organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-[1-(4-Hy­droxy­phen­yl)ethyl­­idene]-2-(quinolin-8-yl­­oxy)acetohydrazide methanol solvate

aCollege of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, People's Republic of China
*Correspondence e-mail: catalyst007@126.com

(Received 19 February 2009; accepted 22 February 2009; online 28 February 2009)

In the title compound, C19H17N3O3·CH4O, the mean planes of the benzene ring and the quinoline rings make a dihedral angle of 75.5 (2)°. The acetohydrazide mol­ecules are connected via pairs of inter­molecular O—H⋯O hydrogen bonds into inversion dimers, and the methanol solvent mol­ecule is linked to the acetohydrazide mol­ecule via inter­molecular N—H⋯O and bifurcated O—H⋯(N,O) hydrogen bonds.

Related literature

For background on the coordination chemistry of 8-hydroxy­quinoline and its derivatives, see: Chen & Shi (1998[Chen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161—174.]). For related structures, see: Wen et al. (2005[Wen, Y.-H., Zhang, S.-S., Li, M.-J. & Li, X.-M. (2005). Acta Cryst. E61, o2045-o2046.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17N3O3·CH4O

  • Mr = 367.40

  • Triclinic, [P \overline 1]

  • a = 9.552 (3) Å

  • b = 10.622 (2) Å

  • c = 10.665 (4) Å

  • α = 70.055 (5)°

  • β = 83.033 (4)°

  • γ = 65.845 (4)°

  • V = 927.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.986

  • 4927 measured reflections

  • 3261 independent reflections

  • 2430 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.143

  • S = 1.08

  • 3261 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 1.85 2.647 (3) 165
O4—H4⋯N1 0.82 1.96 2.773 (3) 174
O4—H4⋯O1 0.82 2.60 3.036 (3) 115
N2—H2⋯O4 0.86 2.10 2.856 (3) 146
Symmetry code: (i) -x-1, -y+2, -z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

8-Hydroxyquinoline and its derivatives constitute well known ligands in coordination chemistry (Chen & Shi, 1998). In our search for new extractants of metal ions and biologically active materials, the title compound, (I), has been synthesized. We report here its crystal structure. All bond lengths and angles are normal (Allen et al., 1987), and are comparable to those in the related compound N'-(2-Fluorobenzylidene) -2-(quinolin-8-yloxy)-acetohydrazide methanol solvate (Wen et al., 2005). The mean planes of the benzene ring and the quinoline rings make a dihedral angle of 75.5 (2)°. In the crystal structure, the methanol molecule is linked to the C19H17N3O3 molecule via intermolecular O—H···O, N—H···O and O—H···N hydrogen bonds (Fig. 1), intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2).

Related literature top

For background on the coordination chemistry of 8-hydroxyquinoline and its derivatives, see: Chen & Shi (1998). For related structures, see: Wen et al. (2005). For reference structural data, see: Allen et al. (1987).

Experimental top

2-(Quinolin-8-yloxy)acetohydrazide (2.18 g, 10 mmol), 1-(4-hydroxyphenyl)ethanone (1.36 g, 10 mmol), ethanol (40 ml) and some drops of acetic acid were added to a 100 ml flask, and refluxed for 3 h. After cooling to room temperature, the mixture was filtered. Pale yellow blocks of (I) were obtained by slow evaporation of a acetone-methanol (1:2, v/v) solution over a period of 3 d. Analysis calculated for C20H21N3O4: C 65.38, H 5.76, N 11.43%; found: C 65.76, H 5.47, N 11.67%.

Refinement top

All H atoms were initially located in a difference Fourier map. The methylene H atoms were constrained to an ideal geometry, with C—H = 0.93 Å for aryl, 0.97 Å for the methylene, and 0.96 Å for the methyl H atoms, O—H = 0.82 Å and N—H = 0.86 Å. Uiso(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for the methyl groups, and 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The structure of the dimers formed via hydrogen bonds, H atoms have been omitted for clarity. The dashed lines indicate hydrogen bonds.
(E)-N'-[1-(4-Hydroxyphenyl)ethylidene]-2-(quinolin-8- yloxy)acetohydrazide methanol solvate top
Crystal data top
C19H17N3O3·CH4OZ = 2
Mr = 367.40F(000) = 388
Triclinic, P1Dx = 1.315 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.552 (3) ÅCell parameters from 1866 reflections
b = 10.622 (2) Åθ = 2.5–26.5°
c = 10.665 (4) ŵ = 0.09 mm1
α = 70.055 (5)°T = 295 K
β = 83.033 (4)°Block, light yellow
γ = 65.845 (4)°0.20 × 0.18 × 0.15 mm
V = 927.9 (5) Å3
Data collection top
Bruker SMART CCD
diffractometer
3261 independent reflections
Radiation source: fine-focus sealed tube2430 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 118
Tmin = 0.982, Tmax = 0.986k = 127
4927 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.5262P]
where P = (Fo2 + 2Fc2)/3
3261 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C19H17N3O3·CH4Oγ = 65.845 (4)°
Mr = 367.40V = 927.9 (5) Å3
Triclinic, P1Z = 2
a = 9.552 (3) ÅMo Kα radiation
b = 10.622 (2) ŵ = 0.09 mm1
c = 10.665 (4) ÅT = 295 K
α = 70.055 (5)°0.20 × 0.18 × 0.15 mm
β = 83.033 (4)°
Data collection top
Bruker SMART CCD
diffractometer
3261 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2430 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.986Rint = 0.021
4927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.08Δρmax = 0.17 e Å3
3261 reflectionsΔρmin = 0.20 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32959 (17)0.65533 (18)0.12916 (16)0.0512 (4)
O20.0115 (2)0.8800 (2)0.09376 (17)0.0620 (5)
O30.83771 (19)1.1439 (3)0.2526 (2)0.0726 (6)
H30.87621.12850.19770.109*
O40.1513 (2)0.5644 (2)0.3745 (2)0.0666 (5)
H40.24440.53470.36430.100*
N10.4677 (2)0.4420 (2)0.3533 (2)0.0523 (5)
N20.0236 (2)0.7950 (2)0.1324 (2)0.0516 (5)
H20.08070.74940.20340.062*
N30.1361 (2)0.8523 (2)0.1406 (2)0.0509 (5)
C10.5370 (3)0.3362 (3)0.4623 (3)0.0624 (7)
H10.47610.30850.53210.075*
C20.6963 (3)0.2631 (3)0.4795 (3)0.0694 (8)
H2A0.73930.18820.55810.083*
C30.7866 (3)0.3033 (3)0.3797 (3)0.0672 (8)
H3A0.89280.25580.38950.081*
C40.7203 (3)0.4173 (3)0.2607 (3)0.0528 (6)
C50.8077 (3)0.4653 (3)0.1532 (3)0.0638 (8)
H50.91430.42250.15890.077*
C60.7356 (3)0.5740 (3)0.0418 (3)0.0646 (8)
H60.79400.60590.02820.078*
C70.5749 (3)0.6397 (3)0.0292 (3)0.0540 (6)
H70.52830.71270.04930.065*
C80.4869 (3)0.5969 (3)0.1319 (2)0.0451 (6)
C90.5576 (3)0.4842 (3)0.2515 (2)0.0449 (6)
C100.2571 (3)0.7563 (3)0.0056 (2)0.0486 (6)
H10A0.29090.70930.06270.058*
H10B0.28840.83760.01990.058*
C110.0854 (3)0.8127 (3)0.0119 (2)0.0455 (6)
C120.1908 (3)0.8900 (3)0.2445 (2)0.0463 (6)
C130.0992 (3)0.8864 (3)0.3513 (3)0.0587 (7)
H13A0.00810.79830.37220.088*
H13B0.15970.88970.42980.088*
H13C0.07120.96890.32030.088*
C140.3614 (3)0.9510 (3)0.2510 (2)0.0447 (6)
C150.4388 (3)1.0446 (3)0.3227 (3)0.0577 (7)
H150.38311.06540.37290.069*
C160.5971 (3)1.1082 (3)0.3218 (3)0.0640 (8)
H160.64641.17160.37050.077*
C170.6820 (3)1.0784 (3)0.2495 (2)0.0508 (6)
C180.6079 (3)0.9839 (3)0.1787 (3)0.0578 (7)
H180.66440.96220.13000.069*
C190.4494 (3)0.9211 (3)0.1796 (3)0.0554 (7)
H190.40060.85730.13130.067*
C200.0957 (4)0.4729 (4)0.3498 (5)0.1075 (14)
H20A0.12920.38110.42020.161*
H20B0.13380.45760.26640.161*
H20C0.01440.51680.34560.161*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0323 (9)0.0558 (10)0.0498 (10)0.0091 (7)0.0026 (7)0.0074 (8)
O20.0498 (11)0.0737 (13)0.0533 (11)0.0199 (9)0.0132 (9)0.0100 (9)
O30.0358 (10)0.0972 (16)0.0839 (15)0.0128 (10)0.0033 (9)0.0429 (12)
O40.0499 (11)0.0642 (12)0.0743 (13)0.0161 (10)0.0034 (10)0.0174 (10)
N10.0471 (12)0.0523 (12)0.0533 (12)0.0163 (10)0.0040 (10)0.0142 (10)
N20.0341 (11)0.0552 (13)0.0525 (13)0.0051 (9)0.0079 (9)0.0144 (10)
N30.0346 (11)0.0521 (12)0.0560 (13)0.0064 (9)0.0049 (9)0.0166 (10)
C10.0664 (18)0.0619 (17)0.0547 (16)0.0257 (15)0.0087 (13)0.0096 (14)
C20.0640 (19)0.0627 (18)0.0703 (19)0.0161 (15)0.0258 (16)0.0099 (15)
C30.0456 (16)0.0624 (18)0.085 (2)0.0084 (13)0.0224 (15)0.0211 (16)
C40.0409 (14)0.0533 (15)0.0679 (17)0.0133 (12)0.0092 (12)0.0268 (13)
C50.0331 (13)0.0740 (19)0.086 (2)0.0173 (13)0.0023 (14)0.0330 (17)
C60.0447 (15)0.0720 (19)0.077 (2)0.0245 (14)0.0125 (14)0.0252 (16)
C70.0457 (14)0.0550 (15)0.0571 (16)0.0182 (12)0.0020 (12)0.0152 (12)
C80.0355 (12)0.0448 (13)0.0546 (14)0.0122 (10)0.0009 (11)0.0194 (11)
C90.0383 (13)0.0446 (13)0.0544 (15)0.0132 (11)0.0038 (11)0.0211 (11)
C100.0424 (13)0.0505 (14)0.0477 (14)0.0162 (11)0.0022 (11)0.0114 (11)
C110.0408 (13)0.0409 (13)0.0514 (14)0.0118 (10)0.0062 (11)0.0134 (11)
C120.0388 (13)0.0423 (13)0.0495 (14)0.0100 (10)0.0044 (11)0.0104 (11)
C130.0438 (14)0.0680 (18)0.0578 (16)0.0124 (13)0.0077 (12)0.0215 (14)
C140.0385 (12)0.0462 (13)0.0431 (13)0.0127 (10)0.0031 (10)0.0103 (11)
C150.0410 (14)0.0717 (18)0.0655 (17)0.0133 (13)0.0071 (12)0.0362 (15)
C160.0456 (15)0.0753 (19)0.0713 (18)0.0074 (13)0.0030 (13)0.0427 (16)
C170.0358 (13)0.0590 (16)0.0503 (14)0.0131 (11)0.0026 (11)0.0147 (12)
C180.0463 (15)0.0756 (19)0.0649 (17)0.0263 (14)0.0011 (12)0.0349 (15)
C190.0450 (15)0.0657 (17)0.0630 (16)0.0187 (13)0.0031 (12)0.0341 (14)
C200.088 (3)0.082 (3)0.168 (4)0.045 (2)0.025 (3)0.052 (3)
Geometric parameters (Å, º) top
O1—C81.371 (3)C7—C81.364 (3)
O1—C101.420 (3)C7—H70.9300
O2—C111.229 (3)C8—C91.423 (3)
O3—C171.361 (3)C10—C111.501 (3)
O3—H30.8200C10—H10A0.9700
O4—C201.389 (4)C10—H10B0.9700
O4—H40.8200C12—C141.490 (3)
N1—C11.319 (3)C12—C131.501 (3)
N1—C91.369 (3)C13—H13A0.9600
N2—C111.333 (3)C13—H13B0.9600
N2—N31.396 (3)C13—H13C0.9600
N2—H20.8600C14—C151.379 (3)
N3—C121.286 (3)C14—C191.387 (3)
C1—C21.399 (4)C15—C161.380 (4)
C1—H10.9300C15—H150.9300
C2—C31.352 (4)C16—C171.372 (4)
C2—H2A0.9300C16—H160.9300
C3—C41.413 (4)C17—C181.372 (4)
C3—H3A0.9300C18—C191.382 (4)
C4—C51.410 (4)C18—H180.9300
C4—C91.420 (3)C19—H190.9300
C5—C61.353 (4)C20—H20A0.9600
C5—H50.9300C20—H20B0.9600
C6—C71.404 (4)C20—H20C0.9600
C6—H60.9300
C8—O1—C10116.27 (18)C11—C10—H10B109.1
C17—O3—H3109.5H10A—C10—H10B107.9
C20—O4—H4109.5O2—C11—N2124.5 (2)
C1—N1—C9117.8 (2)O2—C11—C10117.8 (2)
C11—N2—N3118.39 (19)N2—C11—C10117.4 (2)
C11—N2—H2120.8N3—C12—C14115.1 (2)
N3—N2—H2120.8N3—C12—C13125.8 (2)
C12—N3—N2116.1 (2)C14—C12—C13118.9 (2)
N1—C1—C2124.1 (3)C12—C13—H13A109.5
N1—C1—H1117.9C12—C13—H13B109.5
C2—C1—H1117.9H13A—C13—H13B109.5
C3—C2—C1118.7 (3)C12—C13—H13C109.5
C3—C2—H2A120.6H13A—C13—H13C109.5
C1—C2—H2A120.6H13B—C13—H13C109.5
C2—C3—C4120.3 (3)C15—C14—C19117.1 (2)
C2—C3—H3A119.9C15—C14—C12121.7 (2)
C4—C3—H3A119.9C19—C14—C12121.1 (2)
C5—C4—C3123.2 (2)C14—C15—C16121.5 (2)
C5—C4—C9119.7 (2)C14—C15—H15119.2
C3—C4—C9117.1 (3)C16—C15—H15119.2
C6—C5—C4119.7 (2)C17—C16—C15120.4 (2)
C6—C5—H5120.2C17—C16—H16119.8
C4—C5—H5120.2C15—C16—H16119.8
C5—C6—C7121.7 (3)O3—C17—C18122.9 (2)
C5—C6—H6119.2O3—C17—C16117.8 (2)
C7—C6—H6119.2C18—C17—C16119.3 (2)
C8—C7—C6120.2 (3)C17—C18—C19120.0 (2)
C8—C7—H7119.9C17—C18—H18120.0
C6—C7—H7119.9C19—C18—H18120.0
C7—C8—O1124.3 (2)C18—C19—C14121.6 (2)
C7—C8—C9120.1 (2)C18—C19—H19119.2
O1—C8—C9115.5 (2)C14—C19—H19119.2
N1—C9—C4122.0 (2)O4—C20—H20A109.5
N1—C9—C8119.4 (2)O4—C20—H20B109.5
C4—C9—C8118.6 (2)H20A—C20—H20B109.5
O1—C10—C11112.4 (2)O4—C20—H20C109.5
O1—C10—H10A109.1H20A—C20—H20C109.5
C11—C10—H10A109.1H20B—C20—H20C109.5
O1—C10—H10B109.1
C11—N2—N3—C12151.2 (2)O1—C8—C9—C4179.2 (2)
C9—N1—C1—C21.0 (4)C8—O1—C10—C11179.3 (2)
N1—C1—C2—C30.9 (5)N3—N2—C11—O22.2 (4)
C1—C2—C3—C40.0 (5)N3—N2—C11—C10177.3 (2)
C2—C3—C4—C5179.6 (3)O1—C10—C11—O2167.4 (2)
C2—C3—C4—C90.7 (4)O1—C10—C11—N217.2 (3)
C3—C4—C5—C6179.2 (3)N2—N3—C12—C14179.9 (2)
C9—C4—C5—C60.5 (4)N2—N3—C12—C134.1 (4)
C4—C5—C6—C70.8 (4)N3—C12—C14—C15154.8 (3)
C5—C6—C7—C81.5 (4)C13—C12—C14—C1521.3 (4)
C6—C7—C8—O1179.5 (2)N3—C12—C14—C1922.1 (3)
C6—C7—C8—C90.7 (4)C13—C12—C14—C19161.8 (2)
C10—O1—C8—C76.5 (3)C19—C14—C15—C161.2 (4)
C10—O1—C8—C9173.2 (2)C12—C14—C15—C16175.9 (3)
C1—N1—C9—C40.2 (4)C14—C15—C16—C170.5 (5)
C1—N1—C9—C8179.3 (2)C15—C16—C17—O3179.8 (3)
C5—C4—C9—N1179.7 (2)C15—C16—C17—C180.4 (4)
C3—C4—C9—N10.6 (4)O3—C17—C18—C19180.0 (3)
C5—C4—C9—C81.2 (4)C16—C17—C18—C190.7 (4)
C3—C4—C9—C8178.5 (2)C17—C18—C19—C140.0 (4)
C7—C8—C9—N1179.7 (2)C15—C14—C19—C180.9 (4)
O1—C8—C9—N10.1 (3)C12—C14—C19—C18176.1 (2)
C7—C8—C9—C40.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.852.647 (3)165
O4—H4···N10.821.962.773 (3)174
O4—H4···O10.822.603.036 (3)115
N2—H2···O40.862.102.856 (3)146
Symmetry code: (i) x1, y+2, z.

Experimental details

Crystal data
Chemical formulaC19H17N3O3·CH4O
Mr367.40
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.552 (3), 10.622 (2), 10.665 (4)
α, β, γ (°)70.055 (5), 83.033 (4), 65.845 (4)
V3)927.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
4927, 3261, 2430
Rint0.021
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.143, 1.08
No. of reflections3261
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.852.647 (3)165
O4—H4···N10.821.962.773 (3)174
O4—H4···O10.822.603.036 (3)115
N2—H2···O40.862.102.856 (3)146
Symmetry code: (i) x1, y+2, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationChen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161—174.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWen, Y.-H., Zhang, S.-S., Li, M.-J. & Li, X.-M. (2005). Acta Cryst. E61, o2045–o2046.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds