organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[(2-Hy­droxy­ethyl)iminiometh­yl]-6-meth­oxy­phenolate

aExperimental & Educational Technology Center, Linyi Normal University, Linyi 276005, People's Republic of China, and bDepartment of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China
*Correspondence e-mail: guoxiatan@163.com

(Received 13 February 2009; accepted 13 February 2009; online 21 February 2009)

The title Schiff base compound, C10H13NO3, obtained by the reaction of 2-hydr­oxy-3-methoxy­benzaldehyde and 2-amino­ethanol in methanol solution, crystallizes in a zwitterionic form, in which the mol­ecule adopts a trans configuration about the central C=N bond. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal structure, mol­ecules are linked into chains by inter­molecular O—H⋯O hydrogen bonding.

Related literature

For related structures, see: Cui et al. (1999[Cui, X.-G., Hu, Q.-P. & Gong, J. (1999). Acta Chim. Sin. 57, 189-195.]); Dong et al. (2007[Dong, J.-F., Li, L.-Z., Yu, W.-J., Cui, H. & Wang, D.-Q. (2007). Acta Cryst. E63, m1992.]); Li et al. (2005[Li, L.-Z., Zhao, C., Ji, T.-X., Ji, H.-W., Yu, Y.-H., Guo, G.-Q. & Chao, H. (2005). J. Inorg. Biochem. 99, 1076-1082.]); Ng (2008[Ng, S. W. (2008). Acta Cryst. E64, o2455.]); Oshio et al. (2003[Oshio, H., Hoshino, N., Ito, T., Nakano, M., Renz, F. & Gutlich, P. (2003). Angew. Chem. Int. Ed. Engl. 42, 223-225.]); Sun et al. (2006[Sun, Y.-X., Zhang, R., Tian, L.-J., Xu, L.-X. & Sun, S.-L. (2006). Acta Cryst. E62, o4433-o4435.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13NO3

  • Mr = 195.21

  • Orthorhombic, P c a 21

  • a = 14.148 (6) Å

  • b = 6.587 (3) Å

  • c = 10.760 (4) Å

  • V = 1002.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.30 × 0.30 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.991

  • 7345 measured reflections

  • 1041 independent reflections

  • 923 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.07

  • 1041 reflections

  • 127 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.95 2.617 (2) 134
O3—H3⋯O1i 0.82 1.95 2.741 (3) 161
Symmetry code: (i) [x-{\script{1\over 2}}, -y+1, z].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), derived from 3-methoxy-2-hydroxybenzaldehyde and 2-aminoethanol, is a potential NO3 tetradentate Schiff base ligand and its complexes with Cd(II), Cu(II), Zn(II) and Fe(III) have been reported (Cui et al., 1999; Dong et al., 2007; Li et al., 2005; Oshio et al., 2003). Here, the structure of (I) is described.

The title molecule exists in a zwitterionic form with a strong intramolecular N—H···O hydrogen bond (Table 1) between the NH+ and the phenolate O-, as shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al.,1987). The N1=C8 [1.294 (3) Å] and N1—C8 [1.453 (3) Å] bond distances are comparable to these found in similar Schiff base compounds, such as 2,4-Dibromo-6-(2-hydroxyethyliminiomethyl)- phenolate [1.277 (5) and 1.451 (4) Å] (Sun et al., 2006) and 4-chloro-2-[tris(hydroxymethyl)methyliminiomethyl]phenolate [1.288 (2) and 1.467 (2) Å] (Ng, 2008). As expected, the molecule adopts a trans configuration about the central C=N bond. In the crystal structure, O3—H3···O1i (symmetry code as given in Table 1) intermolecular hydrogen bonds formed between the hydroxy and oxygen of phenolate link the molecules into a one-dimension supramolecular chain.

Related literature top

For related structures, see: Cui et al. (1999); Dong et al. (2007); Li et al. (2005); Ng (2008); Oshio et al. (2003); Sun et al. (2006). For reference structural data, see: Allen et al. (1987).

Experimental top

3-Methoxy-2-hydroxybenzaldehyde (0.152 g, 1 mmol) and equimolar 2-aminoethanol (0.061 g, 1 mmol) were refluxed for 30 min in methanol solution (15 ml). The reaction mixtures were cooled to room temprature and filtered. After keeping the filtrate in air for 3 d, yellow blocks of (I) (yield 66%; mp 338–339 K) were obtained.

Refinement top

H atoms were placed at calculated positions and refined in the riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for sp2 H atoms, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C) for imino group, and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(C) for hydroxy. Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids drawn at the 50% probability level. The N—H···O hydrogen bond is shown as a dashed line.
(E)-2-[(2-Hydroxyethyl)iminiomethyl]-6-methoxyphenolate top
Crystal data top
C10H13NO3F(000) = 416
Mr = 195.21Dx = 1.293 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1828 reflections
a = 14.148 (6) Åθ = 2.9–20.4°
b = 6.587 (3) ŵ = 0.10 mm1
c = 10.760 (4) ÅT = 295 K
V = 1002.8 (7) Å3Block, yellow
Z = 40.30 × 0.30 × 0.12 mm
Data collection top
Bruker APEX CCD
diffractometer
1041 independent reflections
Radiation source: fine-focus sealed tube923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1717
Tmin = 0.974, Tmax = 0.991k = 88
7345 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.0337P]
where P = (Fo2 + 2Fc2)/3
1041 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.09 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C10H13NO3V = 1002.8 (7) Å3
Mr = 195.21Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 14.148 (6) ŵ = 0.10 mm1
b = 6.587 (3) ÅT = 295 K
c = 10.760 (4) Å0.30 × 0.30 × 0.12 mm
Data collection top
Bruker APEX CCD
diffractometer
1041 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
923 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.991Rint = 0.037
7345 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.084H-atom parameters constrained
S = 1.07Δρmax = 0.09 e Å3
1041 reflectionsΔρmin = 0.15 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.53278 (16)0.7444 (3)0.0860 (2)0.0408 (5)
C20.57651 (16)0.9338 (3)0.0535 (2)0.0451 (6)
C30.69788 (18)1.1717 (4)0.1022 (3)0.0718 (9)
H3A0.65191.27630.11640.108*
H3B0.72071.18070.01830.108*
H3C0.74971.18850.15880.108*
C40.5396 (2)1.0535 (4)0.0390 (3)0.0557 (7)
H40.56801.17760.05660.067*
C50.4599 (2)0.9927 (5)0.1078 (3)0.0625 (8)
H50.43661.07500.17100.075*
C60.41744 (18)0.8135 (4)0.0814 (3)0.0570 (7)
H60.36550.77180.12780.068*
C70.45145 (15)0.6891 (4)0.0160 (2)0.0436 (5)
C80.39971 (16)0.5130 (4)0.0485 (2)0.0460 (6)
H80.34790.47900.00060.055*
C90.36073 (17)0.2262 (4)0.1804 (3)0.0535 (6)
H9A0.40050.10910.19610.064*
H9B0.31730.19150.11400.064*
C100.30532 (16)0.2758 (4)0.2962 (3)0.0529 (6)
H10A0.27170.15530.32320.064*
H10B0.34900.31370.36170.064*
N10.41934 (14)0.3958 (3)0.1415 (2)0.0478 (5)
H10.47010.41990.18290.057*
O10.56592 (11)0.6322 (2)0.17429 (18)0.0486 (4)
O20.65545 (11)0.9784 (3)0.1213 (2)0.0564 (5)
O30.23996 (12)0.4345 (2)0.2785 (2)0.0584 (5)
H30.19460.39240.23870.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0358 (11)0.0387 (12)0.0478 (13)0.0046 (9)0.0063 (10)0.0074 (11)
C20.0393 (12)0.0407 (13)0.0553 (16)0.0030 (10)0.0127 (11)0.0106 (12)
C30.0623 (17)0.0421 (15)0.111 (3)0.0143 (14)0.0175 (19)0.0154 (16)
C40.0608 (17)0.0435 (14)0.0629 (17)0.0038 (13)0.0206 (15)0.0050 (13)
C50.0670 (18)0.0703 (19)0.0502 (16)0.0090 (15)0.0064 (14)0.0132 (15)
C60.0507 (14)0.0726 (18)0.0477 (15)0.0022 (13)0.0017 (12)0.0014 (14)
C70.0378 (12)0.0484 (13)0.0445 (13)0.0014 (11)0.0028 (10)0.0071 (12)
C80.0341 (12)0.0521 (14)0.0520 (14)0.0004 (10)0.0026 (11)0.0117 (12)
C90.0420 (13)0.0424 (13)0.0760 (18)0.0020 (10)0.0002 (14)0.0002 (13)
C100.0422 (12)0.0533 (15)0.0633 (16)0.0033 (11)0.0071 (12)0.0138 (13)
N10.0354 (10)0.0481 (12)0.0600 (14)0.0036 (9)0.0025 (9)0.0050 (11)
O10.0400 (8)0.0440 (9)0.0619 (11)0.0040 (7)0.0082 (8)0.0003 (9)
O20.0436 (9)0.0433 (9)0.0822 (14)0.0083 (8)0.0020 (9)0.0062 (9)
O30.0410 (9)0.0591 (10)0.0750 (13)0.0088 (9)0.0069 (9)0.0038 (10)
Geometric parameters (Å, º) top
C1—O11.291 (3)C6—H60.9300
C1—C71.423 (3)C7—C81.416 (3)
C1—C21.436 (3)C8—N11.294 (3)
C2—O21.366 (3)C8—H80.9300
C2—C41.373 (4)C9—N11.453 (3)
C3—O21.422 (3)C9—C101.508 (4)
C3—H3A0.9600C9—H9A0.9700
C3—H3B0.9600C9—H9B0.9700
C3—H3C0.9600C10—O31.409 (3)
C4—C51.407 (4)C10—H10A0.9700
C4—H40.9300C10—H10B0.9700
C5—C61.355 (4)N1—H10.8600
C5—H50.9300O3—H30.8200
C6—C71.415 (4)
O1—C1—C7122.5 (2)C6—C7—C1121.3 (2)
O1—C1—C2121.3 (2)C8—C7—C1119.8 (2)
C7—C1—C2116.2 (2)N1—C8—C7124.6 (2)
O2—C2—C4125.1 (2)N1—C8—H8117.7
O2—C2—C1114.1 (2)C7—C8—H8117.7
C4—C2—C1120.8 (2)N1—C9—C10111.6 (2)
O2—C3—H3A109.5N1—C9—H9A109.3
O2—C3—H3B109.5C10—C9—H9A109.3
H3A—C3—H3B109.5N1—C9—H9B109.3
O2—C3—H3C109.5C10—C9—H9B109.3
H3A—C3—H3C109.5H9A—C9—H9B108.0
H3B—C3—H3C109.5O3—C10—C9113.0 (2)
C2—C4—C5121.5 (2)O3—C10—H10A109.0
C2—C4—H4119.2C9—C10—H10A109.0
C5—C4—H4119.2O3—C10—H10B109.0
C6—C5—C4119.5 (3)C9—C10—H10B109.0
C6—C5—H5120.2H10A—C10—H10B107.8
C4—C5—H5120.2C8—N1—C9124.0 (2)
C5—C6—C7120.6 (3)C8—N1—H1118.0
C5—C6—H6119.7C9—N1—H1118.0
C7—C6—H6119.7C2—O2—C3117.4 (2)
C6—C7—C8118.8 (2)C10—O3—H3109.5
O1—C1—C2—O21.6 (3)C2—C1—C7—C61.1 (3)
C7—C1—C2—O2178.65 (19)O1—C1—C7—C84.8 (3)
O1—C1—C2—C4178.8 (2)C2—C1—C7—C8175.0 (2)
C7—C1—C2—C41.0 (3)C6—C7—C8—N1174.5 (2)
O2—C2—C4—C5177.5 (2)C1—C7—C8—N11.8 (3)
C1—C2—C4—C52.1 (3)N1—C9—C10—O363.7 (3)
C2—C4—C5—C61.0 (4)C7—C8—N1—C9174.2 (2)
C4—C5—C6—C71.2 (4)C10—C9—N1—C8104.5 (3)
C5—C6—C7—C8174.0 (2)C4—C2—O2—C35.8 (3)
C5—C6—C7—C12.2 (4)C1—C2—O2—C3174.6 (2)
O1—C1—C7—C6179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.952.617 (2)134
O3—H3···O1i0.821.952.741 (3)161
Symmetry code: (i) x1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H13NO3
Mr195.21
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)295
a, b, c (Å)14.148 (6), 6.587 (3), 10.760 (4)
V3)1002.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.12
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.974, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
7345, 1041, 923
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.07
No. of reflections1041
No. of parameters127
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.09, 0.15

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.952.617 (2)134
O3—H3···O1i0.821.952.741 (3)161
Symmetry code: (i) x1/2, y+1, z.
 

Acknowledgements

This work was supported by the Key Laboratory of Colloid Interface Chemistry of the Ministry of Education (200707).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, X.-G., Hu, Q.-P. & Gong, J. (1999). Acta Chim. Sin. 57, 189–195.  CAS Google Scholar
First citationDong, J.-F., Li, L.-Z., Yu, W.-J., Cui, H. & Wang, D.-Q. (2007). Acta Cryst. E63, m1992.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, L.-Z., Zhao, C., Ji, T.-X., Ji, H.-W., Yu, Y.-H., Guo, G.-Q. & Chao, H. (2005). J. Inorg. Biochem. 99, 1076–1082.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNg, S. W. (2008). Acta Cryst. E64, o2455.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOshio, H., Hoshino, N., Ito, T., Nakano, M., Renz, F. & Gutlich, P. (2003). Angew. Chem. Int. Ed. Engl. 42, 223–225.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X., Zhang, R., Tian, L.-J., Xu, L.-X. & Sun, S.-L. (2006). Acta Cryst. E62, o4433–o4435.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds