organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o560-o561

2-Iso­butyl-2-phosphabi­cyclo­[3.3.1]nonane 2-selenide

aSasol Technology Research & Development, 1 Klasie Havenga Road, Sasolburg 1947, South Africa, and bDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: fanie.otto@sasol.com

(Received 9 February 2009; accepted 16 February 2009; online 21 February 2009)

The title compound, C12H23PSe, represents the first structure of a phosphine containing the bicyclic 2-phospha­bicyclo­[3.3.1]nonane (VCH) unit. It contains two chiral centres per mol­ecule which can be either R,R- or S,S and crystallizes as a centrosymmetric, racemic micture of the enanti­omers. The P—Se bond distance of 2.1360 (16) Å is typical for these compounds. The Tolman cone angle (2.28 Å from P) was calculated as 163°, and the effective cone angle (using the crystallographically determined P—Se bond distance) is 168°.

Related literature

For the synthesis of phosphine selenides, see: Otto et al. (2005[Otto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337-4342.]). For the evaluation of ligand electronic properties, see: Allen & Taylor (1982[Allen, D. W. & Taylor, B. F. J. (1982). Chem. Soc. Dalton Trans. pp. 51-54.]); Bungu & Otto (2007b[Bungu, P. N. & Otto, S. (2007b). J. Organomet. Chem. 692, 3370-3379.]); Muller et al. (2008[Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]); Otto & Roodt (2004[Otto, S. & Roodt, A. (2004). Inorg. Chim. Acta, 357, 1-10.]); Roodt & Steyn (2000[Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, edited by S. G. Pandalai, pp. 1-23. Trivandrum: Transworld Research Network.]). For the application of bicyclic ligands in catalysis, see: Bungu & Otto (2007a[Bungu, P. N. & Otto, S. (2007a). Dalton Trans. pp. 2876-2884.]); Crause et al. (2003[Crause, C., Bennie, L., Damoense, L., Dwyer, C. L., Grove, C., Grimmer, N., Janse van Rensburg, W., Kirk, M. M., Mokheseng, K. M., Otto, S. & Steynberg, P. J. (2003). Dalton Trans. pp. 2036-2042.]); Dwyer et al. (2004[Dwyer, C., Assumption, H., Coetzee, J., Crause, C., Damoense, L. & Kirk, M. M. (2004). Coord. Chem. Rev. 248, 653-670.]); Steynberg et al. (2003[Steynberg, P. J., Van Rensburg, H., Grove, J. J. C., Otto, S. & Crause, C. (2003). Int. Appl. WO, 2003068719, A2.]); Van Winkle et al. (1969[Van Winkle, J. L., Lorenzo, S., Morris, R. C. & Mason, R. F. (1969). US Patent No. 3 420 898.]). For information on cone angles, see: Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]); Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]).

[Scheme 1]

Experimental

Crystal data
  • C12H23PSe

  • Mr = 277.23

  • Monoclinic, P 2/c

  • a = 10.763 (2) Å

  • b = 7.2540 (15) Å

  • c = 17.530 (4) Å

  • β = 97.93 (3)°

  • V = 1355.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.85 mm−1

  • T = 293 K

  • 0.14 × 0.12 × 0.08 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.691, Tmax = 0.804

  • 9132 measured reflections

  • 3366 independent reflections

  • 1658 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.181

  • S = 1.02

  • 3366 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
X-ray and spectroscopic data (Å, Hz) for selected phosphine selenides.

P Se—P 1JSe—P
PMe3i 2.111 (3) 684
PCy3ii 2.108 (1) 676
VCH-iBuiii 2.1360 (16) 672, 687
Phoban-Phiv 2.1090 (9) 689, 717
PPhCy2v 2.1260 (8) 701
P(o-Tol)3vi 2.116 (5) 708
PPh2Cyv 2.111 (2) 725
PPh3vii 2.106 (1) 733
P(NMe2)3viii 2.120 (1) 797
Notes: (i) Cogne et al. (1980[Cogne, A., Grant, A., Laugier, J., Robert, J. B. & Wiesenfield, L. (1980). J. Am. Chem. Soc. 102, 2238-2242.]); (ii) Davies et al. (1991[Davies, J. A., Dutremez, S. & Pinkerton, A. A. (1991). Inorg. Chem. 30, 2380-2387.]); (iii) this work; (iv) Bungu & Otto (2007b[Bungu, P. N. & Otto, S. (2007b). J. Organomet. Chem. 692, 3370-3379.]); (v) Muller et al. (2008[Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]); (vi) Cameron & Dahlen (1975[Cameron, T. S. & Dahlen, B. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1737-1751.]); (vii) Codding & Kerr (1979[Codding, P. W. & Kerr, K. A. (1979). Acta Cryst. B35, 1261-1263.]); (viii) Rømming & Songstad (1979[Rømming, C. & Songstad, J. (1979). Acta Chem. Scand. Ser. A, 33, 187-197.]).

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It is well established that the steric and electronic properties of phosphine ligands have a major influence on the chemistry of its metal species. Sevaral methods are used to quantify the electronic characteristics of phosphines, including NMR measurements of first order Pt—P, Rh—P, Se—P and P—BH3 coupling constants (Allen & Taylor, 1982 and Roodt & Steyn, 2000) and measuring of CO stretching frequencies in complexes such as [Ni(L)(CO)3] (Tolman, 1977) or trans-[RhCl(CO)(L)2] (Otto & Roodt, 2004).

Phosphine ligands containing bicyclic substituents have been shown to add significant benefits to the catalytic performance of several homogeneously catalysed systems (Bungu & Otto, 2007a). The best known example is the 9-phosphabicyclo[3.3.1]nonane and 9-phosphabicyclo[4.2.1]nonane mixture of isomers (Phoban family of ligands) patented by Shell (Van Winkle et al., 1969) for modified cobalt hydroformylation. Sasol has reported on the use of bicyclic phosphines derived from (R)-(+)-Limonene (Lim family) (Crause et al., 2003, Dwyer et al., 2004) and vinylcyclohexene (VCH family) (Steynberg et al., 2003) for similar applications.

After a convenient synthetic protocol for phosphine selenides were developed (Otto et al., 2005) we extensively used the Se—P coupling constants for the quantification of electronic properties of phosphine ligands (Bungu & Otto, 2007b). Smaller values for the coupling constants correspond with ligands of higher basicity (more electron donating). We now report the synthesis and crystallographic characterization of the title compound, (I), 2-isobutyl-2-phosphabicyclo[3.3.1]nonane 2-selenide (VCH-iBu) which represents the first crystal structure of a VCH family member.

Compound (I) crystallizes in the monoclinic space group P2/c and consists of the VCH backbone, the iso-butyl side chain and the selenium atom coordinated to phosphorus in a tetrahedral fashion. The compound contains two chiral centres on the VCH backbone (C13 and C15) which can be R,R- or S,S (as in the arbitrarily chosen asymmetric molecule; Fig. 1) and it crystallizes as a racemic mixture on account of the centrosymmetric space group. The P atom could also be considered as chiral based on the four different substituents. All bond distances and angles are within normal ranges. Even though larger Se—P coupling constants are indicative of more effective s-orbital overlap no clear trends are evident in the Se—P bond distances.

The packing in the unit cell is governed by van der Waals forces alone since no pertinent intramolecular interactions were evident. The Tolman- (2.28 Å from P) and effective cone angles (using the crystallographically determined Se—P bond distance) were calculated (Otto, 2001) resulting in values of 163 and 168° respectively.

Related literature top

For the synthesis of phosphine selenides, see: Otto et al. (2005). For the evaluation of ligand electronic properties, see: Allen & Taylor (1982); Bungu & Otto (2007b); Muller et al. (2008); Otto & Roodt (2004); Roodt & Steyn (2000). For the application of bicyclic ligands in catalysis, see: Bungu & Otto (2007a); Crause et al. (2003); Dwyer et al. (2004); Steynberg et al. (2003); Van Winkle et al. (1969). For information on cone angles, see: Tolman (1977); (Otto, 2001).

Experimental top

2-Isobutyl-2-phosphabicyclo[3.3.1]nonane was generously supplied by Cytec; it exists as two stereo isomers in close to equal quantities. 31P (CDCl3): -36.23 and -35.22 p.p.m..

The title compound was prepared according to the procedure described previously (Bungu & Otto, 2007b), colourless blocks of (I) were obtained by evaporation of a dichloromethane solution. 31P (CDCl3): 29.72 p.p.m. (1JSe—P = 684 Hz) and 29.88 p.p.m. (1JSe—P = 670 Hz).

Refinement top

The H atoms were placed in geometrically idealized positions (CH = 0.98, CH2 = 0.97 and CH3 = 0.96 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for CH and CH2 and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular diagram of (I) showing 30% displacement ellipsoids.
2-Isobutyl-2-phosphabicyclo[3.3.1]nonane 2-selenide top
Crystal data top
C12H23PSeF(000) = 576
Mr = 277.23Dx = 1.358 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 10.763 (2) ÅCell parameters from 1002 reflections
b = 7.2540 (15) Åθ = 2.8–25.7°
c = 17.530 (4) ŵ = 2.85 mm1
β = 97.93 (3)°T = 293 K
V = 1355.6 (5) Å3Block, colourless
Z = 40.14 × 0.12 × 0.08 mm
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
3366 independent reflections
Radiation source: fine-focus sealed tube1658 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 512 pixels mm-1θmax = 28.3°, θmin = 1.9°
ϕ and ω scansh = 1114
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 89
Tmin = 0.691, Tmax = 0.804l = 2323
9132 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.9034P]
where P = (Fo2 + 2Fc2)/3
3366 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C12H23PSeV = 1355.6 (5) Å3
Mr = 277.23Z = 4
Monoclinic, P2/cMo Kα radiation
a = 10.763 (2) ŵ = 2.85 mm1
b = 7.2540 (15) ÅT = 293 K
c = 17.530 (4) Å0.14 × 0.12 × 0.08 mm
β = 97.93 (3)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
3366 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1658 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.804Rint = 0.062
9132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.02Δρmax = 0.58 e Å3
3366 reflectionsΔρmin = 0.58 e Å3
129 parameters
Special details top

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 40 s/frame with a frame width of 0.3°; a total of 1315 frames were collected.

The crystals were of poor quality and were, as a precautionary measure, covered with Canada balsam. Consequently some intensity in the reflextions were sacrificed and the completeness is somewhat low at high angles.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.21847 (13)0.0934 (2)0.03355 (8)0.0418 (4)
Se0.23308 (6)0.16679 (9)0.02405 (4)0.0633 (3)
C110.1179 (6)0.0851 (9)0.1269 (3)0.0588 (16)
H11A0.09570.21000.14330.071*
H11B0.04100.02060.12070.071*
C120.1797 (6)0.0105 (11)0.1899 (4)0.0712 (19)
H12A0.18700.14110.17800.085*
H12B0.12510.00220.23840.085*
C130.3099 (7)0.0640 (12)0.1997 (4)0.078 (2)
H130.34110.00920.24010.094*
C140.3999 (6)0.0340 (10)0.1255 (4)0.0699 (19)
H14A0.39400.09300.10900.084*
H14B0.48520.05540.13530.084*
C150.3697 (5)0.1675 (8)0.0582 (4)0.0528 (15)
H150.43360.14940.01330.063*
C160.3785 (6)0.3676 (8)0.0870 (4)0.0610 (17)
H16A0.46520.39380.09240.073*
H16B0.35440.45050.04810.073*
C170.2984 (7)0.4081 (11)0.1622 (4)0.082 (2)
H17A0.21120.41310.15380.099*
H17B0.32080.52850.18020.099*
C180.3119 (8)0.2667 (14)0.2240 (5)0.091 (2)
H18A0.24460.28590.26610.110*
H18B0.39030.29000.24380.110*
C210.1449 (5)0.2707 (7)0.0190 (3)0.0452 (13)
H21A0.05470.25580.00760.054*
H21B0.16550.38990.00100.054*
C220.1795 (5)0.2755 (8)0.1068 (3)0.0490 (14)
H220.17060.15050.12660.059*
C230.0893 (6)0.4026 (10)0.1427 (4)0.0680 (18)
H23A0.00460.36180.12770.102*
H23B0.10870.39910.19780.102*
H23C0.09810.52650.12500.102*
C240.3154 (6)0.3372 (10)0.1303 (4)0.0708 (19)
H24A0.32580.46030.11210.106*
H24B0.33500.33450.18540.106*
H24C0.37070.25540.10800.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0394 (8)0.0373 (7)0.0482 (8)0.0002 (6)0.0044 (6)0.0054 (6)
Se0.0709 (5)0.0383 (4)0.0804 (5)0.0015 (3)0.0100 (3)0.0152 (3)
C110.056 (4)0.061 (4)0.057 (4)0.000 (3)0.002 (3)0.007 (3)
C120.062 (4)0.085 (5)0.063 (4)0.003 (4)0.001 (3)0.022 (4)
C130.067 (5)0.105 (7)0.060 (4)0.018 (4)0.001 (3)0.017 (4)
C140.062 (4)0.074 (5)0.077 (5)0.013 (3)0.020 (4)0.006 (4)
C150.039 (3)0.054 (4)0.065 (4)0.005 (3)0.006 (3)0.014 (3)
C160.055 (4)0.047 (4)0.083 (5)0.008 (3)0.018 (3)0.010 (3)
C170.091 (6)0.080 (5)0.078 (5)0.010 (4)0.019 (4)0.032 (4)
C180.093 (6)0.108 (7)0.075 (5)0.014 (5)0.020 (4)0.018 (5)
C210.047 (3)0.036 (3)0.052 (3)0.001 (2)0.008 (3)0.003 (2)
C220.056 (4)0.042 (3)0.049 (3)0.000 (3)0.009 (3)0.004 (3)
C230.073 (5)0.063 (4)0.073 (4)0.001 (4)0.027 (4)0.010 (3)
C240.068 (4)0.078 (5)0.062 (4)0.008 (4)0.009 (3)0.013 (4)
Geometric parameters (Å, º) top
P—C151.822 (6)C16—H16A0.9700
P—C211.825 (6)C16—H16B0.9700
P—C111.835 (6)C17—C181.514 (12)
P—Se2.1360 (16)C17—H17A0.9700
C11—C121.531 (9)C17—H17B0.9700
C11—H11A0.9700C18—H18A0.9700
C11—H11B0.9700C18—H18B0.9700
C12—C131.534 (10)C21—C221.533 (8)
C12—H12A0.9700C21—H21A0.9700
C12—H12B0.9700C21—H21B0.9700
C13—C141.527 (9)C22—C241.530 (9)
C13—C181.532 (12)C22—C231.536 (8)
C13—H130.9800C22—H220.9800
C14—C151.594 (9)C23—H23A0.9600
C14—H14A0.9700C23—H23B0.9600
C14—H14B0.9700C23—H23C0.9600
C15—C161.544 (8)C24—H24A0.9600
C15—H150.9800C24—H24B0.9600
C16—C171.501 (9)C24—H24C0.9600
C15—P—C21112.0 (3)C17—C16—H16B108.6
C15—P—C11103.6 (3)C15—C16—H16B108.6
C21—P—C11103.3 (3)H16A—C16—H16B107.6
C15—P—Se111.27 (19)C16—C17—C18113.3 (6)
C21—P—Se113.12 (19)C16—C17—H17A108.9
C11—P—Se112.9 (2)C18—C17—H17A108.9
C12—C11—P113.3 (4)C16—C17—H17B108.9
C12—C11—H11A108.9C18—C17—H17B108.9
P—C11—H11A108.9H17A—C17—H17B107.7
C12—C11—H11B108.9C17—C18—C13116.4 (6)
P—C11—H11B108.9C17—C18—H18A108.2
H11A—C11—H11B107.7C13—C18—H18A108.2
C11—C12—C13114.6 (6)C17—C18—H18B108.2
C11—C12—H12A108.6C13—C18—H18B108.2
C13—C12—H12A108.6H18A—C18—H18B107.3
C11—C12—H12B108.6C22—C21—P117.4 (4)
C13—C12—H12B108.6C22—C21—H21A107.9
H12A—C12—H12B107.6P—C21—H21A107.9
C14—C13—C18110.0 (7)C22—C21—H21B107.9
C14—C13—C12109.6 (6)P—C21—H21B107.9
C18—C13—C12114.7 (6)H21A—C21—H21B107.2
C14—C13—H13107.4C24—C22—C21111.5 (5)
C18—C13—H13107.4C24—C22—C23110.5 (5)
C12—C13—H13107.4C21—C22—C23110.1 (5)
C13—C14—C15112.0 (5)C24—C22—H22108.2
C13—C14—H14A109.2C21—C22—H22108.2
C15—C14—H14A109.2C23—C22—H22108.2
C13—C14—H14B109.2C22—C23—H23A109.5
C15—C14—H14B109.2C22—C23—H23B109.5
H14A—C14—H14B107.9H23A—C23—H23B109.5
C16—C15—C14107.5 (5)C22—C23—H23C109.5
C16—C15—P116.8 (4)H23A—C23—H23C109.5
C14—C15—P106.0 (4)H23B—C23—H23C109.5
C16—C15—H15108.7C22—C24—H24A109.5
C14—C15—H15108.7C22—C24—H24B109.5
P—C15—H15108.7H24A—C24—H24B109.5
C17—C16—C15114.7 (6)C22—C24—H24C109.5
C17—C16—H16A108.6H24A—C24—H24C109.5
C15—C16—H16A108.6H24B—C24—H24C109.5
C15—P—C11—C1245.9 (6)C11—P—C15—C1450.9 (4)
C21—P—C11—C12162.9 (5)Se—P—C15—C1470.7 (4)
Se—P—C11—C1274.6 (5)C14—C15—C16—C1754.2 (7)
P—C11—C12—C1352.2 (8)P—C15—C16—C1764.7 (7)
C11—C12—C13—C1462.0 (8)C15—C16—C17—C1848.6 (9)
C11—C12—C13—C1862.3 (8)C16—C17—C18—C1345.1 (10)
C18—C13—C14—C1555.5 (8)C14—C13—C18—C1748.8 (9)
C12—C13—C14—C1571.5 (8)C12—C13—C18—C1775.3 (8)
C13—C14—C15—C1658.2 (7)C15—P—C21—C2287.0 (5)
C13—C14—C15—P67.5 (6)C11—P—C21—C22162.1 (4)
C21—P—C15—C1641.8 (6)Se—P—C21—C2239.8 (5)
C11—P—C15—C1668.9 (5)P—C21—C22—C2469.3 (6)
Se—P—C15—C16169.6 (4)P—C21—C22—C23167.7 (4)
C21—P—C15—C14161.6 (4)

Experimental details

Crystal data
Chemical formulaC12H23PSe
Mr277.23
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)10.763 (2), 7.2540 (15), 17.530 (4)
β (°) 97.93 (3)
V3)1355.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.85
Crystal size (mm)0.14 × 0.12 × 0.08
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.691, 0.804
No. of measured, independent and
observed [I > 2σ(I)] reflections
9132, 3366, 1658
Rint0.062
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.181, 1.02
No. of reflections3366
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.58

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2004) and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 2001).

X-ray and spectroscopic data (Å, Hz) for selected phosphine selenides. top
PSe—P1JSe—P
PMe3i2.111 (3)684
PCy3ii2.108 (1)676
VCH-iBuiii2.1360 (16)672,687
Phoban-Phiv2.1090 (9)689,717
PPhCy2v2.1260 (8)701
P(o-Tol)3vi2.116 (5)708
PPh2Cyv2.111 (2)725
PPh3vii2.106 (1)733
P(NMe2)3viii2.120 (1)797
Notes: (i) Cogne et al. (1980); (ii) Davies et al. (1991); (iii) this work; (iv) Bungu & Otto (2007b); (v) Muller et al. (2008); (vi) Cameron & Dahlen (1975); (vii) Codding & Kerr (1979); (viii) Rømming & Songstad (1979).
 

Acknowledgements

Financial support from Sasol Technology Research & Development and the University of the Free State is gratefully acknowledged. Part of this material is based on support by the South African National Research Foundation (NRF) under Grant Number (GUN 2053397). Any opinion, finding and conclusions or recommendations in this material are those of the authors and do not reflect the views of the NRF.

References

First citationAllen, D. W. & Taylor, B. F. J. (1982). Chem. Soc. Dalton Trans. pp. 51–54.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBungu, P. N. & Otto, S. (2007a). Dalton Trans. pp. 2876–2884.  Web of Science CSD CrossRef Google Scholar
First citationBungu, P. N. & Otto, S. (2007b). J. Organomet. Chem. 692, 3370–3379.  Web of Science CSD CrossRef CAS Google Scholar
First citationCameron, T. S. & Dahlen, B. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 1737–1751.  CrossRef Google Scholar
First citationCodding, P. W. & Kerr, K. A. (1979). Acta Cryst. B35, 1261–1263.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCogne, A., Grant, A., Laugier, J., Robert, J. B. & Wiesenfield, L. (1980). J. Am. Chem. Soc. 102, 2238–2242.  CSD CrossRef CAS Web of Science Google Scholar
First citationCrause, C., Bennie, L., Damoense, L., Dwyer, C. L., Grove, C., Grimmer, N., Janse van Rensburg, W., Kirk, M. M., Mokheseng, K. M., Otto, S. & Steynberg, P. J. (2003). Dalton Trans. pp. 2036–2042.  Web of Science CrossRef Google Scholar
First citationDavies, J. A., Dutremez, S. & Pinkerton, A. A. (1991). Inorg. Chem. 30, 2380–2387.  CSD CrossRef CAS Web of Science Google Scholar
First citationDwyer, C., Assumption, H., Coetzee, J., Crause, C., Damoense, L. & Kirk, M. M. (2004). Coord. Chem. Rev. 248, 653–670.  Web of Science CrossRef CAS Google Scholar
First citationMuller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657.  Web of Science CSD CrossRef PubMed Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337–4342.  Web of Science CrossRef CAS Google Scholar
First citationOtto, S. & Roodt, A. (2004). Inorg. Chim. Acta, 357, 1–10.  Web of Science CrossRef CAS Google Scholar
First citationRømming, C. & Songstad, J. (1979). Acta Chem. Scand. Ser. A, 33, 187–197.  Google Scholar
First citationRoodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, edited by S. G. Pandalai, pp. 1–23. Trivandrum: Transworld Research Network.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteynberg, P. J., Van Rensburg, H., Grove, J. J. C., Otto, S. & Crause, C. (2003). Int. Appl. WO, 2003068719, A2.  Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar
First citationVan Winkle, J. L., Lorenzo, S., Morris, R. C. & Mason, R. F. (1969). US Patent No. 3 420 898.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o560-o561
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds