organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 5-meth­­oxy-2-nitro-4-[3-(piperidin-1-yl)prop­­oxy]benzoate

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 13 February 2009; accepted 16 February 2009; online 21 February 2009)

In the mol­ecule of the title compound, C17H24N2O6, the dihedral angle between the four coplanar atoms of the piperidine ring and the benzene ring is 39.2 (1)°.

Related literature

For general background, see: Knesl et al. (2006[Knesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286-297.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H24N2O6

  • Mr = 352.38

  • Monoclinic, P 21 /n

  • a = 10.073 (2) Å

  • b = 11.140 (2) Å

  • c = 16.161 (3) Å

  • β = 97.23 (3)°

  • V = 1799.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.971, Tmax = 0.981

  • 3458 measured reflections

  • 3262 independent reflections

  • 1950 reflections with I > 2σ(I)

  • Rint = 0.042

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.175

  • S = 1.01

  • 3262 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies on quinazoline derivatives (Knesl et al., 2006), we report herein the crystal structure of the title compound, (I).

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C4-C9) is, of course, planar.

Related literature top

For general background, see: Knesl et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of methyl 4-(3-chloropropoxy)-5-methoxy-2-nitrobenzoate (0.013 mol), potassium carbonate (0.052mol), sodium iodide (0.026mol) in acetonitrile (33 mL) was stirred for 5-10 min at room temperature. Piperidine (0.040mol) was added and this mixture heated to reflux for 3 h. Reaction progress was monitored by TLC. Solid material was removed by filtration and washed with acetone. The combined filtrates were evaporated and the dark product obtained dissolved in dichloromethane (30 ml) and extracted with water (4 × 10 ml). The organic phase was dried (Na2SO4), decolorized (charcoal), filtered and evaporated to afford the product (yield; 71.2%,) as an amber oil. Yellow blocks of (I) were obtained by slow evaporation of an methanol solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids for the non-hydrogen atoms.
Methyl 5-methoxy-2-nitro-4-[3-(piperidin-1-yl)propoxy]benzoate top
Crystal data top
C17H24N2O6F(000) = 752
Mr = 352.38Dx = 1.301 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 10.073 (2) Åθ = 10–13°
b = 11.140 (2) ŵ = 0.10 mm1
c = 16.161 (3) ÅT = 293 K
β = 97.23 (3)°Block, yellow
V = 1799.1 (6) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1950 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 25.3°, θmin = 2.2°
ω/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.971, Tmax = 0.981l = 1919
3458 measured reflections3 standard reflections every 200 reflections
3262 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.06P)2 + 2.6P]
where P = (Fo2 + 2Fc2)/3
3262 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C17H24N2O6V = 1799.1 (6) Å3
Mr = 352.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.073 (2) ŵ = 0.10 mm1
b = 11.140 (2) ÅT = 293 K
c = 16.161 (3) Å0.30 × 0.20 × 0.20 mm
β = 97.23 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1950 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.042
Tmin = 0.971, Tmax = 0.9813 standard reflections every 200 reflections
3458 measured reflections intensity decay: 1%
3262 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.01Δρmax = 0.25 e Å3
3262 reflectionsΔρmin = 0.29 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0523 (2)0.3714 (2)0.40317 (15)0.0487 (7)
O21.0082 (3)0.1757 (2)0.38640 (16)0.0563 (7)
O30.7178 (3)0.5462 (3)0.32890 (18)0.0746 (10)
O40.7681 (3)0.3835 (3)0.39767 (17)0.0627 (8)
O50.8037 (2)0.4291 (2)0.03763 (13)0.0404 (6)
O60.9697 (2)0.2550 (2)0.05972 (14)0.0408 (6)
N10.7693 (3)0.4455 (3)0.33404 (18)0.0445 (8)
N20.6436 (2)0.7187 (2)0.17424 (16)0.0314 (6)
C11.1303 (4)0.3499 (4)0.4829 (2)0.0633 (12)
H1A1.16460.42470.50610.095*
H1B1.20350.29730.47560.095*
H1C1.07480.31340.51990.095*
C20.9964 (3)0.2764 (3)0.3627 (2)0.0395 (8)
C30.9287 (3)0.3122 (3)0.27838 (19)0.0325 (7)
C40.9752 (3)0.2621 (3)0.20979 (19)0.0310 (7)
H4A1.03910.20150.21740.037*
C50.9293 (3)0.2995 (3)0.13026 (19)0.0303 (7)
C60.8349 (3)0.3941 (3)0.1185 (2)0.0328 (7)
C70.7857 (3)0.4424 (3)0.18563 (19)0.0316 (7)
H7A0.72290.50390.17820.038*
C80.8291 (3)0.4000 (3)0.26530 (19)0.0323 (7)
C91.0556 (4)0.1520 (3)0.0662 (2)0.0520 (10)
H9A1.07620.13030.01180.078*
H9B1.01120.08630.08960.078*
H9C1.13680.17060.10160.078*
C100.7202 (3)0.5334 (3)0.0212 (2)0.0368 (8)
H10A0.75560.59990.05600.044*
H10B0.63010.51650.03320.044*
C110.7190 (3)0.5643 (3)0.0687 (2)0.0380 (8)
H11A0.68790.49570.10270.046*
H11B0.80940.58270.07960.046*
C120.6288 (3)0.6713 (3)0.0931 (2)0.0404 (8)
H12A0.53640.64740.09220.048*
H12B0.64880.73430.05190.048*
C130.5908 (4)0.6370 (3)0.2416 (2)0.0462 (9)
H13A0.49570.62580.24010.055*
H13B0.63400.55950.23260.055*
C140.6130 (5)0.6835 (4)0.3253 (2)0.0601 (11)
H14A0.57130.62940.36790.072*
H14B0.70830.68480.32930.072*
C150.5571 (4)0.8070 (4)0.3413 (2)0.0618 (11)
H15A0.46020.80420.34710.074*
H15B0.58370.83820.39280.074*
C160.6085 (4)0.8881 (3)0.2698 (2)0.0509 (10)
H16A0.56610.96610.27790.061*
H16B0.70410.89910.26910.061*
C170.5809 (4)0.8370 (3)0.1868 (2)0.0431 (9)
H17A0.61630.89050.14210.052*
H17B0.48510.82990.18600.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0500 (15)0.0488 (15)0.0426 (14)0.0022 (12)0.0119 (11)0.0005 (12)
O20.0646 (18)0.0432 (16)0.0596 (17)0.0030 (13)0.0019 (13)0.0194 (13)
O30.077 (2)0.079 (2)0.068 (2)0.0443 (18)0.0102 (16)0.0039 (17)
O40.0541 (17)0.083 (2)0.0536 (17)0.0055 (15)0.0154 (13)0.0086 (16)
O50.0454 (14)0.0389 (13)0.0358 (13)0.0092 (11)0.0006 (10)0.0073 (11)
O60.0398 (13)0.0429 (14)0.0400 (13)0.0103 (11)0.0065 (10)0.0039 (11)
N10.0279 (15)0.064 (2)0.0408 (17)0.0085 (15)0.0003 (12)0.0051 (16)
N20.0313 (14)0.0257 (14)0.0365 (14)0.0058 (11)0.0010 (11)0.0049 (12)
C10.054 (3)0.085 (3)0.046 (2)0.005 (2)0.0129 (18)0.001 (2)
C20.0359 (19)0.042 (2)0.0406 (19)0.0052 (16)0.0040 (15)0.0079 (17)
C30.0281 (17)0.0323 (18)0.0358 (18)0.0028 (14)0.0015 (13)0.0014 (14)
C40.0257 (16)0.0305 (17)0.0369 (18)0.0034 (13)0.0052 (13)0.0002 (14)
C50.0249 (16)0.0276 (17)0.0385 (18)0.0009 (13)0.0038 (13)0.0059 (14)
C60.0273 (17)0.0325 (18)0.0369 (18)0.0028 (13)0.0024 (13)0.0020 (14)
C70.0249 (16)0.0341 (18)0.0356 (17)0.0060 (14)0.0025 (13)0.0005 (14)
C80.0280 (17)0.0339 (18)0.0348 (17)0.0045 (14)0.0039 (13)0.0040 (14)
C90.051 (2)0.045 (2)0.060 (2)0.0147 (18)0.0097 (18)0.0103 (19)
C100.0323 (18)0.0338 (18)0.044 (2)0.0052 (14)0.0025 (14)0.0066 (15)
C110.0389 (19)0.0320 (18)0.0419 (19)0.0012 (15)0.0009 (15)0.0072 (15)
C120.040 (2)0.041 (2)0.0394 (19)0.0064 (16)0.0013 (15)0.0054 (16)
C130.051 (2)0.041 (2)0.043 (2)0.0069 (17)0.0037 (16)0.0023 (17)
C140.077 (3)0.058 (3)0.043 (2)0.007 (2)0.0016 (19)0.004 (2)
C150.070 (3)0.071 (3)0.043 (2)0.011 (2)0.0005 (19)0.013 (2)
C160.055 (2)0.045 (2)0.054 (2)0.0093 (18)0.0088 (18)0.0187 (19)
C170.045 (2)0.0331 (19)0.051 (2)0.0104 (16)0.0081 (16)0.0028 (17)
Geometric parameters (Å, º) top
O1—C21.332 (4)C9—H9A0.9600
O1—C11.442 (4)C9—H9B0.9600
O2—C21.187 (4)C9—H9C0.9600
O3—N11.235 (4)C10—C111.492 (4)
O4—N11.240 (4)C10—H10A0.9700
O5—C61.362 (4)C10—H10B0.9700
O5—C101.439 (4)C11—C121.521 (4)
O6—C51.352 (4)C11—H11A0.9700
O6—C91.432 (4)C11—H11B0.9700
N1—C81.422 (4)C12—H12A0.9700
N2—C121.439 (4)C12—H12B0.9700
N2—C171.464 (4)C13—C141.492 (5)
N2—C131.466 (4)C13—H13A0.9700
C1—H1A0.9600C13—H13B0.9700
C1—H1B0.9600C14—C151.498 (6)
C1—H1C0.9600C14—H14A0.9700
C2—C31.499 (4)C14—H14B0.9700
C3—C41.375 (4)C15—C161.506 (6)
C3—C81.398 (4)C15—H15A0.9700
C4—C51.375 (4)C15—H15B0.9700
C4—H4A0.9300C16—C171.514 (5)
C5—C61.416 (4)C16—H16A0.9700
C6—C71.360 (4)C16—H16B0.9700
C7—C81.389 (4)C17—H17A0.9700
C7—H7A0.9300C17—H17B0.9700
C2—O1—C1117.1 (3)O5—C10—H10B110.2
C6—O5—C10117.9 (2)C11—C10—H10B110.2
C5—O6—C9118.3 (3)H10A—C10—H10B108.5
O3—N1—O4120.9 (3)C10—C11—C12111.3 (3)
O3—N1—C8119.1 (3)C10—C11—H11A109.4
O4—N1—C8119.9 (3)C12—C11—H11A109.4
C12—N2—C17111.4 (3)C10—C11—H11B109.4
C12—N2—C13112.3 (3)C12—C11—H11B109.4
C17—N2—C13110.2 (3)H11A—C11—H11B108.0
O1—C1—H1A109.5N2—C12—C11113.3 (3)
O1—C1—H1B109.5N2—C12—H12A108.9
H1A—C1—H1B109.5C11—C12—H12A108.9
O1—C1—H1C109.5N2—C12—H12B108.9
H1A—C1—H1C109.5C11—C12—H12B108.9
H1B—C1—H1C109.5H12A—C12—H12B107.7
O2—C2—O1125.0 (3)N2—C13—C14112.1 (3)
O2—C2—C3124.1 (3)N2—C13—H13A109.2
O1—C2—C3110.5 (3)C14—C13—H13A109.2
C4—C3—C8118.2 (3)N2—C13—H13B109.2
C4—C3—C2117.5 (3)C14—C13—H13B109.2
C8—C3—C2124.0 (3)H13A—C13—H13B107.9
C5—C4—C3121.5 (3)C13—C14—C15112.3 (3)
C5—C4—H4A119.3C13—C14—H14A109.1
C3—C4—H4A119.3C15—C14—H14A109.1
O6—C5—C4125.2 (3)C13—C14—H14B109.1
O6—C5—C6115.3 (3)C15—C14—H14B109.1
C4—C5—C6119.5 (3)H14A—C14—H14B107.9
C7—C6—O5126.1 (3)C14—C15—C16109.5 (3)
C7—C6—C5119.6 (3)C14—C15—H15A109.8
O5—C6—C5114.4 (3)C16—C15—H15A109.8
C6—C7—C8120.1 (3)C14—C15—H15B109.8
C6—C7—H7A120.0C16—C15—H15B109.8
C8—C7—H7A120.0H15A—C15—H15B108.2
C7—C8—C3120.9 (3)C15—C16—C17111.7 (3)
C7—C8—N1119.2 (3)C15—C16—H16A109.3
C3—C8—N1119.8 (3)C17—C16—H16A109.3
O6—C9—H9A109.5C15—C16—H16B109.3
O6—C9—H9B109.5C17—C16—H16B109.3
H9A—C9—H9B109.5H16A—C16—H16B107.9
O6—C9—H9C109.5N2—C17—C16109.7 (3)
H9A—C9—H9C109.5N2—C17—H17A109.7
H9B—C9—H9C109.5C16—C17—H17A109.7
O5—C10—C11107.4 (3)N2—C17—H17B109.7
O5—C10—H10A110.2C16—C17—H17B109.7
C11—C10—H10A110.2H17A—C17—H17B108.2
C1—O1—C2—O21.6 (5)C4—C3—C8—C75.0 (5)
C1—O1—C2—C3175.4 (3)C2—C3—C8—C7169.6 (3)
O2—C2—C3—C455.8 (5)C4—C3—C8—N1173.9 (3)
O1—C2—C3—C4118.1 (3)C2—C3—C8—N111.5 (5)
O2—C2—C3—C8129.6 (4)O3—N1—C8—C725.2 (5)
O1—C2—C3—C856.6 (4)O4—N1—C8—C7153.9 (3)
C8—C3—C4—C52.3 (5)O3—N1—C8—C3155.8 (3)
C2—C3—C4—C5172.7 (3)O4—N1—C8—C325.0 (5)
C9—O6—C5—C47.4 (4)C6—O5—C10—C11171.1 (3)
C9—O6—C5—C6174.4 (3)O5—C10—C11—C12177.9 (3)
C3—C4—C5—O6180.0 (3)C17—N2—C12—C11166.2 (3)
C3—C4—C5—C61.8 (5)C13—N2—C12—C1169.6 (4)
C10—O5—C6—C75.7 (4)C10—C11—C12—N2168.9 (3)
C10—O5—C6—C5173.2 (3)C12—N2—C13—C14176.9 (3)
O6—C5—C6—C7178.3 (3)C17—N2—C13—C1458.3 (4)
C4—C5—C6—C73.4 (4)N2—C13—C14—C1555.0 (4)
O6—C5—C6—O52.8 (4)C13—C14—C15—C1651.9 (5)
C4—C5—C6—O5175.6 (3)C14—C15—C16—C1754.0 (5)
O5—C6—C7—C8178.2 (3)C12—N2—C17—C16175.3 (3)
C5—C6—C7—C80.7 (5)C13—N2—C17—C1659.3 (4)
C6—C7—C8—C33.5 (5)C15—C16—C17—N258.5 (4)
C6—C7—C8—N1175.4 (3)

Experimental details

Crystal data
Chemical formulaC17H24N2O6
Mr352.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.073 (2), 11.140 (2), 16.161 (3)
β (°) 97.23 (3)
V3)1799.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.971, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
3458, 3262, 1950
Rint0.042
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.175, 1.01
No. of reflections3262
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.29

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKnesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286–297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds