organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propyl 2-(5-chloro-3-methyl­sulfinyl-1-benzo­furan-2-yl)acetate

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 9 February 2009; accepted 10 February 2009; online 13 February 2009)

In the title compound, C14H15ClO4S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. The crystal structure is stabilized by aromatic ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid-to-centroid distance = 3.635 (3) Å], and by C—H⋯π inter­actions between a propyl methyl­ene H atom and the furan ring of an adjacent mol­ecule. In addition, the crystal structure exhibits weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the crystal structures of similar alkyl 2-(5-chloro-3-methyl­sulfinyl-1-benzofuran-2-yl)acetates, see: Choi et al. (2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o3832.], 2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o2139.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15ClO4S

  • Mr = 314.77

  • Triclinic, [P \overline 1]

  • a = 8.528 (2) Å

  • b = 9.585 (3) Å

  • c = 10.195 (3) Å

  • α = 73.452 (4)°

  • β = 81.773 (5)°

  • γ = 65.747 (4)°

  • V = 728.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 173 K

  • 0.40 × 0.40 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.842, Tmax = 0.961

  • 5062 measured reflections

  • 2468 independent reflections

  • 2304 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.07

  • 2468 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12ACg2i 0.99 2.74 3.666 (3) 155
C3—H3⋯O4ii 0.95 2.44 3.353 (2) 160
C5—H5⋯O3iii 0.95 2.50 3.373 (2) 152
C9—H9A⋯O4iv 0.99 2.35 3.321 (2) 166
C9—H9B⋯O1v 0.99 2.54 3.489 (2) 161
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z+1; (iii) -x, -y+1, -z+2; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y+1, -z+2. Cg2 is the centroid of the C1/C2/C7/O1/C8 furan ring

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing research on the synthesis and structure of alkyl 2-(5-chloro-3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, we have described the crystal structures of ethyl 2-(5-chloro-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2007) and methyl 2-(5-chloro-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008). Here we report the crystal structure of the title compound, propyl 2-(5-chloro-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Fig. 1). Regardless of the lengths of the alkyl substituent arrangement of the molecules in the three crystal structures is very similar. The benzofuran unit is essentially planar, with a mean deviation of 0.013 (1) Å from the least-squares plane defined by the nine constituent atoms. The crystal packing (Fig. 2) is stabilized by aromatic ππ interactions between the benzene rings of neighbouring molecules. The Cg1···Cg1ii distance is 3.635 (3) Å (Cg1 is the centroid of the C2–C7 benzene ring; symmetry code as in Fig. 2). The molecular packing is further stabilized by C—H···π interactions between the hydrogen of 12-methylene group and the furan ring of the benzofuran unit, with a C12—H12A···Cg2i separation of 2.74 Å (Table 1 and Fig. 2; Cg2 is the centroid of the C1/C2/C7/O1/C8 furan ring; symmetry code as in Fig. 2). Additionally, four different intermolecular C—H···O hydrogen bonds in the structure are observed (Table 1 & Fig. 3).

Related literature top

For the crystal structures of similar alkyl 2-(5-chloro-3-methylsulfinyl-1-benzofuran-2-yl)acetates, see: Choi et al. (2007, 2008).

Experimental top

77% 3-Chloroperoxybenzoic acid (173 mg, 0.77 mmol) was added in small portions to a stirred solution of propyl 2-(5-chloro-3-methylsulfanyl-1-benzofuran-2-yl)acetate (209 mg, 0.7 mmol) in dichloromethane (20 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethylacetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 80%, m.p. 399–340 K; Rf = 0.51 (hexane-ethyl acetate, 1;2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 0.92 (t, J = 7.30 Hz, 3H), 1.65-1.74 (m, 2H), 3.05 (s, 3H), 4.03 (s, 2H), 4.13 (t, J = 6.92 Hz, 2H), 7.41 (d, J = 8.72 Hz, 1H), 7.50 (dd, J = 8.72 Hz and J = 1.83 Hz, 1H), 8.03 (d, J = 1.82 Hz, 1H); EI-MS 316 [M+2], 314 [M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for the aryl, 0.99 Å for the methylene, and 0.98 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl and methylene H atoms, and 1.5Ueq(C) for the methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. ππ and C—H···π interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry code: (i) x, y+1, z; (ii) -x, -y+1, -z+2; (iii) x, y-1, z.]
[Figure 3] Fig. 3. Intermolecular C—H···O hydrogen bonds (dotted lines) in the title compound. [Symmetry code: (ii) -x, -y+1, -z+1; (iii) -x, -y+1, -z+2; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y+1, -z+2.]
Propyl 2-(5-chloro-3-methylsulfinyl-1-benzofuran-2-yl)acetate top
Crystal data top
C14H15ClO4SZ = 2
Mr = 314.77F(000) = 328
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.528 (2) ÅCell parameters from 4784 reflections
b = 9.585 (3) Åθ = 2.4–28.3°
c = 10.195 (3) ŵ = 0.42 mm1
α = 73.452 (4)°T = 173 K
β = 81.773 (5)°Block, colorless
γ = 65.747 (4)°0.40 × 0.40 × 0.10 mm
V = 728.0 (4) Å3
Data collection top
Bruker SMART CCD
diffractometer
2468 independent reflections
Radiation source: fine-focus sealed tube2304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.1°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1111
Tmin = 0.842, Tmax = 0.961l = 1212
5062 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.4505P]
where P = (Fo2 + 2Fc2)/3
2468 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H15ClO4Sγ = 65.747 (4)°
Mr = 314.77V = 728.0 (4) Å3
Triclinic, P1Z = 2
a = 8.528 (2) ÅMo Kα radiation
b = 9.585 (3) ŵ = 0.42 mm1
c = 10.195 (3) ÅT = 173 K
α = 73.452 (4)°0.40 × 0.40 × 0.10 mm
β = 81.773 (5)°
Data collection top
Bruker SMART CCD
diffractometer
2468 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2304 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.961Rint = 0.029
5062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.07Δρmax = 0.28 e Å3
2468 reflectionsΔρmin = 0.32 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.23799 (6)0.59458 (6)0.53751 (4)0.02410 (15)
Cl0.18859 (7)0.22051 (7)0.88822 (6)0.03715 (17)
O10.33263 (16)0.45103 (15)0.93160 (12)0.0223 (3)
O20.46225 (18)0.85866 (17)0.78142 (17)0.0349 (4)
O30.21787 (18)0.86811 (17)0.71372 (15)0.0338 (4)
O40.24182 (19)0.46691 (18)0.47748 (14)0.0321 (4)
C10.2395 (2)0.5204 (2)0.71715 (18)0.0206 (4)
C20.1483 (2)0.4276 (2)0.80462 (18)0.0203 (4)
C30.0205 (2)0.3780 (2)0.78783 (19)0.0228 (4)
H30.02890.40590.70160.027*
C40.0300 (2)0.2866 (2)0.9031 (2)0.0249 (4)
C50.0395 (3)0.2434 (2)1.0326 (2)0.0266 (4)
H50.00190.17861.10820.032*
C60.1625 (2)0.2954 (2)1.04984 (19)0.0252 (4)
H60.21000.26931.13660.030*
C70.2134 (2)0.3870 (2)0.93509 (19)0.0209 (4)
C80.3462 (2)0.5306 (2)0.79717 (18)0.0211 (4)
C90.4628 (2)0.6175 (2)0.76992 (19)0.0229 (4)
H9A0.53370.59860.68600.028*
H9B0.54160.57570.84700.028*
C100.3636 (2)0.7945 (2)0.75211 (19)0.0244 (4)
C110.3854 (3)1.0300 (3)0.7669 (3)0.0439 (6)
H11A0.30531.05520.84530.053*
H11B0.32041.08480.68150.053*
C120.5296 (3)1.0819 (3)0.7631 (3)0.0451 (6)
H12A0.48001.19590.76030.054*
H12B0.59321.02440.84890.054*
C130.6534 (5)1.0561 (4)0.6453 (4)0.0753 (10)
H13A0.59291.11580.55960.090*
H13B0.70520.94320.64780.090*
H13C0.74391.09210.65090.090*
C140.0216 (3)0.7411 (2)0.5235 (2)0.0318 (5)
H14A0.00020.80060.42770.048*
H14B0.00620.81370.57980.048*
H14C0.05950.68910.55540.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0256 (3)0.0286 (3)0.0184 (2)0.0127 (2)0.00144 (18)0.00292 (19)
Cl0.0348 (3)0.0380 (3)0.0473 (3)0.0243 (2)0.0025 (2)0.0075 (2)
O10.0237 (7)0.0252 (7)0.0198 (6)0.0117 (6)0.0034 (5)0.0035 (5)
O20.0254 (8)0.0228 (7)0.0590 (10)0.0088 (6)0.0060 (7)0.0128 (7)
O30.0249 (8)0.0292 (8)0.0437 (9)0.0098 (6)0.0075 (6)0.0019 (7)
O40.0341 (8)0.0393 (8)0.0260 (7)0.0132 (7)0.0016 (6)0.0143 (6)
C10.0228 (9)0.0198 (9)0.0190 (9)0.0080 (7)0.0015 (7)0.0047 (7)
C20.0211 (9)0.0173 (9)0.0207 (9)0.0054 (7)0.0012 (7)0.0053 (7)
C30.0234 (10)0.0217 (9)0.0254 (10)0.0086 (8)0.0026 (7)0.0085 (8)
C40.0214 (10)0.0210 (10)0.0346 (11)0.0088 (8)0.0007 (8)0.0105 (8)
C50.0268 (10)0.0209 (10)0.0274 (10)0.0088 (8)0.0031 (8)0.0019 (8)
C60.0252 (10)0.0244 (10)0.0225 (9)0.0074 (8)0.0020 (8)0.0033 (8)
C70.0196 (9)0.0192 (9)0.0240 (9)0.0069 (7)0.0013 (7)0.0062 (7)
C80.0220 (9)0.0196 (9)0.0204 (9)0.0074 (8)0.0004 (7)0.0039 (7)
C90.0202 (9)0.0244 (10)0.0261 (9)0.0103 (8)0.0015 (7)0.0064 (8)
C100.0250 (10)0.0269 (10)0.0233 (9)0.0139 (9)0.0003 (8)0.0039 (8)
C110.0322 (12)0.0236 (11)0.0760 (18)0.0075 (10)0.0016 (11)0.0177 (11)
C120.0357 (13)0.0242 (11)0.0760 (18)0.0114 (10)0.0014 (12)0.0139 (11)
C130.080 (2)0.0462 (17)0.093 (2)0.0344 (16)0.0380 (19)0.0128 (16)
C140.0314 (11)0.0270 (11)0.0325 (11)0.0069 (9)0.0078 (9)0.0043 (9)
Geometric parameters (Å, º) top
S—O41.5038 (16)C6—C71.382 (3)
S—C11.7656 (18)C6—H60.9500
S—C141.797 (2)C8—C91.493 (3)
Cl—C41.752 (2)C9—C101.522 (3)
O1—C71.379 (2)C9—H9A0.9900
O1—C81.380 (2)C9—H9B0.9900
O2—C101.333 (2)C11—C121.496 (3)
O2—C111.468 (3)C11—H11A0.9900
O3—C101.207 (2)C11—H11B0.9900
C1—C81.354 (3)C12—C131.487 (4)
C1—C21.452 (3)C12—H12A0.9900
C2—C31.403 (3)C12—H12B0.9900
C2—C71.403 (3)C13—H13A0.9800
C3—C41.383 (3)C13—H13B0.9800
C3—H30.9500C13—H13C0.9800
C4—C51.407 (3)C14—H14A0.9800
C5—C61.383 (3)C14—H14B0.9800
C5—H50.9500C14—H14C0.9800
O4—S—C1106.94 (9)C10—C9—H9A109.2
O4—S—C14106.77 (10)C8—C9—H9B109.2
C1—S—C1498.32 (9)C10—C9—H9B109.2
C7—O1—C8106.32 (14)H9A—C9—H9B107.9
C10—O2—C11116.86 (16)O3—C10—O2124.34 (19)
C8—C1—C2107.36 (16)O3—C10—C9125.35 (19)
C8—C1—S122.84 (15)O2—C10—C9110.29 (16)
C2—C1—S129.51 (15)O2—C11—C12107.24 (18)
C3—C2—C7119.33 (17)O2—C11—H11A110.3
C3—C2—C1136.18 (17)C12—C11—H11A110.3
C7—C2—C1104.48 (17)O2—C11—H11B110.3
C4—C3—C2116.72 (17)C12—C11—H11B110.3
C4—C3—H3121.6H11A—C11—H11B108.5
C2—C3—H3121.6C13—C12—C11114.7 (3)
C3—C4—C5123.34 (19)C13—C12—H12A108.6
C3—C4—Cl118.78 (15)C11—C12—H12A108.6
C5—C4—Cl117.87 (15)C13—C12—H12B108.6
C6—C5—C4119.91 (18)C11—C12—H12B108.6
C6—C5—H5120.0H12A—C12—H12B107.6
C4—C5—H5120.0C12—C13—H13A109.5
C7—C6—C5117.01 (18)C12—C13—H13B109.5
C7—C6—H6121.5H13A—C13—H13B109.5
C5—C6—H6121.5C12—C13—H13C109.5
O1—C7—C6125.69 (17)H13A—C13—H13C109.5
O1—C7—C2110.66 (16)H13B—C13—H13C109.5
C6—C7—C2123.65 (18)S—C14—H14A109.5
C1—C8—O1111.16 (17)S—C14—H14B109.5
C1—C8—C9132.90 (17)H14A—C14—H14B109.5
O1—C8—C9115.80 (16)S—C14—H14C109.5
C8—C9—C10112.11 (15)H14A—C14—H14C109.5
C8—C9—H9A109.2H14B—C14—H14C109.5
O4—S—C1—C8132.24 (16)C3—C2—C7—O1177.81 (15)
C14—S—C1—C8117.31 (17)C1—C2—C7—O11.2 (2)
O4—S—C1—C240.91 (19)C3—C2—C7—C62.1 (3)
C14—S—C1—C269.54 (19)C1—C2—C7—C6178.94 (17)
C8—C1—C2—C3178.0 (2)C2—C1—C8—O10.0 (2)
S—C1—C2—C38.0 (3)S—C1—C8—O1174.43 (12)
C8—C1—C2—C70.7 (2)C2—C1—C8—C9175.32 (19)
S—C1—C2—C7173.25 (14)S—C1—C8—C910.2 (3)
C7—C2—C3—C41.9 (3)C7—O1—C8—C10.7 (2)
C1—C2—C3—C4179.6 (2)C7—O1—C8—C9176.90 (15)
C2—C3—C4—C50.3 (3)C1—C8—C9—C1072.8 (3)
C2—C3—C4—Cl179.76 (13)O1—C8—C9—C10102.43 (18)
C3—C4—C5—C61.2 (3)C11—O2—C10—O30.8 (3)
Cl—C4—C5—C6178.73 (15)C11—O2—C10—C9179.06 (18)
C4—C5—C6—C71.1 (3)C8—C9—C10—O326.0 (3)
C8—O1—C7—C6178.95 (18)C8—C9—C10—O2155.70 (16)
C8—O1—C7—C21.16 (19)C10—O2—C11—C12163.3 (2)
C5—C6—C7—O1179.33 (17)O2—C11—C12—C1362.5 (3)
C5—C6—C7—C20.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cg2i0.992.743.666 (3)155
C3—H3···O4ii0.952.443.353 (2)160
C5—H5···O3iii0.952.503.373 (2)152
C9—H9A···O4iv0.992.353.321 (2)166
C9—H9B···O1v0.992.543.489 (2)161
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x, y+1, z+2; (iv) x+1, y+1, z+1; (v) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC14H15ClO4S
Mr314.77
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.528 (2), 9.585 (3), 10.195 (3)
α, β, γ (°)73.452 (4), 81.773 (5), 65.747 (4)
V3)728.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.40 × 0.40 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.842, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
5062, 2468, 2304
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.07
No. of reflections2468
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.32

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cg2i0.992.743.666 (3)155
C3—H3···O4ii0.952.443.353 (2)160
C5—H5···O3iii0.952.503.373 (2)152
C9—H9A···O4iv0.992.353.321 (2)166
C9—H9B···O1v0.992.543.489 (2)161
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x, y+1, z+2; (iv) x+1, y+1, z+1; (v) x+1, y+1, z+2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o3832.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o2139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds