metal-organic compounds
Ferrocenylbutadiyne
aDepartment of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, MN 55812, USA
*Correspondence e-mail: vnemykin@d.umn.edu
The title compound, [Fe(C5H5)(C9H5)], crystallizes in a form of a π–π-stacked assembly formed as a result of strong intermolecular π–π interactions between (a) the triple bonds of two neighboring butadiyne substituents overlapping in a `head-to-tail' fashion [characterized by C⋯C short contacts of 3.622 (5), 3.567 (6) and 3.556 (6) Å] and (b) the triple bonds of the butadiyne substituent and substituted cyclopendadiene ring of neighboring molecules [C⋯C = 3.474 (5) and 3.492 (6) Å]. The linear butadiyne substituent has alternating C—C triple and single bonds, while the unsubstituted cyclopentadiene ring is slightly positionally disordered (although the structure reported here was solved as non-disordered) and retains a close to eclipsed conformation.
Related literature
For the general synthesis and applications of substituted ferrocenes and related macrocycles, see: Fouda et al. (2007); Nemykin et al. (2001, 2007a,b, 2008); Stepnika (2008); Osakada et al. (2006). For the synthesis of the title compound, see: Yuan et al. (1993); Nemykin et al. (2007c). For examples of the use of the title compound, see Bruce et al. (2004).
Experimental
Crystal data
|
Data collection: AFC-7R Diffractometer Control Software (Rigaku/MSC, 1997); cell WinAFC (Rigaku/MSC, 2000); data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536809005522/hg2474sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809005522/hg2474Isup2.hkl
The title compound was obtained as by-product of the iodination reaction of ferrocenylacetylene (Nemykin et al., 2007c). Melting point (81 oC, dec.). 1H NMR (CDCl3, tms, p.p.m.): 4.29, 5H, Cp; 4.63, 2H, α-Cp; 4.39, 2H, β-Cp; 2.39, 1H, butadiyne C—H. 13C (CDCl3, tms, p.p.m.): 71.0, Cp; 60.1, α-Cp; 70.6, β-Cp; 73.5, i-Cp; 66.9, ≡C—H; 70.4, C≡C—H; 71.2, Cp—C≡C-; 81.6, Cp-C≡C–). NMR spectra are similar to those reported earlier (Yuan et al.,1993).
All cyclopentadienyl H atoms positioned geometrically, while the terminal butadiyne H atom was located on a Fourier map. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C(Ferrocene) - H 0.93; ≡C—H 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom) using default procedure available in Crystals for Windows software (Betteridge et al., 2003). After this the positions were refined with riding constraints.
The difference between the number of independent reflections (2411) and those included in the
(2402) is originate from the filter used by Crystals for Windows software. The filter uses (sin theta/lambda)2 at least 0.0100 cutoff in order to eliminate reflections that may be poorly measured in the vicinity of the beam stop.Data collection: AFC-7R Diffractometer Control Software (Rigaku/MSC, 1997); cell
WinAFC (Rigaku/MSC, 2000); data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).[Fe(C5H5)(C9H5)] | F(000) = 480 |
Mr = 234.08 | Dx = 1.487 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 7.9438 (16) Å | θ = 15–18° |
b = 10.332 (2) Å | µ = 1.40 mm−1 |
c = 12.835 (3) Å | T = 298 K |
β = 97.01 (3)° | Block, brown |
V = 1045.5 (4) Å3 | 0.45 × 0.30 × 0.25 mm |
Z = 4 |
Rigaku AFC-7R diffractometer | Rint = 0.052 |
Graphite monochromator | θmax = 27.5°, θmin = 2.5° |
ω/2θ scans | h = −10→10 |
Absorption correction: ψ scan (North et al., 1968) | k = −13→0 |
Tmin = 0.58, Tmax = 0.70 | l = 0→16 |
2549 measured reflections | 3 standard reflections every 150 reflections |
2411 independent reflections | intensity decay: 0.0% |
2248 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.136 | Method = Modified Sheldrick w = 1/[σ2(F2) + (0.07P)2 + 0.99P], where P = [max(Fo2,0) + 2Fc2]/3 |
S = 1.08 | (Δ/σ)max = 0.000284 |
2402 reflections | Δρmax = 0.52 e Å−3 |
136 parameters | Δρmin = −0.47 e Å−3 |
0 restraints |
[Fe(C5H5)(C9H5)] | V = 1045.5 (4) Å3 |
Mr = 234.08 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.9438 (16) Å | µ = 1.40 mm−1 |
b = 10.332 (2) Å | T = 298 K |
c = 12.835 (3) Å | 0.45 × 0.30 × 0.25 mm |
β = 97.01 (3)° |
Rigaku AFC-7R diffractometer | 2248 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.052 |
Tmin = 0.58, Tmax = 0.70 | 3 standard reflections every 150 reflections |
2549 measured reflections | intensity decay: 0.0% |
2411 independent reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.52 e Å−3 |
2402 reflections | Δρmin = −0.47 e Å−3 |
136 parameters |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.29866 (5) | 0.10003 (4) | 0.31022 (3) | 0.0488 | |
C1 | 0.1074 (4) | 0.0794 (3) | 0.4007 (3) | 0.0518 | |
C2 | 0.2591 (4) | 0.0175 (3) | 0.4488 (3) | 0.0575 | |
C3 | 0.3047 (5) | −0.0793 (3) | 0.3799 (3) | 0.0668 | |
C4 | 0.1850 (6) | −0.0782 (3) | 0.2897 (3) | 0.0710 | |
C5 | 0.0628 (4) | 0.0191 (4) | 0.3004 (3) | 0.0622 | |
C6 | 0.3496 (7) | 0.2904 (4) | 0.2979 (5) | 0.0866 | |
C7 | 0.4938 (7) | 0.2257 (5) | 0.3366 (4) | 0.0928 | |
C8 | 0.5285 (7) | 0.1368 (5) | 0.2642 (8) | 0.1210 | |
C9 | 0.4034 (14) | 0.1459 (8) | 0.1794 (5) | 0.1336 | |
C10 | 0.2955 (7) | 0.2426 (7) | 0.2031 (5) | 0.1036 | |
C11 | 0.0220 (4) | 0.1842 (3) | 0.4417 (3) | 0.0543 | |
C12 | −0.0531 (4) | 0.2707 (4) | 0.4767 (3) | 0.0594 | |
C13 | −0.1411 (5) | 0.3705 (4) | 0.5177 (3) | 0.0665 | |
C14 | −0.2128 (5) | 0.4495 (4) | 0.5504 (4) | 0.0755 | |
H2 | 0.3169 | 0.0377 | 0.5142 | 0.0693* | |
H3 | 0.3970 | −0.1349 | 0.3926 | 0.0865* | |
H4 | 0.1871 | −0.1323 | 0.2320 | 0.0850* | |
H5 | −0.0298 | 0.0394 | 0.2515 | 0.0744* | |
H6 | 0.2992 | 0.3561 | 0.3327 | 0.1061* | |
H7 | 0.5582 | 0.2387 | 0.4013 | 0.1128* | |
H8 | 0.6195 | 0.0796 | 0.2682 | 0.1788* | |
H9 | 0.3901 | 0.0972 | 0.1180 | 0.1600* | |
H10 | 0.2000 | 0.2722 | 0.1607 | 0.1248* | |
H15 | −0.2661 | 0.5084 | 0.5739 | 0.0916* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0479 (3) | 0.0438 (3) | 0.0572 (3) | −0.00690 (17) | 0.01690 (19) | −0.00211 (17) |
C1 | 0.0481 (15) | 0.0538 (16) | 0.0560 (16) | −0.0080 (13) | 0.0158 (13) | −0.0011 (13) |
C2 | 0.0606 (18) | 0.0546 (17) | 0.0591 (17) | −0.0015 (15) | 0.0146 (14) | 0.0087 (14) |
C3 | 0.070 (2) | 0.0454 (17) | 0.090 (3) | 0.0012 (15) | 0.029 (2) | 0.0067 (17) |
C4 | 0.084 (3) | 0.0535 (18) | 0.083 (3) | −0.0227 (18) | 0.038 (2) | −0.0177 (17) |
C5 | 0.0541 (17) | 0.069 (2) | 0.0638 (18) | −0.0216 (16) | 0.0107 (14) | −0.0091 (16) |
C6 | 0.099 (3) | 0.0441 (18) | 0.128 (4) | −0.008 (2) | 0.060 (3) | 0.005 (2) |
C7 | 0.082 (3) | 0.099 (4) | 0.093 (3) | −0.051 (3) | −0.003 (2) | 0.017 (3) |
C8 | 0.085 (4) | 0.068 (3) | 0.229 (8) | 0.006 (3) | 0.096 (5) | 0.031 (4) |
C9 | 0.206 (8) | 0.120 (5) | 0.093 (4) | −0.098 (5) | 0.095 (5) | −0.043 (4) |
C10 | 0.079 (3) | 0.125 (4) | 0.103 (4) | −0.035 (3) | −0.005 (3) | 0.061 (4) |
C11 | 0.0476 (16) | 0.0597 (18) | 0.0577 (17) | −0.0082 (14) | 0.0149 (13) | 0.0007 (14) |
C12 | 0.0527 (17) | 0.064 (2) | 0.0631 (19) | −0.0020 (15) | 0.0138 (14) | −0.0029 (15) |
C13 | 0.058 (2) | 0.073 (2) | 0.070 (2) | −0.0079 (18) | 0.0147 (17) | −0.0011 (18) |
C14 | 0.073 (2) | 0.066 (2) | 0.091 (3) | 0.0128 (19) | 0.028 (2) | −0.018 (2) |
Fe1—C1 | 2.032 (3) | C4—C5 | 1.416 (6) |
Fe1—C2 | 2.031 (3) | C4—H4 | 0.930 |
Fe1—C3 | 2.056 (3) | C5—H5 | 0.930 |
Fe1—C4 | 2.054 (3) | C6—C7 | 1.366 (7) |
Fe1—C5 | 2.042 (3) | C6—C10 | 1.335 (8) |
Fe1—C6 | 2.018 (4) | C6—H6 | 0.930 |
Fe1—C7 | 2.019 (4) | C7—C8 | 1.359 (8) |
Fe1—C8 | 2.023 (4) | C7—H7 | 0.930 |
Fe1—C9 | 2.019 (4) | C8—C9 | 1.384 (10) |
Fe1—C10 | 2.013 (4) | C8—H8 | 0.930 |
C1—C2 | 1.436 (5) | C9—C10 | 1.375 (10) |
C1—C5 | 1.435 (5) | C9—H9 | 0.930 |
C1—C11 | 1.413 (5) | C10—H10 | 0.930 |
C2—C3 | 1.412 (5) | C11—C12 | 1.192 (5) |
C2—H2 | 0.930 | C12—C13 | 1.385 (5) |
C3—C4 | 1.406 (6) | C13—C14 | 1.107 (5) |
C3—H3 | 0.930 | C14—H15 | 0.820 |
C1—Fe1—C2 | 41.37 (14) | Fe1—C2—H2 | 125.7 |
C1—Fe1—C3 | 68.68 (14) | C3—C2—H2 | 126.0 |
C2—Fe1—C3 | 40.40 (15) | C2—C3—Fe1 | 68.87 (19) |
C1—Fe1—C4 | 68.39 (14) | C2—C3—C4 | 108.1 (3) |
C2—Fe1—C4 | 67.87 (16) | Fe1—C3—C4 | 69.9 (2) |
C3—Fe1—C4 | 40.00 (18) | C2—C3—H3 | 125.8 |
C1—Fe1—C5 | 41.25 (13) | Fe1—C3—H3 | 127.5 |
C2—Fe1—C5 | 69.11 (15) | C4—C3—H3 | 126.1 |
C3—Fe1—C5 | 68.30 (16) | C3—C4—Fe1 | 70.1 (2) |
C4—Fe1—C5 | 40.45 (16) | C3—C4—C5 | 109.2 (3) |
C1—Fe1—C6 | 108.53 (16) | Fe1—C4—C5 | 69.31 (19) |
C2—Fe1—C6 | 122.10 (19) | C3—C4—H4 | 125.2 |
C3—Fe1—C6 | 156.7 (2) | Fe1—C4—H4 | 126.1 |
C4—Fe1—C6 | 162.4 (2) | C5—C4—H4 | 125.6 |
C5—Fe1—C6 | 125.9 (2) | C1—C5—C4 | 107.3 (3) |
C1—Fe1—C7 | 125.7 (2) | C1—C5—Fe1 | 69.02 (17) |
C2—Fe1—C7 | 108.70 (18) | C4—C5—Fe1 | 70.2 (2) |
C3—Fe1—C7 | 122.0 (2) | C1—C5—H5 | 126.5 |
C4—Fe1—C7 | 156.2 (2) | C4—C5—H5 | 126.1 |
C5—Fe1—C7 | 162.5 (2) | Fe1—C5—H5 | 126.4 |
C1—Fe1—C8 | 162.0 (3) | Fe1—C6—C7 | 70.2 (2) |
C2—Fe1—C8 | 125.2 (3) | Fe1—C6—C10 | 70.4 (3) |
C3—Fe1—C8 | 108.8 (2) | C7—C6—C10 | 108.2 (5) |
C4—Fe1—C8 | 122.0 (2) | Fe1—C6—H6 | 124.8 |
C5—Fe1—C8 | 156.0 (3) | C7—C6—H6 | 125.0 |
C1—Fe1—C9 | 155.8 (4) | C10—C6—H6 | 126.7 |
C2—Fe1—C9 | 161.8 (4) | C6—C7—Fe1 | 70.2 (2) |
C3—Fe1—C9 | 125.7 (3) | C6—C7—C8 | 108.3 (5) |
C4—Fe1—C9 | 108.88 (19) | Fe1—C7—C8 | 70.5 (3) |
C5—Fe1—C9 | 120.9 (3) | C6—C7—H7 | 126.8 |
C1—Fe1—C10 | 121.2 (2) | Fe1—C7—H7 | 124.8 |
C2—Fe1—C10 | 156.2 (3) | C8—C7—H7 | 124.9 |
C3—Fe1—C10 | 162.7 (3) | Fe1—C8—C7 | 70.2 (3) |
C4—Fe1—C10 | 126.9 (2) | Fe1—C8—C9 | 69.8 (3) |
C5—Fe1—C10 | 108.81 (18) | C7—C8—C9 | 107.8 (5) |
C6—Fe1—C7 | 39.6 (2) | Fe1—C8—H8 | 126.0 |
C6—Fe1—C8 | 66.3 (2) | C7—C8—H8 | 127.8 |
C7—Fe1—C8 | 39.3 (3) | C9—C8—H8 | 124.4 |
C6—Fe1—C9 | 66.4 (2) | C8—C9—Fe1 | 70.1 (3) |
C7—Fe1—C9 | 66.6 (2) | C8—C9—C10 | 106.5 (5) |
C8—Fe1—C9 | 40.0 (3) | Fe1—C9—C10 | 69.8 (3) |
C6—Fe1—C10 | 38.7 (2) | C8—C9—H9 | 128.7 |
C7—Fe1—C10 | 65.8 (2) | Fe1—C9—H9 | 124.2 |
C8—Fe1—C10 | 66.4 (2) | C10—C9—H9 | 124.8 |
C9—Fe1—C10 | 39.9 (3) | C9—C10—Fe1 | 70.3 (3) |
Fe1—C1—C2 | 69.28 (18) | C9—C10—C6 | 109.3 (5) |
Fe1—C1—C5 | 69.73 (18) | Fe1—C10—C6 | 70.9 (3) |
C2—C1—C5 | 107.2 (3) | C9—C10—H10 | 126.6 |
Fe1—C1—C11 | 124.0 (2) | Fe1—C10—H10 | 125.6 |
C2—C1—C11 | 126.6 (3) | C6—C10—H10 | 124.1 |
C5—C1—C11 | 126.1 (3) | C1—C11—C12 | 178.5 (3) |
C1—C2—Fe1 | 69.34 (18) | C11—C12—C13 | 179.5 (4) |
C1—C2—C3 | 108.2 (3) | C12—C13—C14 | 179.3 (5) |
Fe1—C2—C3 | 70.7 (2) | C13—C14—H15 | 179.3 |
C1—C2—H2 | 125.8 |
Experimental details
Crystal data | |
Chemical formula | [Fe(C5H5)(C9H5)] |
Mr | 234.08 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 7.9438 (16), 10.332 (2), 12.835 (3) |
β (°) | 97.01 (3) |
V (Å3) | 1045.5 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.40 |
Crystal size (mm) | 0.45 × 0.30 × 0.25 |
Data collection | |
Diffractometer | Rigaku AFC-7R diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.58, 0.70 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2549, 2411, 2248 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.136, 1.08 |
No. of reflections | 2402 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.52, −0.47 |
Computer programs: AFC-7R Diffractometer Control Software (Rigaku/MSC, 1997), WinAFC (Rigaku/MSC, 2000), TEXSAN (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
Acknowledgements
Finantial support from the National Science Foundation (grant CHE-0809203) is greatly appreciated. The X-ray data were collected at the University of Minnesota Duluth X-ray crystallography facility.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bruce, M. I., De Montigny, F., Jevric, M., Lapinte, C., Skelton, B. W., Smith, M. E. & White, A. H. (2004). J. Organomet. Chem. 689, 2860–2871. Web of Science CrossRef CAS Google Scholar
Fouda, M., Abd-Elzaher, M., Abdelsamaia, R. & Labib, A. (2007). Appl. Organomet. Chem. 21, 613–625. Web of Science CrossRef CAS Google Scholar
Nemykin, V. N., Barrett, C. D., Hadt, R. G., Subbotin, R. I., Maximov, A. Y., Polshin, E. V. & Koposov, A. Y. (2007a). Dalton Trans. pp. 3378–3389. Web of Science CrossRef Google Scholar
Nemykin, V. N., Galloni, P., Floris, B., Barrett, C. D., Hadt, R. G., Subbotin, R. I., Marrani, A. G., Zanoni, R. & Loim, N. (2008). Dalton Trans. pp. 4233–4246. Google Scholar
Nemykin, V. N. & Kobayashi, N. (2001). Chem. Commun. pp. 165–166. Web of Science CrossRef Google Scholar
Nemykin, V. N., Makarova, E. A., Grossland, J. O., Hadt, R. G. & Koposov, A. Y. (2007b). Inorg. Chem. 46, 9591–9601. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nemykin, V. N., Maximov, A. Y. & Koposov, A. Y. (2007c). Organometallics, 26, 3138–3148. Web of Science CSD CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Osakada, K., Sakano, T., Horie, M. & Suzaki, Y. (2006). Coord. Chem. Rev. 250, 1012–1022. Web of Science CrossRef CAS Google Scholar
Rigaku/MSC (1997). AFC-7R Diffractometer Control Software. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Rigaku/MSC (2000). WinAFC. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Rigaku/MSC (2004). TEXSAN. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Stepnika, P. (2008). Ferrocenes: Ligands, Materials and Biomolecules. Chichester, England: John Wiley & Sons Ltd. Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Yuan, Z., Stringer, G., Jobe, I. R., Kreller, D., Scott, K., Koch, L., Taylor, N. J. & Marder, T. B. (1993). J. Organomet. Chem. 452, 115–120. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Ferrocene derivatives have been useful as antitumor agents (Fouda et al., 2007) and as electron transfer molecules. (Stepnika, 2008; Nemykin et al., 2001, 2007a, 2007b, 2007c, 2008; Osakada et al., 2006) The title compound represents a precursor for the preparation of butadiyne like dinuclear ferrocene molecules. (Bruce et al., 2004, Yuan et al., 1993).
There are a number of known structures of substituted ferrocenes (Stepnika, 2008, Nemykin et al., 2007a, 2007c) but this is the first reported crystal structure of a butadiyne substituted ferrocene.
The molecule crystallizes as a π-π stacked assembly in the centrosymmetric monoclinic space group P21/c . π-π stacked assembly formed as a result of strong intermolecular π-π interactions between (a) the triple bonds of two butadiyne substituents in molecules 'B' and 'C' (Figure 2) overlapping in 'head-to-tail' fashion and (b) the triple bonds of butadiyne substituents of a substituted cyclopendadiene ring along crystallographic b axis (Figure 2). Intermolecular π-π interactions between between the triple bonds of two butadiyne substituents (overlapping in 'head-to-tail' fashion) consists of three short contacts between C12 and C14 (3.622 (5) Å, -x, 1 - y, 1 - z), C13 and C14 (3.567 (6) Å, -x, 1 - y, 1 - z), and C13 and C13 (3.556 (6) Å, -x, 1 - y, 1 - z) carbon atoms of neighboring molecules. Intermolecular π-π interactions between between the triple bonds of butadiyne substituents and substituted cyclopentadiene ring of neighboring molecule can be characterized by two short contacts between C2 and C11 (3.474 (5) Å, -x, -y, 1 - z) and C3 and C12 (3.492 (6) Å, -x, -y, 1 - z) pairs of carbon atoms. The terminal H15 atom of the butadiyne substituent of one molecule is in close proximity to the H6 atom on the unsubstituted cyclopentadienyl ring of the other molecule. Although the unsubstituted cyclopentadiyne ring is, probably, disordered over two crystallographical positions (with disordered structure solution available from the authors on request), the unsubstituted cyclopentadiene ring retains close to eclipsed conformation of ferrocene subunit. In addition, the butadiyne substituent has alternating C—C triple and single bonds.