4)0.006 (3)
C140.065 (4)0.109 (5)0.189 (8)0.015 (4)0.046 (5)0.004 (5)
C150.128 (7)0.185 (9)0.266 (12)0.007 (7)0.133 (8)0.023 (9)
C160.089 (4)0.047 (3)0.082 (4)0.006 (3)0.053 (3)0.001 (3)
C170.057 (3)0.084 (4)0.099 (4)0.010 (3)0.033 (3)0.003 (3)
C180.061 (3)0.080 (3)0.079 (4)0.001 (3)0.027 (3)0.014 (3)
C190.095 (4)0.074 (3)0.072 (4)0.018 (3)0.038 (3)0.002 (3)
C200.073 (3)0.077 (3)0.068 (4)0.016 (3)0.022 (3)0.004 (3)
C210.068 (3)0.049 (2)0.063 (3)0.002 (2)0.034 (3)0.001 (2)
C220.081 (3)0.081 (3)0.079 (4)0.006 (3)0.041 (3)0.016 (3)
C230.094 (4)0.090 (4)0.091 (4)0.013 (3)0.056 (3)0.027 (3)
Geometric parameters (Å, º) top
Br1—C11.886 (5)C10—H10A0.9300
O1—C111.216 (6)C11—C121.490 (7)
O2—C131.176 (7)C12—C131.493 (7)
O3—C131.311 (7)C12—H12A0.9800
O3—C141.442 (7)C14—C151.465 (11)
O4—C211.374 (5)C14—H14A0.9700
O4—C221.419 (6)C14—H14B0.9700
C1—C21.361 (7)C15—H15A0.9600
C1—C41.366 (7)C15—H15B0.9600
C2—C31.357 (7)C15—H15C0.9600
C2—H2A0.9300C16—C171.360 (8)
C3—C61.393 (6)C16—C191.370 (7)
C3—H3A0.9300C17—C181.382 (7)
C4—C51.375 (7)C17—H17A0.9300
C4—H4A0.9300C18—C211.365 (7)
C5—C61.375 (6)C18—H18A0.9300
C5—H5A0.9300C19—C201.366 (7)
C6—C71.470 (6)C19—H19A0.9300
C7—C101.342 (6)C20—C211.363 (7)
C7—C81.492 (6)C20—H20A0.9300
C8—C91.492 (6)C22—C231.480 (7)
C8—H8A0.9700C22—H22A0.9700
C8—H8B0.9700C22—H22B0.9700
C9—C121.436 (7)C23—H23A0.9600
C9—C161.512 (6)C23—H23B0.9600
C9—H9A0.9800C23—H23C0.9600
C10—C111.429 (7)
C13—O3—C14114.9 (5)C13—C12—H12A102.8
C21—O4—C22117.1 (4)O2—C13—O3124.1 (5)
C2—C1—C4120.8 (5)O2—C13—C12123.0 (7)
C2—C1—Br1120.2 (4)O3—C13—C12112.9 (6)
C4—C1—Br1119.1 (4)O3—C14—C15111.2 (6)
C3—C2—C1120.0 (5)O3—C14—H14A109.4
C3—C2—H2A120.0C15—C14—H14A109.4
C1—C2—H2A120.0O3—C14—H14B109.4
C2—C3—C6121.4 (5)C15—C14—H14B109.4
C2—C3—H3A119.3H14A—C14—H14B108.0
C6—C3—H3A119.3C14—C15—H15A109.5
C1—C4—C5118.8 (5)C14—C15—H15B109.5
C1—C4—H4A120.6H15A—C15—H15B109.5
C5—C4—H4A120.6C14—C15—H15C109.5
C4—C5—C6122.1 (4)H15A—C15—H15C109.5
C4—C5—H5A119.0H15B—C15—H15C109.5
C6—C5—H5A119.0C17—C16—C19116.9 (5)
C5—C6—C3117.0 (4)C17—C16—C9121.4 (5)
C5—C6—C7121.5 (4)C19—C16—C9121.6 (5)
C3—C6—C7121.5 (4)C16—C17—C18123.1 (5)
C10—C7—C6121.6 (4)C16—C17—H17A118.4
C10—C7—C8120.0 (4)C18—C17—H17A118.4
C6—C7—C8118.5 (4)C21—C18—C17118.4 (5)
C9—C8—C7114.7 (4)C21—C18—H18A120.8
C9—C8—H8A108.6C17—C18—H18A120.8
C7—C8—H8A108.6C20—C19—C16121.1 (5)
C9—C8—H8B108.6C20—C19—H19A119.5
C7—C8—H8B108.6C16—C19—H19A119.5
H8A—C8—H8B107.6C21—C20—C19121.0 (5)
C12—C9—C8115.2 (4)C21—C20—H20A119.5
C12—C9—C16114.7 (4)C19—C20—H20A119.5
C8—C9—C16114.8 (4)C20—C21—C18119.4 (4)
C12—C9—H9A103.2C20—C21—O4115.7 (4)
C8—C9—H9A103.2C18—C21—O4124.9 (4)
C16—C9—H9A103.2O4—C22—C23107.7 (4)
C7—C10—C11124.0 (4)O4—C22—H22A110.2
C7—C10—H10A118.0C23—C22—H22A110.2
C11—C10—H10A118.0O4—C22—H22B110.2
O1—C11—C10122.4 (5)C23—C22—H22B110.2
O1—C11—C12121.0 (4)H22A—C22—H22B108.5
C10—C11—C12116.6 (4)C22—C23—H23A109.5
C9—C12—C11114.6 (5)C22—C23—H23B109.5
C9—C12—C13118.9 (5)H23A—C23—H23B109.5
C11—C12—C13112.1 (4)C22—C23—H23C109.5
C9—C12—H12A102.8H23A—C23—H23C109.5
C11—C12—H12A102.8H23B—C23—H23C109.5
C4—C1—C2—C30.5 (9)C10—C11—C12—C930.2 (8)
Br1—C1—C2—C3178.7 (4)O1—C11—C12—C1312.5 (8)
C1—C2—C3—C60.4 (9)C10—C11—C12—C13169.7 (5)
C2—C1—C4—C50.9 (8)C14—O3—C13—O22.3 (8)
Br1—C1—C4—C5178.3 (4)C14—O3—C13—C12178.0 (5)
C1—C4—C5—C61.2 (8)C9—C12—C13—O2123.8 (7)
C4—C5—C6—C31.2 (7)C11—C12—C13—O298.6 (7)
C4—C5—C6—C7178.6 (4)C9—C12—C13—O356.5 (7)
C2—C3—C6—C50.7 (8)C11—C12—C13—O381.1 (6)
C2—C3—C6—C7179.0 (5)C13—O3—C14—C1579.5 (8)
C5—C6—C7—C10162.0 (5)C12—C9—C16—C1766.9 (7)
C3—C6—C7—C1017.7 (7)C8—C9—C16—C1770.0 (7)
C5—C6—C7—C817.5 (6)C12—C9—C16—C19110.6 (6)
C3—C6—C7—C8162.8 (5)C8—C9—C16—C19112.4 (6)
C10—C7—C8—C914.6 (7)C19—C16—C17—C182.6 (8)
C6—C7—C8—C9164.8 (4)C9—C16—C17—C18175.1 (5)
C7—C8—C9—C1237.7 (7)C16—C17—C18—C210.1 (8)
C7—C8—C9—C16174.4 (5)C17—C16—C19—C202.8 (8)
C6—C7—C10—C11179.6 (4)C9—C16—C19—C20174.8 (5)
C8—C7—C10—C110.2 (8)C16—C19—C20—C210.6 (8)
C7—C10—C11—O1175.0 (5)C19—C20—C21—C182.0 (8)
C7—C10—C11—C127.3 (8)C19—C20—C21—O4177.9 (4)
C8—C9—C12—C1145.5 (8)C17—C18—C21—C202.2 (7)
C16—C9—C12—C11177.8 (5)C17—C18—C21—O4177.6 (4)
C8—C9—C12—C13178.0 (5)C22—O4—C21—C20164.8 (4)
C16—C9—C12—C1341.2 (9)C22—O4—C21—C1815.0 (6)
O1—C11—C12—C9152.0 (6)C21—O4—C22—C23171.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.932.423.163 (6)137
C8—H8A···O2ii0.972.593.244 (6)125
C15—H15B···O20.962.583.062 (13)111
C23—H23A···Cgiii0.962.903.741 (6)147
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H23BrO4
Mr443.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.792 (4), 14.537 (4), 12.114 (4)
β (°) 113.88 (2)
V3)2059.8 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.02
Crystal size (mm)0.50 × 0.50 × 0.08
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionGaussian
(XSCANS; Bruker, 1999)
Tmin, Tmax0.246, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
7765, 3630, 2088
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.175, 1.01
No. of reflections3630
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.41

Computer programs: XSCANS (Bruker, 1999), SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.932.423.163 (6)137
C8—H8A···O2ii0.972.593.244 (6)125
C15—H15B···O20.962.583.062 (13)111
C23—H23A···Cgiii0.962.903.741 (6)147
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z.
 

Acknowledgements

AB is grateful to the Higher Education Commission of Pakistan for a PhD scholarship.

References

First citationBruker (1999). XSCANS Users Manual. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEddington, N. D., Cox, D. S., Roberts, R. R., Stables, J. P., Powell, C. B. & Scott, A. R. (2000). Curr. Med. Chem. 7, 417–436.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, J. Y. & Strobel, G. A. (2001). Phytochemistry, 57, 261–265.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLuu, B., Aguilar, J. L. G. D. & Junges, C. G. (2000). Molecules, 5, 1439–1460.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPadmavathi, V., Reddy, B. J. M., Balaiah, A., Reddy, K. V. & Reddy, D. B. (2000). Molecules, 5, 1281–1286.  Web of Science CrossRef CAS Google Scholar
First citationPadmavathi, V., Sharmila, K., Reddy, A. S. & Reddy, D. B. (2001). Indian J. Chem. Sect. B, 40, 11–14.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds