metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m337-m338

μ-2,2′-(Azinodi­methylene)di­benzene­sulfonato-bis­­[hepta­aqua­europium(III)] bis­­[2,2′-(azino­di­methylene)di­benzene­sulfonate] deca­hydrate

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 5 January 2009; accepted 22 February 2009; online 28 February 2009)

In the title compound, [Eu2(C14H10N2O6S2)(H2O)14](C14H10N2O6S2)2·10H2O, the complete bimetallic cation is generated by crystallographic inversion symmetry. The Eu atom adopts a distorted dodeca­hedral coordination arising from one O-bonded 2,2′-azinodibenzene­sulfonate ligand and seven water mol­ecules. In the crystal structure, the components are linked by multiple O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For background on hybrid materials, see: Guo et al. (2008[Guo, X. F., Feng, M. L., Xie, Z. L., Li, J. R. & Huang, X. Y. (2008). Dalton Trans. pp. 3101-3106.]); Yang et al. (2006[Yang, J., He, Q. Z. & Yu, H. (2006). J. Rare Earths, 24, 103-109.]); Zhang et al. (2007[Zhang, X. M., Zhou, Y. Z., Tu, S. J., Xiao, L. M. & Zhu, H. J. (2007). Chin. J. Inorg. Chem. 10, 1700-1704.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu2(C14H10N2O6S2)(H2O)14](C14H10N2O6S2)2·10H2O

  • Mr = 1835.37

  • Monoclinic, P 21 /n

  • a = 12.5504 (14) Å

  • b = 18.611 (2) Å

  • c = 15.6699 (15) Å

  • β = 108.964 (2)°

  • V = 3461.5 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.08 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.574, Tmax = 0.788

  • 17265 measured reflections

  • 6086 independent reflections

  • 5162 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.09

  • 6086 reflections

  • 442 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Selected bond lengths (Å)

Eu1—O10 2.314 (3)
Eu1—O15 2.323 (3)
Eu1—O7 2.328 (3)
Eu1—O11 2.348 (3)
Eu1—O12 2.350 (3)
Eu1—O13 2.362 (3)
Eu1—O16 2.365 (3)
Eu1—O14 2.389 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10C⋯O5i 0.85 1.86 2.707 (4) 173
O10—H10D⋯O18 0.85 1.87 2.712 (5) 174
O11—H11C⋯N2ii 0.85 2.17 3.020 (5) 175
O11—H11D⋯O20 0.85 1.82 2.669 (5) 174
O12—H12C⋯O9 0.85 1.92 2.770 (4) 179
O12—H12D⋯O4iii 0.85 1.88 2.734 (4) 179
O13—H13C⋯O2iv 0.85 1.94 2.785 (5) 172
O13—H13D⋯O5i 0.85 2.00 2.846 (5) 171
O14—H14C⋯O9v 0.85 2.11 2.939 (4) 165
O14—H14D⋯O17 0.85 1.83 2.660 (5) 164
O14—H14D⋯O15 0.85 2.40 2.838 (5) 113
O15—H15C⋯O17 0.85 1.96 2.811 (4) 176
O15—H15D⋯O21iv 0.85 1.82 2.671 (5) 175
O16—H16C⋯O6iii 0.85 1.94 2.779 (4) 167
O16—H16D⋯O19iv 0.85 1.96 2.798 (5) 168
O17—H17C⋯O1vi 0.85 1.91 2.749 (4) 169
O17—H17D⋯O3iv 0.85 1.90 2.736 (5) 168
O18—H18C⋯O3vii 0.85 1.99 2.787 (5) 155
O18—H18D⋯O20 0.85 2.26 3.056 (6) 156
O19—H19C⋯O6viii 0.85 2.18 3.029 (5) 172
O19—H19D⋯O8ix 0.85 2.07 2.916 (5) 172
O20—H20C⋯O2ii 0.85 1.93 2.784 (5) 178
O20—H20D⋯O19ii 0.85 1.95 2.797 (6) 179
O21—H21C⋯N3x 0.85 2.20 3.040 (5) 171
O21—H21D⋯O18xi 0.85 2.13 2.975 (6) 172
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y-1, z; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) -x+2, -y+1, -z+2; (vii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (viii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ix) -x+1, -y+1, -z+1; (x) -x+2, -y+1, -z+1; (xi) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of organic/inorganic hybrid materials have attracted intense attention in recent years owing to their potential practical applications, such as antitumor, antidiabetic, antitubercular activities, magnetism and catalysis (Zhang, et al., 2007; Yang, et al., 2006; Guo, et al., 2008). As part of our studies in this area, we now report the synthesis and crystal structure of the title compound, (I).

The Eu(III) center is eight-coordinate with seven O donors of H2O and one O donor of 2-formyl-benzenesulfonate-hydrazine, and adopts triangluar dodecahedral coordination. It is interesting that one ligand coordinates to Eu(III), however, the other ligand was free as anion. The bond distances of Eu—O are in the range of 2.314 (3) Å to 2.389 (3) Å. In the crystal packing, molecules form a three-dimensional network structure linked by multiple O—H···O and O—H···N hydrogen bonds.

Related literature top

For background on hybrid materials, see: Guo et al. (2008); Yang et al. (2006); Zhang et al. (2007).

Experimental top

A solution of 1.0 mmol 2-formyl-benzenesulfonate-hydrazine and 1.0 mmol NaOH in 5 ml 95% ethanol was added to a solution of 0.5 mmol Eu(NO3)3.6H2O in 5 ml ethanol at room temperature. The mixture was refluxed for 4 h with stirring, then the resulting precipitate was filtered, washed, and dried in vacuo over P4O10 for 48 h. Colourless blocks of (I) were obtained by slowly evaporating from methanol at room temperature.

Refinement top

The water H atoms were located in a difference map and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(O). This has led to some short intermolecular H···H contacts and the location of these H atoms should be regarded as less certain. The other H atoms were placed geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids with H atoms omitted for clarity. Symmetry code: (i) 2–x, –y, 1–z.
µ-2,2'-(Azinodimethylene)dibenzenesulfonato-bis[heptaaquaeuropium(III)] bis[2,2'-(azinodimethylene)dibenzenesulfonate] decahydrate top
Crystal data top
[Eu2(C14H10N2O6S2)(H2O)14](C14H10N2O6S2)2·10H2OF(000) = 1860
Mr = 1835.37Dx = 1.761 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11001 reflections
a = 12.5504 (14) Åθ = 2.5–28.2°
b = 18.611 (2) ŵ = 2.08 mm1
c = 15.6699 (15) ÅT = 298 K
β = 108.964 (2)°Block, colourless
V = 3461.5 (7) Å30.30 × 0.20 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
6086 independent reflections
Radiation source: fine-focus sealed tube5162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1114
Tmin = 0.574, Tmax = 0.788k = 2222
17265 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0391P)2 + 3.0558P]
where P = (Fo2 + 2Fc2)/3
6086 reflections(Δ/σ)max = 0.002
442 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Eu2(C14H10N2O6S2)(H2O)14](C14H10N2O6S2)2·10H2OV = 3461.5 (7) Å3
Mr = 1835.37Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.5504 (14) ŵ = 2.08 mm1
b = 18.611 (2) ÅT = 298 K
c = 15.6699 (15) Å0.30 × 0.20 × 0.12 mm
β = 108.964 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6086 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5162 reflections with I > 2σ(I)
Tmin = 0.574, Tmax = 0.788Rint = 0.045
17265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.09Δρmax = 0.97 e Å3
6086 reflectionsΔρmin = 0.88 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.717980 (14)0.202075 (10)0.690603 (11)0.02135 (8)
N10.5298 (3)0.8612 (2)1.0179 (2)0.0387 (9)
N20.5167 (3)0.80180 (17)0.9592 (2)0.0338 (8)
N30.9912 (3)0.02877 (18)0.4694 (2)0.0339 (8)
O10.8291 (2)0.94788 (18)0.9989 (2)0.0526 (8)
O20.7024 (3)1.03579 (17)0.9072 (2)0.0470 (8)
O30.8692 (3)1.0746 (2)1.0261 (2)0.0625 (10)
O40.1577 (3)0.74921 (19)0.9297 (2)0.0552 (9)
O50.2901 (3)0.70217 (18)1.0666 (2)0.0495 (9)
O60.1400 (2)0.62674 (17)0.9743 (2)0.0443 (8)
O70.7406 (2)0.15536 (17)0.55973 (18)0.0393 (7)
O80.6553 (3)0.07033 (17)0.4401 (2)0.0489 (8)
O90.5840 (2)0.19212 (18)0.4299 (2)0.0479 (8)
O100.6686 (3)0.30431 (16)0.7529 (2)0.0485 (8)
H10C0.67920.30560.80930.058*
H10D0.63890.34380.72980.058*
O110.8052 (3)0.29204 (16)0.6316 (2)0.0474 (8)
H11C0.85390.29190.60460.057*
H11D0.80900.33220.65830.057*
O120.5643 (2)0.25760 (16)0.58281 (19)0.0406 (7)
H12C0.57140.23770.53610.049*
H12D0.49550.25530.57960.049*
O130.6910 (3)0.17085 (18)0.8283 (2)0.0478 (8)
H13C0.69520.13190.85750.057*
H13D0.69720.20590.86440.057*
O140.8933 (3)0.2312 (2)0.8027 (2)0.0613 (10)
H14C0.94350.26030.83300.074*
H14D0.90740.19020.82770.074*
O150.8140 (3)0.09405 (18)0.7304 (2)0.0506 (8)
H15C0.86300.09860.78240.061*
H15D0.82990.05690.70550.061*
O160.5744 (2)0.11402 (17)0.6513 (2)0.0467 (8)
H16C0.50940.12460.61540.056*
H16D0.58620.06980.64440.056*
O170.9705 (3)0.1154 (2)0.9034 (2)0.0611 (10)
H17C1.03590.09790.92790.073*
H17D0.93100.10580.93680.073*
O180.5734 (3)0.4264 (2)0.6670 (2)0.0700 (11)
H18C0.52450.42520.61470.084*
H18D0.63870.42430.66190.084*
O190.5824 (3)0.9682 (2)0.6101 (3)0.0693 (11)
H19C0.60500.94320.57400.083*
H19D0.51270.95980.59940.083*
O200.8290 (4)0.4204 (2)0.7115 (3)0.0841 (13)
H20C0.82000.45620.67620.101*
H20D0.85620.43540.76550.101*
O210.8525 (4)0.9787 (2)0.6433 (3)0.1024 (17)
H21C0.90140.97440.61670.123*
H21D0.88010.96230.69660.123*
S10.78274 (9)1.01953 (6)0.99621 (7)0.0389 (3)
S20.21627 (8)0.68581 (6)0.97605 (7)0.0334 (2)
S30.68106 (8)0.14503 (6)0.46277 (7)0.0337 (2)
C10.6057 (3)0.9050 (2)1.0162 (3)0.0373 (10)
H10.64640.89760.97680.045*
C20.6301 (3)0.9677 (2)1.0768 (3)0.0326 (9)
C30.7071 (3)1.0217 (2)1.0740 (3)0.0348 (10)
C40.7252 (4)1.0803 (2)1.1317 (3)0.0437 (11)
H40.77671.11561.12940.052*
C50.6669 (4)1.0863 (3)1.1927 (3)0.0513 (13)
H50.67781.12611.23050.062*
C60.5926 (4)1.0330 (3)1.1972 (3)0.0495 (12)
H60.55471.03641.23910.059*
C70.5744 (3)0.9748 (3)1.1399 (3)0.0420 (11)
H70.52360.93951.14360.050*
C80.4283 (3)0.7669 (2)0.9572 (3)0.0347 (9)
H80.38450.78400.99060.042*
C90.3928 (3)0.7004 (2)0.9042 (3)0.0297 (9)
C100.3032 (3)0.6580 (2)0.9118 (2)0.0294 (9)
C110.2751 (3)0.5939 (2)0.8646 (3)0.0358 (10)
H110.21780.56530.87170.043*
C120.3327 (3)0.5726 (2)0.8068 (3)0.0394 (10)
H120.31340.52990.77480.047*
C130.4176 (4)0.6143 (3)0.7967 (3)0.0433 (11)
H130.45480.60030.75680.052*
C140.4485 (3)0.6773 (3)0.8459 (3)0.0388 (10)
H140.50760.70460.83960.047*
C150.9088 (3)0.0687 (2)0.4710 (3)0.0339 (9)
H150.86850.05670.50940.041*
C160.8760 (3)0.1328 (2)0.4139 (3)0.0319 (9)
C170.7786 (3)0.1729 (2)0.4086 (2)0.0305 (9)
C180.7535 (3)0.2357 (2)0.3577 (3)0.0371 (10)
H180.68990.26220.35540.045*
C190.8230 (4)0.2588 (3)0.3106 (3)0.0444 (11)
H190.80640.30090.27700.053*
C200.9164 (4)0.2196 (3)0.3134 (3)0.0479 (12)
H200.96200.23460.28040.058*
C210.9432 (4)0.1581 (3)0.3648 (3)0.0427 (11)
H211.00790.13280.36690.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.02425 (11)0.02359 (13)0.01836 (11)0.00072 (7)0.00986 (8)0.00005 (7)
N10.044 (2)0.031 (2)0.045 (2)0.0078 (16)0.0205 (17)0.0089 (17)
N20.0361 (18)0.028 (2)0.039 (2)0.0034 (14)0.0145 (15)0.0033 (15)
N30.0370 (18)0.029 (2)0.0354 (19)0.0043 (15)0.0116 (15)0.0025 (15)
O10.0446 (17)0.051 (2)0.065 (2)0.0102 (15)0.0206 (16)0.0051 (18)
O20.0563 (18)0.045 (2)0.0378 (17)0.0002 (15)0.0130 (14)0.0070 (15)
O30.055 (2)0.072 (3)0.064 (2)0.0316 (18)0.0231 (17)0.012 (2)
O40.0453 (18)0.052 (2)0.075 (2)0.0118 (15)0.0288 (17)0.0145 (18)
O50.0439 (17)0.074 (3)0.0350 (17)0.0114 (15)0.0189 (14)0.0157 (16)
O60.0404 (16)0.048 (2)0.0493 (18)0.0114 (14)0.0208 (14)0.0011 (16)
O70.0415 (16)0.050 (2)0.0281 (15)0.0103 (14)0.0141 (12)0.0004 (14)
O80.0535 (18)0.040 (2)0.057 (2)0.0097 (15)0.0233 (16)0.0099 (16)
O90.0402 (17)0.066 (2)0.0384 (17)0.0179 (15)0.0134 (14)0.0039 (16)
O100.074 (2)0.040 (2)0.0372 (17)0.0104 (15)0.0271 (16)0.0008 (14)
O110.057 (2)0.036 (2)0.064 (2)0.0040 (14)0.0400 (17)0.0004 (15)
O120.0343 (15)0.050 (2)0.0396 (16)0.0060 (13)0.0141 (13)0.0011 (15)
O130.077 (2)0.0359 (19)0.0389 (17)0.0045 (16)0.0305 (16)0.0013 (15)
O140.0502 (19)0.058 (2)0.060 (2)0.0166 (17)0.0036 (17)0.0076 (19)
O150.0548 (18)0.057 (2)0.0347 (16)0.0206 (16)0.0070 (14)0.0017 (16)
O160.0367 (16)0.0434 (19)0.0537 (19)0.0046 (14)0.0061 (14)0.0012 (16)
O170.0467 (18)0.086 (3)0.049 (2)0.0139 (18)0.0135 (15)0.020 (2)
O180.066 (2)0.070 (3)0.063 (2)0.014 (2)0.0059 (19)0.001 (2)
O190.074 (2)0.066 (3)0.070 (3)0.001 (2)0.025 (2)0.012 (2)
O200.137 (4)0.057 (3)0.064 (3)0.031 (3)0.039 (3)0.004 (2)
O210.160 (4)0.054 (3)0.139 (4)0.023 (3)0.111 (4)0.014 (3)
S10.0364 (5)0.0390 (7)0.0409 (6)0.0051 (5)0.0118 (5)0.0017 (5)
S20.0300 (5)0.0397 (6)0.0335 (5)0.0042 (4)0.0143 (4)0.0015 (5)
S30.0352 (5)0.0386 (6)0.0288 (5)0.0052 (4)0.0126 (4)0.0012 (5)
C10.040 (2)0.037 (3)0.038 (2)0.0064 (19)0.0168 (18)0.006 (2)
C20.033 (2)0.030 (2)0.033 (2)0.0003 (17)0.0079 (17)0.0003 (18)
C30.035 (2)0.030 (2)0.036 (2)0.0005 (17)0.0062 (17)0.0008 (19)
C40.051 (3)0.034 (3)0.037 (2)0.004 (2)0.001 (2)0.003 (2)
C50.062 (3)0.042 (3)0.040 (3)0.011 (2)0.004 (2)0.011 (2)
C60.047 (3)0.061 (4)0.040 (3)0.009 (2)0.013 (2)0.011 (2)
C70.037 (2)0.051 (3)0.039 (2)0.003 (2)0.0137 (19)0.005 (2)
C80.035 (2)0.034 (3)0.039 (2)0.0050 (18)0.0175 (18)0.001 (2)
C90.029 (2)0.029 (2)0.031 (2)0.0011 (16)0.0105 (16)0.0008 (17)
C100.0291 (19)0.032 (2)0.0259 (19)0.0012 (16)0.0068 (16)0.0008 (17)
C110.038 (2)0.036 (3)0.033 (2)0.0048 (18)0.0094 (17)0.0010 (19)
C120.044 (2)0.033 (3)0.039 (2)0.0006 (19)0.0103 (19)0.011 (2)
C130.041 (2)0.052 (3)0.039 (2)0.000 (2)0.0158 (19)0.013 (2)
C140.034 (2)0.047 (3)0.041 (2)0.0034 (19)0.0195 (19)0.004 (2)
C150.036 (2)0.033 (2)0.034 (2)0.0067 (18)0.0124 (17)0.0003 (19)
C160.035 (2)0.031 (2)0.029 (2)0.0038 (17)0.0091 (17)0.0015 (18)
C170.034 (2)0.033 (2)0.0228 (19)0.0035 (17)0.0060 (16)0.0008 (17)
C180.042 (2)0.033 (3)0.033 (2)0.0085 (19)0.0085 (19)0.0029 (19)
C190.053 (3)0.042 (3)0.037 (2)0.003 (2)0.012 (2)0.011 (2)
C200.050 (3)0.053 (3)0.045 (3)0.000 (2)0.022 (2)0.010 (2)
C210.039 (2)0.044 (3)0.049 (3)0.009 (2)0.019 (2)0.008 (2)
Geometric parameters (Å, º) top
Eu1—O102.314 (3)O20—H20D0.8500
Eu1—O152.323 (3)O21—H21C0.8499
Eu1—O72.328 (3)O21—H21D0.8500
Eu1—O112.348 (3)S1—C31.773 (4)
Eu1—O122.350 (3)S2—C101.784 (4)
Eu1—O132.362 (3)S3—C171.779 (4)
Eu1—O162.365 (3)C1—C21.473 (6)
Eu1—O142.389 (3)C1—H10.9300
N1—C11.260 (5)C2—C71.391 (6)
N1—N21.414 (5)C2—C31.405 (6)
N2—C81.278 (5)C3—C41.387 (6)
N3—C151.280 (5)C4—C51.384 (7)
N3—N3i1.406 (7)C4—H40.9300
O1—S11.450 (3)C5—C61.378 (7)
O2—S11.462 (3)C5—H50.9300
O3—S11.455 (3)C6—C71.377 (6)
O4—S21.454 (3)C6—H60.9300
O5—S21.453 (3)C7—H70.9300
O6—S21.452 (3)C8—C91.476 (6)
O7—S31.472 (3)C8—H80.9300
O8—S31.445 (3)C9—C141.387 (6)
O9—S31.453 (3)C9—C101.411 (5)
O10—H10C0.8500C10—C111.387 (6)
O10—H10D0.8500C11—C121.387 (6)
O11—H11C0.8499C11—H110.9300
O11—H11D0.8501C12—C131.368 (6)
O12—H12C0.8499C12—H120.9300
O12—H12D0.8501C13—C141.388 (6)
O13—H13C0.8498C13—H130.9300
O13—H13D0.8500C14—H140.9300
O14—H14C0.8500C15—C161.467 (6)
O14—H14D0.8498C15—H150.9300
O15—H15C0.8500C16—C211.396 (6)
O15—H15D0.8500C16—C171.411 (5)
O16—H16C0.8500C17—C181.393 (6)
O16—H16D0.8499C18—C191.381 (6)
O17—H17C0.8501C18—H180.9300
O17—H17D0.8499C19—C201.369 (7)
O18—H18C0.8500C19—H190.9300
O18—H18D0.8500C20—C211.376 (6)
O19—H19C0.8501C20—H200.9300
O19—H19D0.8499C21—H210.9300
O20—H20C0.8501
O10—Eu1—O15141.75 (11)Eu1—O16—H16D123.7
O10—Eu1—O7143.63 (11)H16C—O16—H16D108.1
O15—Eu1—O773.28 (10)H17C—O17—H17D108.1
O10—Eu1—O1178.64 (12)H18C—O18—H18D108.9
O15—Eu1—O11117.10 (11)H19C—O19—H19D108.2
O7—Eu1—O1173.36 (11)H20C—O20—H20D108.4
O10—Eu1—O1270.85 (11)H21C—O21—H21D108.6
O15—Eu1—O12143.76 (11)O1—S1—O3112.9 (2)
O7—Eu1—O1280.65 (10)O1—S1—O2111.3 (2)
O11—Eu1—O1277.41 (11)O3—S1—O2111.8 (2)
O10—Eu1—O1371.29 (11)O1—S1—C3107.5 (2)
O15—Eu1—O1375.96 (11)O3—S1—C3105.8 (2)
O7—Eu1—O13143.82 (12)O2—S1—C3107.09 (19)
O11—Eu1—O13139.32 (12)O6—S2—O5112.65 (19)
O12—Eu1—O13115.91 (11)O6—S2—O4112.43 (19)
O10—Eu1—O16113.20 (11)O5—S2—O4112.1 (2)
O15—Eu1—O1675.81 (11)O6—S2—C10106.82 (19)
O7—Eu1—O1679.18 (11)O5—S2—C10107.38 (18)
O11—Eu1—O16143.59 (11)O4—S2—C10104.86 (19)
O12—Eu1—O1674.90 (11)O8—S3—O9113.5 (2)
O13—Eu1—O1675.19 (11)O8—S3—O7112.17 (19)
O10—Eu1—O1479.18 (13)O9—S3—O7111.93 (18)
O15—Eu1—O1474.07 (12)O8—S3—C17107.25 (19)
O7—Eu1—O14112.67 (11)O9—S3—C17106.43 (19)
O11—Eu1—O1472.05 (12)O7—S3—C17104.92 (17)
O12—Eu1—O14140.64 (12)N1—C1—C2119.9 (4)
O13—Eu1—O1475.85 (12)N1—C1—H1120.0
O16—Eu1—O14142.25 (11)C2—C1—H1120.0
O10—Eu1—H11D62.9C7—C2—C3117.6 (4)
O15—Eu1—H11D126.3C7—C2—C1119.2 (4)
O7—Eu1—H11D89.4C3—C2—C1123.2 (4)
O11—Eu1—H11D16.3C4—C3—C2120.8 (4)
O12—Eu1—H11D77.1C4—C3—S1117.0 (3)
O13—Eu1—H11D124.6C2—C3—S1122.2 (3)
O16—Eu1—H11D151.1C5—C4—C3120.1 (5)
O14—Eu1—H11D66.6C5—C4—H4120.0
O10—Eu1—H12C88.7C3—C4—H4120.0
O15—Eu1—H12C128.1C6—C5—C4119.7 (4)
O7—Eu1—H12C61.8C6—C5—H5120.1
O11—Eu1—H12C74.4C4—C5—H5120.1
O12—Eu1—H12C18.9C7—C6—C5120.3 (5)
O13—Eu1—H12C130.0C7—C6—H6119.8
O16—Eu1—H12C71.7C5—C6—H6119.8
O14—Eu1—H12C146.0C6—C7—C2121.5 (4)
H11D—Eu1—H12C79.5C6—C7—H7119.2
O10—Eu1—H14D91.1C2—C7—H7119.2
O15—Eu1—H14D57.2N2—C8—C9122.7 (4)
O7—Eu1—H14D110.5N2—C8—H8118.6
O11—Eu1—H14D88.2C9—C8—H8118.6
O12—Eu1—H14D158.7C14—C9—C10118.0 (4)
O13—Eu1—H14D66.1C14—C9—C8120.4 (4)
O16—Eu1—H14D124.2C10—C9—C8121.6 (4)
O14—Eu1—H14D18.6C11—C10—C9120.5 (4)
H11D—Eu1—H14D84.7C11—C10—S2117.0 (3)
H12C—Eu1—H14D162.3C9—C10—S2122.4 (3)
O10—Eu1—H15C125.8C10—C11—C12119.9 (4)
O15—Eu1—H15C17.2C10—C11—H11120.1
O7—Eu1—H15C87.1C12—C11—H11120.1
O11—Eu1—H15C113.3C13—C12—C11120.3 (4)
O12—Eu1—H15C160.7C13—C12—H12119.8
O13—Eu1—H15C67.2C11—C12—H12119.8
O16—Eu1—H15C88.2C12—C13—C14120.1 (4)
O14—Eu1—H15C58.2C12—C13—H13120.0
H11D—Eu1—H15C117.9C14—C13—H13120.0
H12C—Eu1—H15C145.2C9—C14—C13121.2 (4)
H14D—Eu1—H15C40.6C9—C14—H14119.4
C1—N1—N2114.9 (4)C13—C14—H14119.4
C8—N2—N1109.3 (4)N3—C15—C16121.9 (4)
C15—N3—N3i112.2 (4)N3—C15—H15119.0
S3—O7—Eu1142.35 (17)C16—C15—H15119.0
Eu1—O10—H10C119.3C21—C16—C17117.1 (4)
Eu1—O10—H10D132.2C21—C16—C15120.7 (4)
H10C—O10—H10D108.5C17—C16—C15122.1 (4)
Eu1—O11—H11C134.2C18—C17—C16120.5 (4)
Eu1—O11—H11D113.1C18—C17—S3117.1 (3)
H11C—O11—H11D108.2C16—C17—S3122.3 (3)
Eu1—O12—H12C97.8C19—C18—C17120.1 (4)
Eu1—O12—H12D126.9C19—C18—H18119.9
H12C—O12—H12D108.4C17—C18—H18119.9
Eu1—O13—H13C134.4C20—C19—C18120.0 (4)
Eu1—O13—H13D114.3C20—C19—H19120.0
H13C—O13—H13D108.6C18—C19—H19120.0
Eu1—O14—H14C153.4C19—C20—C21120.4 (4)
Eu1—O14—H14D98.0C19—C20—H20119.8
H14C—O14—H14D108.0C21—C20—H20119.8
Eu1—O15—H15C108.7C20—C21—C16121.8 (4)
Eu1—O15—H15D139.5C20—C21—H21119.1
H15C—O15—H15D108.5C16—C21—H21119.1
Eu1—O16—H16C119.9
C1—N1—N2—C8171.1 (4)C14—C9—C10—S2173.9 (3)
O10—Eu1—O7—S354.6 (4)C8—C9—C10—S26.9 (5)
O15—Eu1—O7—S3138.4 (3)O6—S2—C10—C118.0 (4)
O11—Eu1—O7—S395.8 (3)O5—S2—C10—C11129.1 (3)
O12—Eu1—O7—S316.2 (3)O4—S2—C10—C11111.5 (3)
O13—Eu1—O7—S3105.5 (3)O6—S2—C10—C9175.6 (3)
O16—Eu1—O7—S360.1 (3)O5—S2—C10—C954.5 (4)
O14—Eu1—O7—S3157.5 (3)O4—S2—C10—C964.9 (4)
Eu1—O7—S3—O8110.2 (3)C9—C10—C11—C122.4 (6)
Eu1—O7—S3—O918.7 (4)S2—C10—C11—C12174.0 (3)
Eu1—O7—S3—C17133.7 (3)C10—C11—C12—C130.5 (6)
N2—N1—C1—C2177.8 (3)C11—C12—C13—C141.5 (7)
N1—C1—C2—C74.8 (6)C10—C9—C14—C130.3 (6)
N1—C1—C2—C3174.8 (4)C8—C9—C14—C13178.8 (4)
C7—C2—C3—C40.8 (6)C12—C13—C14—C91.6 (7)
C1—C2—C3—C4178.9 (4)N3i—N3—C15—C16178.9 (4)
C7—C2—C3—S1179.5 (3)N3—C15—C16—C218.9 (6)
C1—C2—C3—S10.2 (6)N3—C15—C16—C17173.5 (4)
O1—S1—C3—C4133.8 (3)C21—C16—C17—C181.4 (6)
O3—S1—C3—C413.0 (4)C15—C16—C17—C18176.4 (4)
O2—S1—C3—C4106.5 (3)C21—C16—C17—S3176.8 (3)
O1—S1—C3—C247.5 (4)C15—C16—C17—S35.4 (5)
O3—S1—C3—C2168.3 (3)O8—S3—C17—C18129.5 (3)
O2—S1—C3—C272.2 (4)O9—S3—C17—C187.8 (4)
C2—C3—C4—C50.3 (6)O7—S3—C17—C18111.0 (3)
S1—C3—C4—C5178.5 (3)O8—S3—C17—C1648.7 (4)
C3—C4—C5—C61.4 (7)O9—S3—C17—C16170.5 (3)
C4—C5—C6—C71.5 (7)O7—S3—C17—C1670.7 (4)
C5—C6—C7—C20.4 (7)C16—C17—C18—C191.1 (6)
C3—C2—C7—C60.7 (6)S3—C17—C18—C19177.2 (3)
C1—C2—C7—C6178.9 (4)C17—C18—C19—C200.4 (7)
N1—N2—C8—C9178.1 (4)C18—C19—C20—C211.6 (7)
N2—C8—C9—C147.1 (6)C19—C20—C21—C161.4 (7)
N2—C8—C9—C10172.0 (4)C17—C16—C21—C200.2 (6)
C14—C9—C10—C112.3 (6)C15—C16—C21—C20177.6 (4)
C8—C9—C10—C11176.8 (4)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10C···O5ii0.851.862.707 (4)173
O10—H10D···O180.851.872.712 (5)174
O11—H11C···N2iii0.852.173.020 (5)175
O11—H11D···O200.851.822.669 (5)174
O12—H12C···O90.851.922.770 (4)179
O12—H12D···O4iv0.851.882.734 (4)179
O13—H13C···O2v0.851.942.785 (5)172
O13—H13D···O5ii0.852.002.846 (5)171
O14—H14C···O9vi0.852.112.939 (4)165
O14—H14D···O170.851.832.660 (5)164
O14—H14D···O150.852.402.838 (5)113
O15—H15C···O170.851.962.811 (4)176
O15—H15D···O21v0.851.822.671 (5)175
O16—H16C···O6iv0.851.942.779 (4)167
O16—H16D···O19v0.851.962.798 (5)168
O17—H17C···O1vii0.851.912.749 (4)169
O17—H17D···O3v0.851.902.736 (5)168
O18—H18C···O3viii0.851.992.787 (5)155
O18—H18D···O200.852.263.056 (6)156
O19—H19C···O6ix0.852.183.029 (5)172
O19—H19D···O8x0.852.072.916 (5)172
O20—H20C···O2iii0.851.932.784 (5)178
O20—H20D···O19iii0.851.952.797 (6)179
O21—H21C···N3xi0.852.203.040 (5)171
O21—H21D···O18xii0.852.132.975 (6)172
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+3/2, y1/2, z+3/2; (iv) x+1/2, y1/2, z+3/2; (v) x, y1, z; (vi) x+1/2, y+1/2, z+1/2; (vii) x+2, y+1, z+2; (viii) x1/2, y+3/2, z1/2; (ix) x+1/2, y+3/2, z1/2; (x) x+1, y+1, z+1; (xi) x+2, y+1, z+1; (xii) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Eu2(C14H10N2O6S2)(H2O)14](C14H10N2O6S2)2·10H2O
Mr1835.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.5504 (14), 18.611 (2), 15.6699 (15)
β (°) 108.964 (2)
V3)3461.5 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.08
Crystal size (mm)0.30 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.574, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
17265, 6086, 5162
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.09
No. of reflections6086
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.88

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Eu1—O102.314 (3)Eu1—O122.350 (3)
Eu1—O152.323 (3)Eu1—O132.362 (3)
Eu1—O72.328 (3)Eu1—O162.365 (3)
Eu1—O112.348 (3)Eu1—O142.389 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10C···O5i0.851.862.707 (4)173
O10—H10D···O180.851.872.712 (5)174
O11—H11C···N2ii0.852.173.020 (5)175
O11—H11D···O200.851.822.669 (5)174
O12—H12C···O90.851.922.770 (4)179
O12—H12D···O4iii0.851.882.734 (4)179
O13—H13C···O2iv0.851.942.785 (5)172
O13—H13D···O5i0.852.002.846 (5)171
O14—H14C···O9v0.852.112.939 (4)165
O14—H14D···O170.851.832.660 (5)164
O14—H14D···O150.852.402.838 (5)113
O15—H15C···O170.851.962.811 (4)176
O15—H15D···O21iv0.851.822.671 (5)175
O16—H16C···O6iii0.851.942.779 (4)167
O16—H16D···O19iv0.851.962.798 (5)168
O17—H17C···O1vi0.851.912.749 (4)169
O17—H17D···O3iv0.851.902.736 (5)168
O18—H18C···O3vii0.851.992.787 (5)155
O18—H18D···O200.852.263.056 (6)156
O19—H19C···O6viii0.852.183.029 (5)172
O19—H19D···O8ix0.852.072.916 (5)172
O20—H20C···O2ii0.851.932.784 (5)178
O20—H20D···O19ii0.851.952.797 (6)179
O21—H21C···N3x0.852.203.040 (5)171
O21—H21D···O18xi0.852.132.975 (6)172
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2; (iv) x, y1, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+2, y+1, z+2; (vii) x1/2, y+3/2, z1/2; (viii) x+1/2, y+3/2, z1/2; (ix) x+1, y+1, z+1; (x) x+2, y+1, z+1; (xi) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (20671073), the Natural Science Foundation of Shandong (Y2007B60) and Weifang University for research grants.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, X. F., Feng, M. L., Xie, Z. L., Li, J. R. & Huang, X. Y. (2008). Dalton Trans. pp. 3101–3106.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., He, Q. Z. & Yu, H. (2006). J. Rare Earths, 24, 103–109.  Google Scholar
First citationZhang, X. M., Zhou, Y. Z., Tu, S. J., Xiao, L. M. & Zhu, H. J. (2007). Chin. J. Inorg. Chem. 10, 1700–1704.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m337-m338
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds