organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-1-iodo-2-nitro­benzene

aUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and bGovernment College University, Department of Chemistry, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 2 February 2009; accepted 11 February 2009; online 18 February 2009)

In the mol­ecule of the title compound, C6H3ClINO2, the nitro group is disordered over two sites with occupancies of 0.506 (6) and 0.494 (6). The dihedral angles between the benzene ring and the two disordered components of the nitro group are 29.0 (2) and 51.0 (3)°. The disordering avoids short O⋯O inter­molecular contacts in the crystal.

Related literature

For background, see: Arshad et al. (2008[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.], 2009[Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o230.]). For related structures, see: Meriles et al. (1999[Meriles, C. A., de Almeida Santos, R. H., do Prado Gambardella, M. T., Ellena, J., Mascarenhas, Y. P. & Brunetti, A. H. (1999). J. Mol. Struct. 513, 245-250.]).

[Scheme 1]

Experimental

Crystal data
  • C6H3ClINO2

  • Mr = 283.44

  • Monoclinic, P 21 /c

  • a = 4.1583 (2) Å

  • b = 14.5213 (7) Å

  • c = 13.7990 (6) Å

  • β = 93.361 (2)°

  • V = 831.81 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.12 mm−1

  • T = 296 K

  • 0.26 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.554, Tmax = 0.664

  • 9922 measured reflections

  • 2157 independent reflections

  • 1684 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.051

  • S = 1.02

  • 2157 reflections

  • 128 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig 1), has been prepared as an intermediate for the synthesis of sulfonamides (Arshad et al., 2009) and benzothiazines (Arshad et al., 2008). The crystal structures of p-chlorobromobenzene and p-chloroiodobenzene (Meriles et al., 1999) have been published.

In (I), the iodo and chloro moiety is in plane with the benzene ring. The nitro group is disordered over two sites with nearly equal occupancy ratio of 0.506 (6):0.494 (6). The behaviour of nitro groups is very different from each other. The distance between the symmetry related O-atoms of nitro groups have nearly equal value of 2.110 (9) Å. One group [O1B···O2B (x - 1, y, z)] interact in trans form while the other [O2A···O2A (-x, -y, -z)] remains in cis form. The dihedral angle between the benzene ring and two nitro groups is 29.03 (23)° and 51.03 (31)°, respectively. The dihedral angle between the disordered nitro groups is 79.76 (37)°. There does not exist any classical H-bond or any kind of π-interaction.

Related literature top

For background, see: Arshad et al. (2008, 2009). For related structures, see: Meriles et al. (1999).

Experimental top

4-Chloro-2-nitroaniline (2 g, 0.0116 mol) was dissolved in conc. HCl (10 ml) in a flask. The mixture was put in ice to attain 273-78 K. NaNO2 (0.96 g, 0.14 mol) was added in the solution under stirring. After 5 minutes the solution of KI (2.17 g, 0.0134 mol) was added and stirred for 10 minutes at the same temperature i.e 273-278 K. Then ice was removed and allowed to stirr till the room temperature was attained. After this mixture was heated to remove the nitrogen and reduce the volume. The resulting mixture was cooled in ice overnight. The obtained precipitate was filtered and washed with distilled water. The dried filterate was recrystalized in dicloromethane and methanol to obtain crystals of (I) as yellow needles.

Refinement top

The O atoms of the nitro group are disordered over two sets of sites in a 0.506 (6):0.496 (6) ratio. The H atoms were located in a difference map and their positions were refined with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H-atoms are shown by spheres of arbitrary radius.
4-Chloro-1-iodo-2-nitrobenzene top
Crystal data top
C6H3ClINO2F(000) = 528
Mr = 283.44Dx = 2.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2157 reflections
a = 4.1583 (2) Åθ = 2.8–28.7°
b = 14.5213 (7) ŵ = 4.12 mm1
c = 13.7990 (6) ÅT = 296 K
β = 93.361 (2)°Needle, yellow
V = 831.81 (7) Å30.26 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2157 independent reflections
Radiation source: fine-focus sealed tube1684 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 7.40 pixels mm-1θmax = 28.7°, θmin = 2.8°
ω scansh = 53
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1819
Tmin = 0.554, Tmax = 0.664l = 1818
9922 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051Only H-atom coordinates refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0177P)2 + 0.626P]
where P = (Fo2 + 2Fc2)/3
2157 reflections(Δ/σ)max = 0.002
128 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C6H3ClINO2V = 831.81 (7) Å3
Mr = 283.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.1583 (2) ŵ = 4.12 mm1
b = 14.5213 (7) ÅT = 296 K
c = 13.7990 (6) Å0.26 × 0.12 × 0.10 mm
β = 93.361 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2157 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1684 reflections with I > 2σ(I)
Tmin = 0.554, Tmax = 0.664Rint = 0.025
9922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.051Only H-atom coordinates refined
S = 1.02Δρmax = 0.66 e Å3
2157 reflectionsΔρmin = 0.60 e Å3
128 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.08606 (5)0.03022 (1)0.36564 (1)0.0520 (1)
Cl10.5423 (2)0.29672 (6)0.03919 (7)0.0739 (3)
O1A0.1842 (14)0.0814 (3)0.2012 (4)0.0693 (19)0.506 (6)
O2A0.1343 (15)0.0393 (3)0.0522 (4)0.077 (2)0.506 (6)
N10.1689 (7)0.02093 (18)0.14257 (19)0.0521 (9)
C10.2016 (6)0.07685 (18)0.16917 (19)0.0395 (8)
C20.1064 (6)0.10984 (18)0.25738 (18)0.0394 (8)
C30.1504 (8)0.2032 (2)0.2764 (2)0.0525 (10)
C40.2833 (8)0.2599 (2)0.2098 (3)0.0554 (11)
C50.3754 (7)0.2250 (2)0.1233 (2)0.0487 (9)
C60.3366 (7)0.1329 (2)0.1020 (2)0.0460 (9)
O1B0.0923 (15)0.0561 (3)0.1528 (4)0.0721 (19)0.494 (6)
O2B0.4074 (16)0.0577 (3)0.1171 (4)0.082 (3)0.494 (6)
H60.392 (7)0.109 (2)0.045 (2)0.0552*
H30.086 (8)0.228 (2)0.336 (2)0.0630*
H40.325 (8)0.321 (2)0.223 (2)0.0666*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0531 (1)0.0648 (1)0.0392 (1)0.0006 (1)0.0124 (1)0.0053 (1)
Cl10.0847 (6)0.0649 (5)0.0724 (6)0.0142 (5)0.0073 (5)0.0265 (4)
O1A0.098 (4)0.038 (3)0.074 (3)0.000 (2)0.024 (3)0.007 (2)
O2A0.109 (5)0.074 (3)0.050 (3)0.023 (3)0.013 (3)0.024 (2)
N10.0660 (16)0.0438 (15)0.0478 (15)0.0018 (12)0.0137 (13)0.0032 (12)
C10.0427 (13)0.0359 (14)0.0398 (14)0.0018 (11)0.0015 (11)0.0004 (11)
C20.0406 (13)0.0450 (15)0.0325 (13)0.0061 (11)0.0010 (10)0.0014 (11)
C30.0650 (18)0.0492 (18)0.0432 (16)0.0097 (14)0.0029 (14)0.0066 (14)
C40.070 (2)0.0375 (16)0.058 (2)0.0011 (14)0.0022 (16)0.0001 (15)
C50.0504 (15)0.0462 (17)0.0490 (17)0.0004 (12)0.0010 (13)0.0131 (14)
C60.0508 (15)0.0496 (17)0.0382 (15)0.0019 (12)0.0072 (12)0.0004 (13)
O1B0.096 (4)0.057 (3)0.066 (3)0.027 (3)0.027 (3)0.012 (2)
O2B0.100 (5)0.055 (3)0.095 (5)0.019 (3)0.037 (4)0.017 (3)
Geometric parameters (Å, º) top
I1—C22.086 (3)C1—C21.387 (4)
Cl1—C51.734 (3)C2—C31.391 (4)
O1A—N11.193 (6)C3—C41.374 (5)
O1B—N11.216 (7)C4—C51.372 (5)
O2A—N11.275 (6)C5—C61.377 (4)
O2B—N11.197 (7)C3—H30.95 (3)
N1—C11.471 (4)C4—H40.92 (3)
C1—C61.378 (4)C6—H60.90 (3)
O2B···O1Bi2.110 (9)
O1A—N1—O2A120.5 (4)C2—C3—C4120.8 (3)
O1A—N1—C1122.7 (3)C3—C4—C5120.3 (3)
O2A—N1—C1116.7 (3)Cl1—C5—C4120.2 (2)
O1B—N1—C1116.5 (3)Cl1—C5—C6119.1 (2)
O2B—N1—C1116.0 (3)C4—C5—C6120.6 (3)
O1B—N1—O2B127.4 (4)C1—C6—C5118.5 (3)
N1—C1—C2121.7 (2)C2—C3—H3119.5 (18)
N1—C1—C6116.0 (2)C4—C3—H3119.8 (18)
C2—C1—C6122.3 (2)C3—C4—H4121.6 (18)
I1—C2—C1125.33 (19)C5—C4—H4118.0 (18)
I1—C2—C3117.19 (19)C1—C6—H6119.6 (19)
C1—C2—C3117.5 (2)C5—C6—H6121.8 (19)
O1A—N1—C1—C230.2 (5)C2—C1—C6—C50.5 (4)
O1A—N1—C1—C6148.8 (4)I1—C2—C3—C4178.4 (2)
O2A—N1—C1—C2152.2 (4)C1—C2—C3—C40.0 (4)
O2A—N1—C1—C628.8 (5)C2—C3—C4—C50.1 (5)
N1—C1—C2—I11.0 (4)C3—C4—C5—Cl1179.9 (3)
N1—C1—C2—C3179.3 (3)C3—C4—C5—C60.1 (5)
C6—C1—C2—I1177.9 (2)Cl1—C5—C6—C1179.5 (2)
C6—C1—C2—C30.3 (4)C4—C5—C6—C10.4 (4)
N1—C1—C6—C5179.5 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H3ClINO2
Mr283.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.1583 (2), 14.5213 (7), 13.7990 (6)
β (°) 93.361 (2)
V3)831.81 (7)
Z4
Radiation typeMo Kα
µ (mm1)4.12
Crystal size (mm)0.26 × 0.12 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.554, 0.664
No. of measured, independent and
observed [I > 2σ(I)] reflections
9922, 2157, 1684
Rint0.025
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.051, 1.02
No. of reflections2157
No. of parameters128
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.66, 0.60

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

MNA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042–120607-PS2–183).

References

First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMeriles, C. A., de Almeida Santos, R. H., do Prado Gambardella, M. T., Ellena, J., Mascarenhas, Y. P. & Brunetti, A. H. (1999). J. Mol. Struct. 513, 245–250.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds