metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m298-m299

Ferrocenylbutadiyne

aDepartment of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, MN 55812, USA
*Correspondence e-mail: vnemykin@d.umn.edu

(Received 26 January 2009; accepted 16 February 2009; online 21 February 2009)

The title compound, [Fe(C5H5)(C9H5)], crystallizes in a form of a ππ-stacked assembly formed as a result of strong inter­molecular ππ inter­actions between (a) the triple bonds of two neighboring butadiyne substituents overlapping in a `head-to-tail' fashion [characterized by C⋯C short contacts of 3.622 (5), 3.567 (6) and 3.556 (6) Å] and (b) the triple bonds of the butadiyne substituent and substituted cyclo­pendadiene ring of neighboring mol­ecules [C⋯C = 3.474 (5) and 3.492 (6) Å]. The linear butadiyne substituent has alternating C—C triple and single bonds, while the unsubstituted cyclo­penta­diene ring is slightly positionally disordered (although the structure reported here was solved as non-disordered) and retains a close to eclipsed conformation.

Related literature

For the general synthesis and applications of substituted ferrocenes and related macrocycles, see: Fouda et al. (2007[Fouda, M., Abd-Elzaher, M., Abdelsamaia, R. & Labib, A. (2007). Appl. Organomet. Chem. 21, 613-625.]); Nemykin et al. (2001[Nemykin, V. N. & Kobayashi, N. (2001). Chem. Commun. pp. 165-166.], 2007a[Nemykin, V. N., Barrett, C. D., Hadt, R. G., Subbotin, R. I., Maximov, A. Y., Polshin, E. V. & Koposov, A. Y. (2007a). Dalton Trans. pp. 3378-3389.],b[Nemykin, V. N., Makarova, E. A., Grossland, J. O., Hadt, R. G. & Koposov, A. Y. (2007b). Inorg. Chem. 46, 9591-9601.], 2008[Nemykin, V. N., Galloni, P., Floris, B., Barrett, C. D., Hadt, R. G., Subbotin, R. I., Marrani, A. G., Zanoni, R. & Loim, N. (2008). Dalton Trans. pp. 4233-4246.]); Stepnika (2008[Stepnika, P. (2008). Ferrocenes: Ligands, Materials and Biomolecules. Chichester, England: John Wiley & Sons Ltd.]); Osakada et al. (2006[Osakada, K., Sakano, T., Horie, M. & Suzaki, Y. (2006). Coord. Chem. Rev. 250, 1012-1022.]). For the synthesis of the title compound, see: Yuan et al. (1993[Yuan, Z., Stringer, G., Jobe, I. R., Kreller, D., Scott, K., Koch, L., Taylor, N. J. & Marder, T. B. (1993). J. Organomet. Chem. 452, 115-120.]); Nemykin et al. (2007c[Nemykin, V. N., Maximov, A. Y. & Koposov, A. Y. (2007c). Organometallics, 26, 3138-3148.]). For examples of the use of the title compound, see Bruce et al. (2004[Bruce, M. I., De Montigny, F., Jevric, M., Lapinte, C., Skelton, B. W., Smith, M. E. & White, A. H. (2004). J. Organomet. Chem. 689, 2860-2871.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C9H5)]

  • Mr = 234.08

  • Monoclinic, P 21 /c

  • a = 7.9438 (16) Å

  • b = 10.332 (2) Å

  • c = 12.835 (3) Å

  • β = 97.01 (3)°

  • V = 1045.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 298 K

  • 0.45 × 0.30 × 0.25 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.58, Tmax = 0.70

  • 2549 measured reflections

  • 2411 independent reflections

  • 2248 reflections with I > 2σ(I)

  • Rint = 0.052

  • 3 standard reflections every 150 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.136

  • S = 1.08

  • 2402 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: AFC-7R Diffractometer Control Software (Rigaku/MSC, 1997[Rigaku/MSC (1997). AFC-7R Diffractometer Control Software. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: WinAFC (Rigaku/MSC, 2000[Rigaku/MSC (2000). WinAFC. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); data reduction: TEXSAN (Rigaku/MSC, 2004[Rigaku/MSC (2004). TEXSAN. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Ferrocene derivatives have been useful as antitumor agents (Fouda et al., 2007) and as electron transfer molecules. (Stepnika, 2008; Nemykin et al., 2001, 2007a, 2007b, 2007c, 2008; Osakada et al., 2006) The title compound represents a precursor for the preparation of butadiyne like dinuclear ferrocene molecules. (Bruce et al., 2004, Yuan et al., 1993).

There are a number of known structures of substituted ferrocenes (Stepnika, 2008, Nemykin et al., 2007a, 2007c) but this is the first reported crystal structure of a butadiyne substituted ferrocene.

The molecule crystallizes as a π-π stacked assembly in the centrosymmetric monoclinic space group P21/c . π-π stacked assembly formed as a result of strong intermolecular π-π interactions between (a) the triple bonds of two butadiyne substituents in molecules 'B' and 'C' (Figure 2) overlapping in 'head-to-tail' fashion and (b) the triple bonds of butadiyne substituents of a substituted cyclopendadiene ring along crystallographic b axis (Figure 2). Intermolecular π-π interactions between between the triple bonds of two butadiyne substituents (overlapping in 'head-to-tail' fashion) consists of three short contacts between C12 and C14 (3.622 (5) Å, -x, 1 - y, 1 - z), C13 and C14 (3.567 (6) Å, -x, 1 - y, 1 - z), and C13 and C13 (3.556 (6) Å, -x, 1 - y, 1 - z) carbon atoms of neighboring molecules. Intermolecular π-π interactions between between the triple bonds of butadiyne substituents and substituted cyclopentadiene ring of neighboring molecule can be characterized by two short contacts between C2 and C11 (3.474 (5) Å, -x, -y, 1 - z) and C3 and C12 (3.492 (6) Å, -x, -y, 1 - z) pairs of carbon atoms. The terminal H15 atom of the butadiyne substituent of one molecule is in close proximity to the H6 atom on the unsubstituted cyclopentadienyl ring of the other molecule. Although the unsubstituted cyclopentadiyne ring is, probably, disordered over two crystallographical positions (with disordered structure solution available from the authors on request), the unsubstituted cyclopentadiene ring retains close to eclipsed conformation of ferrocene subunit. In addition, the butadiyne substituent has alternating C—C triple and single bonds.

Related literature top

For general synthesis and applications of substituted ferrocenes and related macrocycles, see: Fouda et al. (2007); Nemykin et al. (2001, 2007a, 2007b, 2008); Stepnika (2008); Osakada et al. (2006). For the synthesis of the title compound, see: Yuan et al. (1993); Nemykin et al. (2007c). For examples of the use of the title compound, see Bruce et al. (2004).

Experimental top

The title compound was obtained as by-product of the iodination reaction of ferrocenylacetylene (Nemykin et al., 2007c). Melting point (81 oC, dec.). 1H NMR (CDCl3, tms, p.p.m.): 4.29, 5H, Cp; 4.63, 2H, α-Cp; 4.39, 2H, β-Cp; 2.39, 1H, butadiyne C—H. 13C (CDCl3, tms, p.p.m.): 71.0, Cp; 60.1, α-Cp; 70.6, β-Cp; 73.5, i-Cp; 66.9, C—H; 70.4, CC—H; 71.2, Cp—CC-; 81.6, Cp-CC–). NMR spectra are similar to those reported earlier (Yuan et al.,1993).

Refinement top

All cyclopentadienyl H atoms positioned geometrically, while the terminal butadiyne H atom was located on a Fourier map. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C(Ferrocene) - H 0.93; C—H 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom) using default procedure available in Crystals for Windows software (Betteridge et al., 2003). After this the positions were refined with riding constraints.

The difference between the number of independent reflections (2411) and those included in the refinement (2402) is originate from the filter used by Crystals for Windows software. The filter uses (sin theta/lambda)2 at least 0.0100 cutoff in order to eliminate reflections that may be poorly measured in the vicinity of the beam stop.

Computing details top

Data collection: AFC-7R Diffractometer Control Software (Rigaku/MSC, 1997); cell refinement: WinAFC (Rigaku/MSC, 2000); data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. Intermolecular π-π interactions in the title compound. displacement ellipsoids drawn at the 50% probability level. Molecules located at: 1 - x, 3/2 + y, 3/2 - z (molecule A); 1 + x, 3/2 - y, 1/2 + z (molecule B); 1 - x, 1/2 + y, 3/2 - z (molecule C); and 1 + x, 1/2 - y, 1/2 + z (molecule D).
Ferrocenylbutadiyne top
Crystal data top
[Fe(C5H5)(C9H5)]F(000) = 480
Mr = 234.08Dx = 1.487 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.9438 (16) Åθ = 15–18°
b = 10.332 (2) ŵ = 1.40 mm1
c = 12.835 (3) ÅT = 298 K
β = 97.01 (3)°Block, brown
V = 1045.5 (4) Å30.45 × 0.30 × 0.25 mm
Z = 4
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.052
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ω/2θ scansh = 1010
Absorption correction: ψ scan
(North et al., 1968)
k = 130
Tmin = 0.58, Tmax = 0.70l = 016
2549 measured reflections3 standard reflections every 150 reflections
2411 independent reflections intensity decay: 0.0%
2248 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.136 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.07P)2 + 0.99P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 1.08(Δ/σ)max = 0.000284
2402 reflectionsΔρmax = 0.52 e Å3
136 parametersΔρmin = 0.47 e Å3
0 restraints
Crystal data top
[Fe(C5H5)(C9H5)]V = 1045.5 (4) Å3
Mr = 234.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9438 (16) ŵ = 1.40 mm1
b = 10.332 (2) ÅT = 298 K
c = 12.835 (3) Å0.45 × 0.30 × 0.25 mm
β = 97.01 (3)°
Data collection top
Rigaku AFC-7R
diffractometer
2248 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.052
Tmin = 0.58, Tmax = 0.703 standard reflections every 150 reflections
2549 measured reflections intensity decay: 0.0%
2411 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.08Δρmax = 0.52 e Å3
2402 reflectionsΔρmin = 0.47 e Å3
136 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.29866 (5)0.10003 (4)0.31022 (3)0.0488
C10.1074 (4)0.0794 (3)0.4007 (3)0.0518
C20.2591 (4)0.0175 (3)0.4488 (3)0.0575
C30.3047 (5)0.0793 (3)0.3799 (3)0.0668
C40.1850 (6)0.0782 (3)0.2897 (3)0.0710
C50.0628 (4)0.0191 (4)0.3004 (3)0.0622
C60.3496 (7)0.2904 (4)0.2979 (5)0.0866
C70.4938 (7)0.2257 (5)0.3366 (4)0.0928
C80.5285 (7)0.1368 (5)0.2642 (8)0.1210
C90.4034 (14)0.1459 (8)0.1794 (5)0.1336
C100.2955 (7)0.2426 (7)0.2031 (5)0.1036
C110.0220 (4)0.1842 (3)0.4417 (3)0.0543
C120.0531 (4)0.2707 (4)0.4767 (3)0.0594
C130.1411 (5)0.3705 (4)0.5177 (3)0.0665
C140.2128 (5)0.4495 (4)0.5504 (4)0.0755
H20.31690.03770.51420.0693*
H30.39700.13490.39260.0865*
H40.18710.13230.23200.0850*
H50.02980.03940.25150.0744*
H60.29920.35610.33270.1061*
H70.55820.23870.40130.1128*
H80.61950.07960.26820.1788*
H90.39010.09720.11800.1600*
H100.20000.27220.16070.1248*
H150.26610.50840.57390.0916*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0479 (3)0.0438 (3)0.0572 (3)0.00690 (17)0.01690 (19)0.00211 (17)
C10.0481 (15)0.0538 (16)0.0560 (16)0.0080 (13)0.0158 (13)0.0011 (13)
C20.0606 (18)0.0546 (17)0.0591 (17)0.0015 (15)0.0146 (14)0.0087 (14)
C30.070 (2)0.0454 (17)0.090 (3)0.0012 (15)0.029 (2)0.0067 (17)
C40.084 (3)0.0535 (18)0.083 (3)0.0227 (18)0.038 (2)0.0177 (17)
C50.0541 (17)0.069 (2)0.0638 (18)0.0216 (16)0.0107 (14)0.0091 (16)
C60.099 (3)0.0441 (18)0.128 (4)0.008 (2)0.060 (3)0.005 (2)
C70.082 (3)0.099 (4)0.093 (3)0.051 (3)0.003 (2)0.017 (3)
C80.085 (4)0.068 (3)0.229 (8)0.006 (3)0.096 (5)0.031 (4)
C90.206 (8)0.120 (5)0.093 (4)0.098 (5)0.095 (5)0.043 (4)
C100.079 (3)0.125 (4)0.103 (4)0.035 (3)0.005 (3)0.061 (4)
C110.0476 (16)0.0597 (18)0.0577 (17)0.0082 (14)0.0149 (13)0.0007 (14)
C120.0527 (17)0.064 (2)0.0631 (19)0.0020 (15)0.0138 (14)0.0029 (15)
C130.058 (2)0.073 (2)0.070 (2)0.0079 (18)0.0147 (17)0.0011 (18)
C140.073 (2)0.066 (2)0.091 (3)0.0128 (19)0.028 (2)0.018 (2)
Geometric parameters (Å, º) top
Fe1—C12.032 (3)C4—C51.416 (6)
Fe1—C22.031 (3)C4—H40.930
Fe1—C32.056 (3)C5—H50.930
Fe1—C42.054 (3)C6—C71.366 (7)
Fe1—C52.042 (3)C6—C101.335 (8)
Fe1—C62.018 (4)C6—H60.930
Fe1—C72.019 (4)C7—C81.359 (8)
Fe1—C82.023 (4)C7—H70.930
Fe1—C92.019 (4)C8—C91.384 (10)
Fe1—C102.013 (4)C8—H80.930
C1—C21.436 (5)C9—C101.375 (10)
C1—C51.435 (5)C9—H90.930
C1—C111.413 (5)C10—H100.930
C2—C31.412 (5)C11—C121.192 (5)
C2—H20.930C12—C131.385 (5)
C3—C41.406 (6)C13—C141.107 (5)
C3—H30.930C14—H150.820
C1—Fe1—C241.37 (14)Fe1—C2—H2125.7
C1—Fe1—C368.68 (14)C3—C2—H2126.0
C2—Fe1—C340.40 (15)C2—C3—Fe168.87 (19)
C1—Fe1—C468.39 (14)C2—C3—C4108.1 (3)
C2—Fe1—C467.87 (16)Fe1—C3—C469.9 (2)
C3—Fe1—C440.00 (18)C2—C3—H3125.8
C1—Fe1—C541.25 (13)Fe1—C3—H3127.5
C2—Fe1—C569.11 (15)C4—C3—H3126.1
C3—Fe1—C568.30 (16)C3—C4—Fe170.1 (2)
C4—Fe1—C540.45 (16)C3—C4—C5109.2 (3)
C1—Fe1—C6108.53 (16)Fe1—C4—C569.31 (19)
C2—Fe1—C6122.10 (19)C3—C4—H4125.2
C3—Fe1—C6156.7 (2)Fe1—C4—H4126.1
C4—Fe1—C6162.4 (2)C5—C4—H4125.6
C5—Fe1—C6125.9 (2)C1—C5—C4107.3 (3)
C1—Fe1—C7125.7 (2)C1—C5—Fe169.02 (17)
C2—Fe1—C7108.70 (18)C4—C5—Fe170.2 (2)
C3—Fe1—C7122.0 (2)C1—C5—H5126.5
C4—Fe1—C7156.2 (2)C4—C5—H5126.1
C5—Fe1—C7162.5 (2)Fe1—C5—H5126.4
C1—Fe1—C8162.0 (3)Fe1—C6—C770.2 (2)
C2—Fe1—C8125.2 (3)Fe1—C6—C1070.4 (3)
C3—Fe1—C8108.8 (2)C7—C6—C10108.2 (5)
C4—Fe1—C8122.0 (2)Fe1—C6—H6124.8
C5—Fe1—C8156.0 (3)C7—C6—H6125.0
C1—Fe1—C9155.8 (4)C10—C6—H6126.7
C2—Fe1—C9161.8 (4)C6—C7—Fe170.2 (2)
C3—Fe1—C9125.7 (3)C6—C7—C8108.3 (5)
C4—Fe1—C9108.88 (19)Fe1—C7—C870.5 (3)
C5—Fe1—C9120.9 (3)C6—C7—H7126.8
C1—Fe1—C10121.2 (2)Fe1—C7—H7124.8
C2—Fe1—C10156.2 (3)C8—C7—H7124.9
C3—Fe1—C10162.7 (3)Fe1—C8—C770.2 (3)
C4—Fe1—C10126.9 (2)Fe1—C8—C969.8 (3)
C5—Fe1—C10108.81 (18)C7—C8—C9107.8 (5)
C6—Fe1—C739.6 (2)Fe1—C8—H8126.0
C6—Fe1—C866.3 (2)C7—C8—H8127.8
C7—Fe1—C839.3 (3)C9—C8—H8124.4
C6—Fe1—C966.4 (2)C8—C9—Fe170.1 (3)
C7—Fe1—C966.6 (2)C8—C9—C10106.5 (5)
C8—Fe1—C940.0 (3)Fe1—C9—C1069.8 (3)
C6—Fe1—C1038.7 (2)C8—C9—H9128.7
C7—Fe1—C1065.8 (2)Fe1—C9—H9124.2
C8—Fe1—C1066.4 (2)C10—C9—H9124.8
C9—Fe1—C1039.9 (3)C9—C10—Fe170.3 (3)
Fe1—C1—C269.28 (18)C9—C10—C6109.3 (5)
Fe1—C1—C569.73 (18)Fe1—C10—C670.9 (3)
C2—C1—C5107.2 (3)C9—C10—H10126.6
Fe1—C1—C11124.0 (2)Fe1—C10—H10125.6
C2—C1—C11126.6 (3)C6—C10—H10124.1
C5—C1—C11126.1 (3)C1—C11—C12178.5 (3)
C1—C2—Fe169.34 (18)C11—C12—C13179.5 (4)
C1—C2—C3108.2 (3)C12—C13—C14179.3 (5)
Fe1—C2—C370.7 (2)C13—C14—H15179.3
C1—C2—H2125.8

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C9H5)]
Mr234.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.9438 (16), 10.332 (2), 12.835 (3)
β (°) 97.01 (3)
V3)1045.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.45 × 0.30 × 0.25
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.58, 0.70
No. of measured, independent and
observed [I > 2σ(I)] reflections
2549, 2411, 2248
Rint0.052
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.136, 1.08
No. of reflections2402
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.47

Computer programs: AFC-7R Diffractometer Control Software (Rigaku/MSC, 1997), WinAFC (Rigaku/MSC, 2000), TEXSAN (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

 

Acknowledgements

Finantial support from the National Science Foundation (grant CHE-0809203) is greatly appreciated. The X-ray data were collected at the University of Minnesota Duluth X-ray crystallography facility.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruce, M. I., De Montigny, F., Jevric, M., Lapinte, C., Skelton, B. W., Smith, M. E. & White, A. H. (2004). J. Organomet. Chem. 689, 2860–2871.  Web of Science CrossRef CAS Google Scholar
First citationFouda, M., Abd-Elzaher, M., Abdelsamaia, R. & Labib, A. (2007). Appl. Organomet. Chem. 21, 613–625.  Web of Science CrossRef CAS Google Scholar
First citationNemykin, V. N., Barrett, C. D., Hadt, R. G., Subbotin, R. I., Maximov, A. Y., Polshin, E. V. & Koposov, A. Y. (2007a). Dalton Trans. pp. 3378–3389.  Web of Science CrossRef Google Scholar
First citationNemykin, V. N., Galloni, P., Floris, B., Barrett, C. D., Hadt, R. G., Subbotin, R. I., Marrani, A. G., Zanoni, R. & Loim, N. (2008). Dalton Trans. pp. 4233–4246.  Google Scholar
First citationNemykin, V. N. & Kobayashi, N. (2001). Chem. Commun. pp. 165–166.  Web of Science CrossRef Google Scholar
First citationNemykin, V. N., Makarova, E. A., Grossland, J. O., Hadt, R. G. & Koposov, A. Y. (2007b). Inorg. Chem. 46, 9591–9601.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNemykin, V. N., Maximov, A. Y. & Koposov, A. Y. (2007c). Organometallics, 26, 3138–3148.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOsakada, K., Sakano, T., Horie, M. & Suzaki, Y. (2006). Coord. Chem. Rev. 250, 1012–1022.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (1997). AFC-7R Diffractometer Control Software. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2000). WinAFC. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). TEXSAN. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationStepnika, P. (2008). Ferrocenes: Ligands, Materials and Biomolecules. Chichester, England: John Wiley & Sons Ltd.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationYuan, Z., Stringer, G., Jobe, I. R., Kreller, D., Scott, K., Koch, L., Taylor, N. J. & Marder, T. B. (1993). J. Organomet. Chem. 452, 115–120.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m298-m299
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds