metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di-μ-aqua-bis­[aqua­cobalt(II)]]-bis­(μ3-1H-benzimidazole-5,6-di­carboxylato]

aJiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China, and bDepartment of Management and Engineering, Jiangxi V & T College of Communication, Nanchang 330013, People's Republic of China
*Correspondence e-mail: kai_xujx@126.com

(Received 26 January 2009; accepted 13 February 2009; online 21 February 2009)

The title compound, [Co2(C9H4N2O4)2(H2O)4]n, is a one-dimensional polymeric complex with bridging 1H-benzimidazole-5,6-dicarboxyl­ate and aqua ligands. The CoII cation has an octa­hedral coordination environment provided by an NO5 donor set. Adjacent polymeric chains extended along the [100] direction are linked by O—H⋯O and N—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

A dinuclear CoII complex with a 1H-benzimidazole-5,6-dicarboxyl­ate anion as a bridging ligand was reported by Lo et al. (2007[Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657-m2658.]). For general information on polymeric coordination compounds, see: Barnett & Champness (2003[Barnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145-168.]); Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Roesky & Andruh (2003[Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91-119.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C9H4N2O4)2(H2O)4]

  • Mr = 598.20

  • Monoclinic, P 21 /c

  • a = 8.8161 (8) Å

  • b = 9.1092 (6) Å

  • c = 13.0236 (13) Å

  • β = 97.693 (7)°

  • V = 1036.48 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 298 K

  • 0.13 × 0.10 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.801, Tmax = 0.936

  • 10641 measured reflections

  • 2132 independent reflections

  • 1843 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.084

  • S = 1.09

  • 2132 reflections

  • 178 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.838 (17) 2.060 (18) 2.885 (3) 168 (3)
O5—H5A⋯O3 0.810 (16) 2.042 (18) 2.844 (2) 171 (3)
O5—H5B⋯O4ii 0.819 (16) 1.797 (17) 2.609 (2) 171 (3)
O6—H6A⋯O3iii 0.829 (17) 2.047 (19) 2.863 (2) 167 (3)
O6—H6B⋯O4iv 0.812 (17) 1.91 (2) 2.706 (3) 164 (3)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004bbr id="bb12">); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Current interest in metal-organic coordination polymers is rapidly expanding owing to their intriguing structures and potential applications in the developments of optical, magnetic, superconductive and mineral materials (Moulton & Zaworotko, 2001; Eddaoudi et al., 2001; Roesky & Andruh, 2003; Barnett & Champness, 2003; Kitagawa et al., 2004). The assembly mode of coordination compounds is however strongly dependent on reaction conditions (pH, solvent, temperature, pressure, auxiliary ligands). Recently, Lo et al. (2007) reported the crystal structure of a dinuclear Co(II) compound obtained in the reaction of Co(NO3)2.6H2O and the multidentate ligand, 1H-benzimidazole-4,5-dicarboxylic acid (H3BIDC) in aqueous solution. However, when we applied hydrothermal method using the same substrates for the synthesis, a new compound, the title metal-organic polymer, was obtained (see Scheme).

The asymmetric unit of the title compound consists of one cobalt(II) cation, one HBIDC2- ligand and two coordinating water molecules. The CoII cation has an octahedral coordination environment which consists of one N atom, two O atoms from two different bidentate-bridging carboxylate groups, two O atoms from bridging water molecules and one O atom from a monodentate water molecule. The Co—O bond lengths range from 2.040 (1) to 2.250 (1) Å. The Co atoms are bridged into pairs by two carboxylate groups and two water molecules with the Co—Co distance of 3.126 (1) Å (Fig.1). These dimers are further connected by Co–N bonds to the benzimidazole units of other dimers forming a one-dimensional chain parallel to the [100] direction (Fig.2). The ligand bridging modes and assembly mode in the title compound are very much different from those observed in the dinuclear complex reported by Lo et al. (2007). The polymeric chains are linked together by several hydrogen bonds (Fig.3) forming a three-dimensional network. Further analysis reveals that this network is strengthened by a weak π···π interaction between phenyl rings of HBIDC2- with face-to-face distances of 4.05 (1) Å and centroid- to- centroid distance of 3.81 (1) Å.

Related literature top

A dinuclear CoII complex with a 1H-benzimidazole-5,6-dicarboxylate anion as a bridging ligand was reported by Lo et al. (2007). For general information on polymeric coordination compounds, see: Barnett & Champness (2003); Eddaoudi et al. (2001); Kitagawa et al. (2004); Moulton & Zaworotko (2001); Roesky & Andruh (2003).

Experimental top

1H-Benzimidazole-5,6-dicarboxylic acid (0.083 g, 0.40 mmol) and Co(NO3)2.6H2O (0.24 g, 0.80 mmol) were dissolved in water (40 ml). pH of the solution was adjusted to 8 with 2M NaOH solution. The reaction mixture was placed in a Teflon reactor (15 mL) and was heated at 160 °C for 4 days, and then it was gradually cooled to room temperature at a rate of 10°C per hour. Purple crystals of (I) were obtained at the bottom of the reactor. Yield: 38% based on Co(NO3)2.6H2O.

Refinement top

All the H atoms bonded to C atoms were positioned geometrically with C–H = 0.93Å (aromatic) and refined in a riding mode with Uiso(H) = 1.2Ueq(C). H atoms bonded to O and N atoms were found in difference maps and the N—H and O—H distances were refined with restraints: N—H = 0.86 (2) Å, O—H = 0.82 (2) Å and H···H = 1.35 (2)° A for water molecules; their U values were set k times of the Ueq value of the carrier atom (k=1.2 for N and 1.5 for O bound H atoms).

Computing details top

Data collection: SMART (Bruker, 2001) or APEX2?; cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (a) = 1 - x, -y, -z; (b) = x - 1, y, z and (c) = 2 - x, -y, -z.]
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing formation of the one-dimensional chain running parallel to the [100] direction..
[Figure 3] Fig. 3. Part of the crystal structure showing the formation of the three-dimensional network. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in the motif have been omitted for clarity.
catena-Poly[di-µ-aqua-bis[aquacobalt(II)]]-bis(µ3-1H- benzimidazole-5,6-dicarboxylato] top
Crystal data top
[Co2(C9H4N2O4)2(H2O)4]F(000) = 604
Mr = 598.20Dx = 1.917 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3722 reflections
a = 8.8161 (8) Åθ = 2.8–26.9°
b = 9.1092 (6) ŵ = 1.68 mm1
c = 13.0236 (13) ÅT = 298 K
β = 97.693 (7)°Plate, pink
V = 1036.48 (16) Å30.13 × 0.10 × 0.04 mm
Z = 2
Data collection top
Bruker APEX II CCD
diffractometer
2132 independent reflections
Radiation source: fine-focus sealed tube1843 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scanθmax = 26.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1111
Tmin = 0.801, Tmax = 0.936k = 1110
10641 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.4096P]
where P = (Fo2 + 2Fc2)/3
2132 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 0.24 e Å3
7 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Co2(C9H4N2O4)2(H2O)4]V = 1036.48 (16) Å3
Mr = 598.20Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.8161 (8) ŵ = 1.68 mm1
b = 9.1092 (6) ÅT = 298 K
c = 13.0236 (13) Å0.13 × 0.10 × 0.04 mm
β = 97.693 (7)°
Data collection top
Bruker APEX II CCD
diffractometer
2132 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1843 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.936Rint = 0.032
10641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0317 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.24 e Å3
2132 reflectionsΔρmin = 0.25 e Å3
178 parameters
Special details top

Experimental. Crystal grew over two weeks.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.40810 (3)0.14143 (3)0.03697 (2)0.01731 (13)
O10.62863 (17)0.22091 (18)0.00054 (13)0.0215 (4)
O20.76041 (18)0.01355 (18)0.04928 (13)0.0244 (4)
O30.66320 (18)0.25466 (18)0.22762 (12)0.0231 (4)
O40.7113 (2)0.49433 (19)0.24802 (15)0.0329 (5)
O50.47578 (18)0.03826 (19)0.11583 (12)0.0205 (4)
H5A0.537 (3)0.098 (3)0.143 (2)0.031*
H5B0.414 (3)0.017 (3)0.1548 (19)0.031*
O60.3858 (2)0.2363 (2)0.18070 (14)0.0321 (4)
H6A0.461 (3)0.228 (3)0.213 (2)0.048*
H6B0.345 (3)0.315 (3)0.193 (3)0.048*
N11.2913 (2)0.3115 (2)0.03501 (15)0.0202 (4)
N21.2660 (2)0.5038 (2)0.13927 (16)0.0226 (4)
H21.286 (3)0.584 (2)0.170 (2)0.027*
C11.3576 (2)0.4279 (3)0.08205 (18)0.0216 (5)
H11.45780.45530.07650.026*
C21.1427 (2)0.3117 (3)0.06301 (18)0.0183 (5)
C31.0189 (2)0.2181 (3)0.03410 (18)0.0194 (5)
H31.02550.14150.01220.023*
C40.8847 (2)0.2441 (3)0.07752 (17)0.0184 (5)
C50.8741 (3)0.3586 (2)0.15138 (18)0.0186 (5)
C60.9952 (3)0.4545 (3)0.17708 (18)0.0223 (5)
H60.98940.53120.22350.027*
C71.1273 (2)0.4306 (3)0.12990 (18)0.0198 (5)
C80.7465 (3)0.1518 (3)0.03986 (17)0.0186 (5)
C90.7389 (3)0.3696 (3)0.21238 (18)0.0192 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01344 (18)0.0164 (2)0.02276 (19)0.00114 (11)0.00492 (12)0.00042 (12)
O10.0138 (8)0.0209 (9)0.0299 (9)0.0027 (6)0.0033 (6)0.0015 (7)
O20.0150 (8)0.0181 (9)0.0407 (10)0.0024 (6)0.0061 (7)0.0040 (7)
O30.0224 (8)0.0204 (9)0.0281 (9)0.0014 (7)0.0093 (7)0.0020 (7)
O40.0360 (10)0.0199 (10)0.0484 (11)0.0032 (8)0.0269 (9)0.0022 (8)
O50.0177 (8)0.0215 (9)0.0239 (9)0.0042 (7)0.0089 (7)0.0012 (7)
O60.0352 (11)0.0314 (11)0.0313 (10)0.0100 (8)0.0098 (8)0.0104 (8)
N10.0133 (9)0.0200 (11)0.0279 (10)0.0017 (8)0.0052 (8)0.0010 (8)
N20.0182 (10)0.0188 (11)0.0311 (11)0.0050 (8)0.0045 (8)0.0071 (9)
C10.0131 (11)0.0223 (13)0.0299 (12)0.0033 (9)0.0044 (9)0.0010 (10)
C20.0129 (10)0.0191 (12)0.0238 (11)0.0008 (9)0.0053 (8)0.0003 (9)
C30.0152 (11)0.0174 (12)0.0262 (12)0.0014 (9)0.0055 (9)0.0056 (9)
C40.0126 (10)0.0172 (12)0.0260 (11)0.0007 (9)0.0046 (8)0.0003 (10)
C50.0154 (11)0.0170 (12)0.0244 (11)0.0033 (8)0.0062 (9)0.0002 (9)
C60.0214 (12)0.0169 (12)0.0296 (12)0.0001 (9)0.0073 (9)0.0059 (10)
C70.0143 (11)0.0159 (12)0.0289 (12)0.0021 (9)0.0023 (9)0.0020 (10)
C80.0153 (11)0.0189 (13)0.0233 (11)0.0013 (9)0.0086 (9)0.0033 (9)
C90.0155 (11)0.0209 (13)0.0219 (11)0.0038 (9)0.0056 (9)0.0028 (9)
Geometric parameters (Å, º) top
Co1—O12.0709 (15)N1—C21.406 (3)
Co1—O2i2.0401 (16)N2—C11.359 (3)
Co1—O52.2094 (17)N2—C71.385 (3)
Co1—O5i2.2503 (16)N2—H20.838 (17)
Co1—O62.0472 (18)C1—H10.9300
Co1—N1ii2.144 (2)C2—C31.396 (3)
O1—C81.263 (3)C2—C71.407 (3)
O2—C81.270 (3)C3—C41.398 (3)
O3—C91.272 (3)C3—H30.9300
O4—C91.263 (3)C4—C51.430 (3)
O5—H5A0.810 (16)C4—C81.507 (3)
O5—H5B0.819 (16)C5—C61.386 (3)
O6—H6A0.829 (17)C5—C91.521 (3)
O6—H6B0.812 (17)C6—C71.404 (3)
N1—C11.321 (3)C6—H60.9300
O2i—Co1—O6103.92 (8)C1—N2—H2127.0 (19)
O2i—Co1—O1155.68 (7)C7—N2—H2126.0 (19)
O6—Co1—O192.30 (7)N1—C1—N2113.83 (19)
O2i—Co1—N1ii98.46 (7)N1—C1—H1123.1
O6—Co1—N1ii95.85 (8)N2—C1—H1123.1
O1—Co1—N1ii97.75 (7)C3—C2—N1130.6 (2)
O2i—Co1—O583.25 (7)C3—C2—C7119.97 (19)
O6—Co1—O5169.87 (7)N1—C2—C7109.4 (2)
O1—Co1—O578.72 (6)C2—C3—C4117.5 (2)
N1ii—Co1—O590.07 (7)C2—C3—H3121.3
O2i—Co1—O5i80.31 (6)C4—C3—H3121.3
O6—Co1—O5i83.31 (7)C3—C4—C5122.0 (2)
O1—Co1—O5i83.79 (6)C3—C4—C8117.7 (2)
N1ii—Co1—O5i178.28 (6)C5—C4—C8120.16 (19)
O5—Co1—O5i90.98 (6)C6—C5—C4120.3 (2)
C8—O1—Co1128.08 (15)C6—C5—C9117.67 (19)
C8—O2—Co1i128.23 (15)C4—C5—C9121.7 (2)
Co1—O5—Co1i89.02 (6)C5—C6—C7117.0 (2)
Co1—O5—H5A101 (2)C5—C6—H6121.5
Co1i—O5—H5A112 (2)C7—C6—H6121.5
Co1—O5—H5B123 (2)N2—C7—C6131.4 (2)
Co1i—O5—H5B119.5 (19)N2—C7—C2105.54 (19)
H5A—O5—H5B110 (2)C6—C7—C2123.0 (2)
Co1—O6—H6A116 (2)O1—C8—O2126.7 (2)
Co1—O6—H6B123 (2)O1—C8—C4116.1 (2)
H6A—O6—H6B110 (2)O2—C8—C4117.3 (2)
C1—N1—C2104.40 (19)O4—C9—O3123.5 (2)
C1—N1—Co1iii125.01 (15)O4—C9—C5117.0 (2)
C2—N1—Co1iii129.27 (16)O3—C9—C5119.4 (2)
C1—N2—C7106.8 (2)
O2i—Co1—O1—C80.0 (3)C8—C4—C5—C914.2 (3)
O6—Co1—O1—C8132.30 (18)C4—C5—C6—C71.8 (3)
N1ii—Co1—O1—C8131.48 (18)C9—C5—C6—C7171.8 (2)
O5—Co1—O1—C842.96 (18)C1—N2—C7—C6175.5 (3)
O5i—Co1—O1—C849.29 (18)C1—N2—C7—C21.3 (3)
O2i—Co1—O5—Co1i80.12 (6)C5—C6—C7—N2179.3 (2)
O6—Co1—O5—Co1i55.5 (4)C5—C6—C7—C23.0 (4)
O1—Co1—O5—Co1i83.47 (6)C3—C2—C7—N2177.5 (2)
N1ii—Co1—O5—Co1i178.64 (6)N1—C2—C7—N21.7 (3)
C2—N1—C1—N20.5 (3)C3—C2—C7—C65.4 (4)
Co1iii—N1—C1—N2167.35 (16)N1—C2—C7—C6175.5 (2)
C7—N2—C1—N10.5 (3)Co1—O1—C8—O212.4 (3)
C1—N1—C2—C3177.7 (3)Co1—O1—C8—C4168.66 (14)
Co1iii—N1—C2—C315.1 (4)Co1i—O2—C8—O115.5 (3)
C1—N1—C2—C71.4 (3)Co1i—O2—C8—C4165.65 (14)
Co1iii—N1—C2—C7165.80 (16)C3—C4—C8—O1121.1 (2)
N1—C2—C3—C4178.3 (2)C5—C4—C8—O155.9 (3)
C7—C2—C3—C42.7 (3)C3—C4—C8—O257.9 (3)
C2—C3—C4—C52.0 (3)C5—C4—C8—O2125.1 (2)
C2—C3—C4—C8174.9 (2)C6—C5—C9—O429.5 (3)
C3—C4—C5—C64.4 (4)C4—C5—C9—O4156.9 (2)
C8—C4—C5—C6172.5 (2)C6—C5—C9—O3148.4 (2)
C3—C4—C5—C9169.0 (2)C4—C5—C9—O325.1 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3iv0.84 (2)2.06 (2)2.885 (3)168 (3)
O5—H5A···O30.81 (2)2.04 (2)2.844 (2)171 (3)
O5—H5B···O4v0.82 (2)1.80 (2)2.609 (2)171 (3)
O6—H6A···O3vi0.83 (2)2.05 (2)2.863 (2)167 (3)
O6—H6B···O4vii0.81 (2)1.91 (2)2.706 (3)164 (3)
C3—H3···O2viii0.932.463.160 (3)133
Symmetry codes: (iv) x+2, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x, y+1/2, z1/2; (vii) x+1, y+1, z; (viii) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Co2(C9H4N2O4)2(H2O)4]
Mr598.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.8161 (8), 9.1092 (6), 13.0236 (13)
β (°) 97.693 (7)
V3)1036.48 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.13 × 0.10 × 0.04
Data collection
DiffractometerBruker APEX II CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.801, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
10641, 2132, 1843
Rint0.032
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.09
No. of reflections2132
No. of parameters178
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: SMART (Bruker, 2001) or APEX2?, SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.838 (17)2.060 (18)2.885 (3)168 (3)
O5—H5A···O30.810 (16)2.042 (18)2.844 (2)171 (3)
O5—H5B···O4ii0.819 (16)1.797 (17)2.609 (2)171 (3)
O6—H6A···O3iii0.829 (17)2.047 (19)2.863 (2)167 (3)
O6—H6B···O4iv0.812 (17)1.91 (2)2.706 (3)164 (3)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1, z.
 

Acknowledgements

The authors thank Jiangxi University of Science and Technology for supporting this work.

References

First citationBarnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145–168.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91–119.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds