metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1-ethyl-6-fluoro-7-(4-methyl­piperazin-1-yl)-4-oxo-1,4-di­hydro­quinoline-3-carboxyl­ato-κ2O3,O4]­copper(II)

aSchool of Pharmaceutical Science, Harbin Medical University, Harbin 150086, People's Republic of China, and bDepartment of Pharmacy, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
*Correspondence e-mail: anzhe6409@sina.com

(Received 24 January 2009; accepted 29 January 2009; online 4 February 2009)

In the title compound, [Cu(C17H19FN3O3)2], the CuII atom (site symmetry [\overline{1}]) exhibits a slightly distorted CuO4 square-planar geometry defined by two bidentate O,O′-bonded 1-ethyl-6-fluoro-7-(4-methyl­piperazin-1-yl)-4-oxo-1,4-dihydro­quinoline-3-carboxyl­ate (perfloxacinate) anions.

Related literature

For the silver, manganese, cobalt and zinc complexes of the perfloxacinate (pef) anion, see: Baenziger et al. (1986[Baenziger, N. C., Fox, C. L. & Modak, S. L. (1986). Acta Cryst. C42, 1505-1509.]); An, Huang & Qi (2007[An, Z., Huang, J. & Qi, W. (2007). Acta Cryst. E63, m2009.]); An, Qi & Huang (2007[An, Z., Qi, W. & Huang, J. (2007). Acta Cryst. E63, m2084-m2085.]); Qi et al.(2008[Qi, W., Huang, J. & An, Z. (2008). Acta Cryst. E64, m302.]), respectively. For background on the medicinal uses of Hpef, see: Mizuki et al. (1996[Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37 (Suppl. A), 41-45.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C17H19FN3O3)2]

  • Mr = 728.24

  • Triclinic, [P \overline 1]

  • a = 8.5548 (17) Å

  • b = 10.253 (2) Å

  • c = 10.467 (2) Å

  • α = 95.22 (3)°

  • β = 109.63 (3)°

  • γ = 108.01 (3)°

  • V = 802.7 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 296 (2) K

  • 0.36 × 0.28 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.774, Tmax = 0.871

  • 7880 measured reflections

  • 3633 independent reflections

  • 3274 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.103

  • S = 1.14

  • 3633 reflections

  • 225 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.8858 (15)
Cu1—O3 1.9247 (13)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pefloxacin (Hpef, C17H20FN3O3, 1-ethyl-6-fluoro-7-(4-methylpiperazin-1-yl)-4-oxo-quinoline -3-carboxylic acid) is member of a class of quinolones used to treat infections (Mizuki et al., 1996;). The silver(I), manganese(II), cobalt(II) and zinc(II) derivative of the pefloxacinate (pef) anion has been reported (Baenziger et al.,1986; An, Huang & Qi (2007); An, Qi & Huang (2007); Qi et al.(2008); Qi et al., 2008). The title copper(II)-containing complex of pef, (I), is reported here.

The structure of (I) is built up from Cu2+ cations (site symmetry 1) anions (pef) ligands, (Fig. 1). It is confirmed that four coordinating O atoms arround CuII cation form a square planar configuration. (Table 1).

Related literature top

For the silver, manganese, cobalt and zinc complexes of the pef anion, see: Baenziger et al. (1986); An, Huang & Qi (2007); An, Qi & Huang (2007); Qi et al.(2008), respectively. For background on the medicinal uses of Hpef, see: Mizuki et al. (1996).

Experimental top

A mixture of Cu(CH3COO)2.H2O (0.050 g, 0.25 mmol), Hpef (0.17 g, 0.5 mmol) and water (12 ml) was stirred for 30 min in air. The mixture was then transferred to a 23 ml Teflon-lined hydrothermal bomb. The bomb was kept at 433 K for 72 h under autogenous pressure. Upon cooling, blue prisms of (I) were obtained from the reaction mixture.

Refinement top

All H atoms on C atoms were generated geometrically and refined as riding atoms with C—H= 0.93–0.97Å and Uiso(H)= 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), show the Cu coordination, showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). [Symmetry code: (i) 1–x, 1–y, 1–z.]
Bis[1-ethyl-6-fluoro-7-(4-methylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline- 3-carboxylato-κ2O3,O4]copper(II) top
Crystal data top
[Cu(C17H19FN3O3)2]Z = 1
Mr = 728.24F(000) = 379
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5548 (17) ÅCell parameters from 7808 reflections
b = 10.253 (2) Åθ = 3.1–27.5°
c = 10.467 (2) ŵ = 0.75 mm1
α = 95.22 (3)°T = 296 K
β = 109.63 (3)°Prism, blue
γ = 108.01 (3)°0.36 × 0.28 × 0.19 mm
V = 802.7 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3633 independent reflections
Radiation source: fine-focus sealed tube3274 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1110
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1013
Tmin = 0.774, Tmax = 0.871l = 1313
7880 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.06P)2 + 0.1742P]
where P = (Fo2 + 2Fc2)/3
3633 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu(C17H19FN3O3)2]γ = 108.01 (3)°
Mr = 728.24V = 802.7 (4) Å3
Triclinic, P1Z = 1
a = 8.5548 (17) ÅMo Kα radiation
b = 10.253 (2) ŵ = 0.75 mm1
c = 10.467 (2) ÅT = 296 K
α = 95.22 (3)°0.36 × 0.28 × 0.19 mm
β = 109.63 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3633 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3274 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.871Rint = 0.022
7880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.14Δρmax = 0.35 e Å3
3633 reflectionsΔρmin = 0.37 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.02371 (11)
F10.82563 (18)0.16415 (13)0.12581 (17)0.0524 (4)
O10.59169 (18)0.69304 (14)0.50180 (16)0.0337 (3)
O20.7906 (2)0.89436 (16)0.5126 (2)0.0579 (5)
O30.63511 (17)0.45479 (13)0.39993 (15)0.0302 (3)
N11.09849 (19)0.72064 (15)0.39047 (16)0.0239 (3)
N21.1346 (2)0.33064 (16)0.10980 (17)0.0291 (3)
N31.3578 (2)0.24538 (19)0.00270 (19)0.0353 (4)
C10.7358 (3)0.76677 (19)0.4892 (2)0.0294 (4)
C20.8370 (2)0.69045 (18)0.44045 (19)0.0244 (4)
C30.7735 (2)0.54329 (18)0.39289 (18)0.0231 (3)
C40.8738 (2)0.49016 (18)0.32802 (19)0.0233 (3)
C50.8070 (2)0.34754 (19)0.2611 (2)0.0297 (4)
H5A0.70140.28640.26170.036*
C60.8976 (3)0.30001 (19)0.1959 (2)0.0315 (4)
C71.0598 (2)0.38636 (19)0.1906 (2)0.0267 (4)
C81.1264 (2)0.52630 (19)0.2581 (2)0.0258 (4)
H8A1.23360.58610.25870.031*
C91.0346 (2)0.57967 (18)0.32596 (18)0.0227 (3)
C100.9982 (2)0.77176 (18)0.43938 (19)0.0254 (4)
H10A1.04000.86800.47480.031*
C111.2746 (2)0.81963 (19)0.4025 (2)0.0307 (4)
H11A1.35930.77210.42290.037*
H11B1.31710.89850.47970.037*
C121.2671 (3)0.8743 (2)0.2716 (3)0.0470 (6)
H12A1.22530.79670.19480.071*
H12B1.38390.93580.28400.071*
H12C1.18730.92490.25300.071*
C131.2615 (3)0.4313 (2)0.0678 (2)0.0326 (4)
H13A1.37460.47600.14590.039*
H13B1.21650.50360.03660.039*
C141.2866 (3)0.3524 (2)0.0493 (2)0.0333 (4)
H14A1.17320.30840.12720.040*
H14B1.36770.41790.08030.040*
C151.2292 (3)0.1448 (2)0.0361 (2)0.0352 (4)
H15A1.27320.07160.06570.042*
H15B1.11780.10130.04390.042*
C161.1970 (3)0.2168 (2)0.1528 (2)0.0332 (4)
H16A1.10850.14900.17570.040*
H16B1.30650.25510.23490.040*
C171.3936 (4)0.1748 (3)0.1120 (3)0.0563 (7)
H17A1.44810.10960.07680.084*
H17B1.47240.24350.14070.084*
H17C1.28380.12520.19000.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02365 (17)0.02145 (17)0.03097 (19)0.00834 (12)0.01668 (13)0.00415 (12)
F10.0481 (7)0.0230 (6)0.0834 (10)0.0009 (5)0.0416 (7)0.0160 (6)
O10.0325 (7)0.0262 (7)0.0559 (9)0.0138 (5)0.0299 (7)0.0110 (6)
O20.0654 (11)0.0217 (7)0.1127 (16)0.0147 (7)0.0680 (12)0.0092 (9)
O30.0283 (6)0.0214 (6)0.0445 (8)0.0039 (5)0.0246 (6)0.0008 (6)
N10.0220 (7)0.0178 (7)0.0334 (8)0.0060 (5)0.0139 (6)0.0034 (6)
N20.0363 (8)0.0222 (8)0.0393 (9)0.0123 (6)0.0254 (7)0.0066 (7)
N30.0379 (9)0.0391 (10)0.0392 (10)0.0191 (7)0.0234 (8)0.0049 (8)
C10.0347 (9)0.0217 (9)0.0419 (11)0.0126 (7)0.0242 (8)0.0078 (8)
C20.0278 (8)0.0210 (8)0.0297 (9)0.0104 (7)0.0162 (7)0.0049 (7)
C30.0244 (8)0.0214 (8)0.0263 (9)0.0083 (6)0.0131 (7)0.0053 (7)
C40.0248 (8)0.0192 (8)0.0292 (9)0.0077 (6)0.0147 (7)0.0048 (7)
C50.0291 (9)0.0207 (9)0.0405 (11)0.0047 (7)0.0200 (8)0.0020 (8)
C60.0329 (9)0.0179 (8)0.0440 (11)0.0041 (7)0.0218 (8)0.0016 (8)
C70.0295 (9)0.0224 (9)0.0329 (9)0.0102 (7)0.0177 (8)0.0037 (7)
C80.0247 (8)0.0219 (8)0.0345 (9)0.0083 (6)0.0162 (7)0.0056 (7)
C90.0246 (8)0.0185 (8)0.0271 (9)0.0088 (6)0.0119 (7)0.0041 (7)
C100.0287 (8)0.0179 (8)0.0319 (9)0.0086 (7)0.0148 (7)0.0027 (7)
C110.0219 (8)0.0205 (8)0.0489 (12)0.0038 (6)0.0178 (8)0.0007 (8)
C120.0486 (12)0.0361 (12)0.0679 (16)0.0106 (10)0.0388 (12)0.0182 (11)
C130.0386 (10)0.0251 (9)0.0428 (11)0.0110 (8)0.0265 (9)0.0077 (8)
C140.0374 (10)0.0336 (10)0.0347 (10)0.0115 (8)0.0220 (8)0.0069 (8)
C150.0459 (11)0.0307 (10)0.0407 (11)0.0203 (9)0.0249 (9)0.0079 (8)
C160.0454 (11)0.0308 (10)0.0370 (11)0.0198 (8)0.0258 (9)0.0100 (8)
C170.0764 (18)0.0512 (15)0.0686 (17)0.0307 (13)0.0547 (15)0.0096 (13)
Geometric parameters (Å, º) top
Cu1—O1i1.8858 (15)C6—C71.419 (3)
Cu1—O11.8858 (15)C7—C81.387 (3)
Cu1—O31.9247 (13)C8—C91.411 (2)
Cu1—O3i1.9247 (13)C8—H8A0.9300
F1—C61.356 (2)C10—H10A0.9300
O1—C11.288 (2)C11—C121.517 (3)
O2—C11.215 (2)C11—H11A0.9700
O3—C31.279 (2)C11—H11B0.9700
N1—C101.341 (2)C12—H12A0.9600
N1—C91.389 (2)C12—H12B0.9600
N1—C111.490 (2)C12—H12C0.9600
N2—C71.397 (2)C13—C141.517 (3)
N2—C131.465 (2)C13—H13A0.9700
N2—C161.473 (2)C13—H13B0.9700
N3—C151.454 (3)C14—H14A0.9700
N3—C141.458 (3)C14—H14B0.9700
N3—C171.465 (3)C15—C161.516 (3)
C1—C21.505 (2)C15—H15A0.9700
C2—C101.378 (2)C15—H15B0.9700
C2—C31.412 (2)C16—H16A0.9700
C3—C41.451 (2)C16—H16B0.9700
C4—C91.406 (2)C17—H17A0.9600
C4—C51.408 (3)C17—H17B0.9600
C5—C61.354 (3)C17—H17C0.9600
C5—H5A0.9300
O1i—Cu1—O1180.0N1—C10—H10A118.0
O1i—Cu1—O387.35 (6)C2—C10—H10A118.0
O1—Cu1—O392.65 (6)N1—C11—C12112.76 (17)
O1i—Cu1—O3i92.65 (6)N1—C11—H11A109.0
O1—Cu1—O3i87.35 (6)C12—C11—H11A109.0
O3—Cu1—O3i180.0N1—C11—H11B109.0
C1—O1—Cu1130.33 (12)C12—C11—H11B109.0
C3—O3—Cu1124.62 (12)H11A—C11—H11B107.8
C10—N1—C9119.95 (15)C11—C12—H12A109.5
C10—N1—C11118.31 (15)C11—C12—H12B109.5
C9—N1—C11121.70 (14)H12A—C12—H12B109.5
C7—N2—C13116.83 (15)C11—C12—H12C109.5
C7—N2—C16117.25 (15)H12A—C12—H12C109.5
C13—N2—C16111.04 (15)H12B—C12—H12C109.5
C15—N3—C14108.25 (16)N2—C13—C14108.39 (16)
C15—N3—C17110.58 (18)N2—C13—H13A110.0
C14—N3—C17110.99 (18)C14—C13—H13A110.0
O2—C1—O1122.66 (17)N2—C13—H13B110.0
O2—C1—C2119.20 (17)C14—C13—H13B110.0
O1—C1—C2118.13 (16)H13A—C13—H13B108.4
C10—C2—C3119.32 (16)N3—C14—C13110.51 (17)
C10—C2—C1116.81 (15)N3—C14—H14A109.5
C3—C2—C1123.84 (16)C13—C14—H14A109.5
O3—C3—C2125.72 (16)N3—C14—H14B109.5
O3—C3—C4118.07 (15)C13—C14—H14B109.5
C2—C3—C4116.19 (15)H14A—C14—H14B108.1
C9—C4—C5118.77 (16)N3—C15—C16110.62 (17)
C9—C4—C3121.23 (16)N3—C15—H15A109.5
C5—C4—C3119.96 (16)C16—C15—H15A109.5
C6—C5—C4119.63 (17)N3—C15—H15B109.5
C6—C5—H5A120.2C16—C15—H15B109.5
C4—C5—H5A120.2H15A—C15—H15B108.1
C5—C6—F1118.45 (17)N2—C16—C15109.86 (16)
C5—C6—C7123.62 (17)N2—C16—H16A109.7
F1—C6—C7117.85 (16)C15—C16—H16A109.7
C8—C7—N2123.85 (16)N2—C16—H16B109.7
C8—C7—C6116.62 (16)C15—C16—H16B109.7
N2—C7—C6119.30 (16)H16A—C16—H16B108.2
C7—C8—C9121.24 (16)N3—C17—H17A109.5
C7—C8—H8A119.4N3—C17—H17B109.5
C9—C8—H8A119.4H17A—C17—H17B109.5
N1—C9—C4118.52 (15)N3—C17—H17C109.5
N1—C9—C8121.36 (15)H17A—C17—H17C109.5
C4—C9—C8120.11 (16)H17B—C17—H17C109.5
N1—C10—C2124.01 (16)
O3—Cu1—O1—C122.51 (19)C5—C6—C7—N2174.06 (19)
O3i—Cu1—O1—C1157.49 (19)F1—C6—C7—N22.6 (3)
O1i—Cu1—O3—C3160.14 (16)N2—C7—C8—C9173.18 (17)
O1—Cu1—O3—C319.86 (16)C6—C7—C8—C91.2 (3)
Cu1—O1—C1—O2168.97 (18)C10—N1—C9—C47.3 (3)
Cu1—O1—C1—C212.5 (3)C11—N1—C9—C4175.07 (17)
O2—C1—C2—C106.8 (3)C10—N1—C9—C8171.97 (17)
O1—C1—C2—C10174.60 (18)C11—N1—C9—C85.6 (3)
O2—C1—C2—C3171.3 (2)C5—C4—C9—N1179.12 (17)
O1—C1—C2—C37.3 (3)C3—C4—C9—N11.4 (3)
Cu1—O3—C3—C28.9 (3)C5—C4—C9—C80.2 (3)
Cu1—O3—C3—C4172.47 (12)C3—C4—C9—C8177.85 (16)
C10—C2—C3—O3173.24 (17)C7—C8—C9—N1178.24 (17)
C1—C2—C3—O38.7 (3)C7—C8—C9—C41.0 (3)
C10—C2—C3—C48.1 (3)C9—N1—C10—C25.5 (3)
C1—C2—C3—C4169.88 (17)C11—N1—C10—C2176.84 (18)
O3—C3—C4—C9175.10 (16)C3—C2—C10—N12.7 (3)
C2—C3—C4—C96.2 (3)C1—C2—C10—N1175.49 (17)
O3—C3—C4—C57.3 (3)C10—N1—C11—C1295.8 (2)
C2—C3—C4—C5171.48 (17)C9—N1—C11—C1281.9 (2)
C9—C4—C5—C60.4 (3)C7—N2—C13—C14164.32 (17)
C3—C4—C5—C6177.27 (18)C16—N2—C13—C1457.6 (2)
C4—C5—C6—F1176.44 (19)C15—N3—C14—C1362.2 (2)
C4—C5—C6—C70.2 (3)C17—N3—C14—C13176.26 (18)
C13—N2—C7—C815.2 (3)N2—C13—C14—N360.8 (2)
C16—N2—C7—C8120.3 (2)C14—N3—C15—C1660.3 (2)
C13—N2—C7—C6159.03 (19)C17—N3—C15—C16178.0 (2)
C16—N2—C7—C665.5 (2)C7—N2—C16—C15165.57 (17)
C5—C6—C7—C80.6 (3)C13—N2—C16—C1556.5 (2)
F1—C6—C7—C8177.28 (18)N3—C15—C16—N257.7 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C17H19FN3O3)2]
Mr728.24
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.5548 (17), 10.253 (2), 10.467 (2)
α, β, γ (°)95.22 (3), 109.63 (3), 108.01 (3)
V3)802.7 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.36 × 0.28 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.774, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
7880, 3633, 3274
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.103, 1.14
No. of reflections3633
No. of parameters225
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.37

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.8858 (15)Cu1—O31.9247 (13)
 

Acknowledgements

The authors thank the Scientific Research Fund of Heilongjiang Provincial Education Department (grant No. 11531115) and the Graduate Creativity Funds of Harbin Medical University (HCXS) (grant No. 2008008) for financial support.

References

First citationAn, Z., Huang, J. & Qi, W. (2007). Acta Cryst. E63, m2009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAn, Z., Qi, W. & Huang, J. (2007). Acta Cryst. E63, m2084–m2085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaenziger, N. C., Fox, C. L. & Modak, S. L. (1986). Acta Cryst. C42, 1505–1509.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37 (Suppl. A), 41–45.  Google Scholar
First citationQi, W., Huang, J. & An, Z. (2008). Acta Cryst. E64, m302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds