organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o631-o632

7,11,15,28-Tetra­bromo-1,21,23,25-tetra­phenethyl­resorcin[4]arene cavitand–acetone–chloro­form (1/1.31/0.69) at 173 K

aSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, and bDepartment of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 9 February 2009; accepted 23 February 2009; online 28 February 2009)

The crystal structure of the title compound, C64H52Br4O8·1.31C3H6O·0.69CHCl3, is described. The structure has been reported previously [Bryant, Blanda, Vincenti & Cram (1991). J. Am. Chem. Soc. 113, 2167–2172]; however, the lower data acquisition temperature results in an improved refinement model. In addition, the presence of residual acetone and (disordered) chloro­form within the mol­ecular structure of the title compound represents a new clathrate of the title compound. One half of the resorcin[4]arene cavitand mol­ecule appears in the asymmetric unit; the complete resorcin[4]arene cavitand structure was generated across a mirror plane.

Related literature

For the synthesis of the title compound and details of the previously reported structure, see: Bryant et al. (1991[Bryant, J. A., Blanda, M. T., Vincenti, M. & Cram, D. J. (1991). J. Am. Chem. Soc. 113, 2167-2172.]) and Sherman et al. (1991[Sherman, J. C., Knobler, C. B. & Cram, D. J. (1991). J. Am. Chem. Soc. 113, 2194-2204.]). For analogous mol­ecules and synthetic precursors which illustrate the host capabilities of resorcin[4]arene cavitand mol­ecules, see: Friedrich et al. (2007[Friedrich, H. B., Howie, R. A., Maguire, G. E. M. & Mc Kay, M. G. (2007). Acta Cryst. E63, o4346.]); McKay et al. (2007[McKay, M. G., Friedrich, H. B. & Maguire, G. E. M. (2007). Acta Cryst. E63, o4345.], 2008[Mc Kay, M. G., Friedrich, H. B. & Maguire, G. E. M. (2008). Acta Cryst. E64, o98.]). For the implemetation of the SQUEEZE function in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), see Tam et al. (2005[Tam, T. F., Leung-Toung, R., Wang, Y., Spino, M. & Lough, A. J. (2005). Acta Cryst. E61, m2601-m2603.]).

[Scheme 1]

Experimental

Crystal data
  • C64H52Br4O8·0.31C3H6O·0.69CHCl3

  • Mr = 1427.14

  • Orthorhombic, P n m a

  • a = 24.7118 (18) Å

  • b = 20.4364 (13) Å

  • c = 11.9345 (8) Å

  • V = 6027.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.82 mm−1

  • T = 173 K

  • 0.41 × 0.25 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration (XPREP in SAINT-NT; Bruker 2005[Bruker (2005). APEX2 and SAINT (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.391, Tmax = 0.645

  • 21376 measured reflections

  • 5927 independent reflections

  • 3945 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.138

  • S = 0.96

  • 5927 reflections

  • 406 parameters

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (Scheme 1) is a cyclic tetramer of [4]arene moieties. The labelling scheme for one of the monomers is presented in Fig.1, and extends over the whole molecule. Dimensions are available in the archived CIF.

The title compound has been synthesized previously and its structure reported. For related literature, see Bryant et al. (1991) and Sherman et al. (1991). As such, the newly acquired data shares the same space group, similar unit-cell parameters, and similar bond lengths and angles as previously reported in the structure of Sherman et al. However, the lower data acquisition temperature in this case (173 K) results in an improved agreement value of 5.1%, in comparison to the previous 7.4%.

We have recently reported a number of resorcin[4]arene structures of synthetic precursors and analogues to the title compound. These exhibited the presence of residual solvents either within the confines of the molecular cavity, or on the periphery of the molecule. See Friedrich et al. (2007), McKay et al. (2007) and McKay et al. (2008) for related literature. The title compound exhibits the presence of residual acetone and chloroform (from crystallization), found occupying positions in the 2-phenylethyl 'feet' and cavity, respectively. This is evident in Fig. 2 and Fig. 3, the molecular structure of the title compound. In contrast, the structure of Sherman et al. exhibited the presence of water partially occupying positions within the feet and molecular cavity. The title compound hence represents a new clathrate of this resorcin[4]arene cavitand molecule.

However, additional solvent-related areas of electron density were located in the Fourier maps (located near inversion centres) during refinement. The related pattern suggested that the chloroform molecule, in particular, involved partial occupancy and was of a highly disordered nature. Thus, in the final refinement model, the electron density related to this disordered chloroform molecule was removed by using the SQUEEZE function of PLATON (Spek, 2009). This resulted in an improved refinement model. The partial contribution of the chloroform molecule was included in the molecular formula, and is further detailed in the SQUEEZE results which are appended to the CIF text. This further details the inclusion of a fractional acetone molecule (i.e 0.31, in addition to the molecule present within the 'feet') in the molecular formula. For related literature, see Tam et al. (2005). The use of SQUEEZE further accounts for the discrepancies seen in the calculated and reported parameters of molecular weight, density and absorption coefficient.

The asymmetric unit consist of a half of the title compound, including several atoms lying on a crystallographic mirror plane. The complete molecular structure was generated by the operation of the mirror plane upon the asymmetric unit (corresponding to one half of the tetramer) with non-hydrogen atoms C11, C12, Br2 and C17, C18, Br3 lying on the mirror plane. This plane is indicated by a dashed line in Fig. 2. The molecule was additionally completed accompanied by the molecule of residual acetone solvent discussed as present in the molecular 'feet'. Also, one of the 2-phenylethyl residues shows disorder.

Related literature top

For the synthesis of the title compound and details of the previously reported structure, see: Bryant et al. (1991) and Sherman et al. (1991). For analogous molecules and synthetic precursors which illustrate the host capabilities of resorcin[4]arene cavitand molecules, see: Friedrich et al. (2007); McKay et al. (2007, 2008). For the implemetation of the SQUEEZE function in PLATON (Spek, 2009), see Tam et al. (2005).

Experimental top

To a solution of CH2BrCl (16.3 ml, 0.243 mol) and oven-dried (110 °C) K2CO3 (99.25 g, 0.718 mol) in dry, degassed DMF (700 ml), bromo-octol (25.0 g, 0.0205 mol) in DMF (100 ml) was added over 1.5 h. After stirring for 24 h at room temperature under a nitrogen atmosphere, further CH2BrCl (16.3 ml, 0.243 mol) was added and the solution heated to 45 °C. After a further 24 h, another aliquot of CH2BrCl (16.3 ml, 0.243 mol) was added, and the solution heated to 63 °C. After 48 h at 65 °C, the light brown solution was cooled to room temperature, and the K2CO3 neutralized by the addition of a 6% HCl solution. The crude product simultaneously precipitated from solution, and was collected on filtration of the neutralized reaction mixture. The cream-coloured solid was suspended in methanol and stirred for 24 h, before being filtered from the methanol and dried. The material was chromatographed on silica gel using a chloroform mobile phase, before being stirred once again in methanol, filtered and dried to give the title compound as an off-white solid. (25.90 g, 70%), mp 558–563 K dec. 1H NMR [CDCl3, 400 MHz]: d = 2.47–2.49 (m, 8 H, CH2CH2Ar), 2.62–2.64 (m, 8 H, CH2CH2Ar), 4.41 (d, 4 H, inner of OCH2O), 4.94 (t, 4 H, CHCH2CH2Ar), 5.95 (d, 4 H, outer of OCH2O), 7.09–7.24 (m, 24 H, Ar H and CH2CH2C6H5). 13C NMR [CDCl3,100 MHz]: d = 152.84, 141.74, 139.69, 129.25, 128.92, 126.81, 119.52, 114.41, 99.03, 38.33, 34.79, 32.89. IR (KBr): 2939w, 1729w, 1602w, 1469sh, 1452, 1415, 1299, 1234, 1091, 1057w, 1017, 984sh, 957, 790w, 745, 699, 586.

Crystals suitable for X-ray crystallography were grown by slow evaporation of a solution of the title compound in 1:1 chloroform:acetone.

Refinement top

Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F2 using SHELXTL. Hydrogen atoms, first located in the difference map, were positioned geometrically and allowed to ride on their respective parent atoms, with C—H bond lengths of 1.00 (CH), 0.99 (CH2), or 0.98 (CH3). They were then refined with a riding model with Uiso(H) = 1.5Ueq(CH3) and Uiso(H) = 1.2Ueq(X) for X = CH or CH2.

One of the 2-phenylethyl residues is disordered. As such, the residue was refined over two positions, with a fixed occupancy of 0.50 for atoms C21–26 and C21A-26 A. The largest residual electron density peak of 1.23 e/Å3 is 0.93 Å from Br3.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Bruker, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of one component of the cyclic tetramer. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii. Dashed bonds indicate links to the neighbouring monomer units. Selected atoms are labelled.
[Figure 2] Fig. 2. The molecular structure of the title compound, as viewed from above the molecular cavity. Displacement ellipsoids are drawn at the 30% probability level and H atoms, where shown, are drawn as spheres of arbitrary radii. The residual acetone molecule is evident. The dashed line indicates the mirror plane, which passes through C11, Br2, and C17, Br3 (as discussed).
[Figure 3] Fig. 3. The molecular structure of the title compound viewed from side-on. Displacement ellipsoids are drawn at the 30% probability level and H atoms, where shown, are drawn as spheres of arbitrary radii. The presence of the residual acetone solvent of crystallization is evident below the molecular cavity, between the 2-phenylethyl moieties.
7,11,15,28-Tetrabromo-1,21,23,25-tetraphenethyl-2,20:3,19-dimetheno- 1H,21H,23H,25H- di-1,3-dioxocino[5,4-i:5',4'-i']benzo[1,2-d:5,4-d']bis[1,3]benzodioxocin top
Crystal data top
C64H52Br4O8·0.31(C3H6O)·0.69(CHCl3)F(000) = 2888
Mr = 1427.14Dx = 1.573 Mg m3
Orthorhombic, PnmaMelting point: 558 K
Hall symbol: -P 2ac 2nMo Kα radiation, λ = 0.71073 Å
a = 24.7118 (18) ŵ = 2.82 mm1
b = 20.4364 (13) ÅT = 173 K
c = 11.9345 (8) ÅBlock, yellow
V = 6027.2 (7) Å30.41 × 0.25 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5927 independent reflections
Radiation source: fine-focus sealed tube3945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: integration
(XPREP in SAINT-NT; Bruker 2005)
h = 2830
Tmin = 0.391, Tmax = 0.645k = 2320
21376 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0825P)2]
where P = (Fo2 + 2Fc2)/3
5927 reflections(Δ/σ)max = 0.001
406 parametersΔρmax = 1.23 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C64H52Br4O8·0.31(C3H6O)·0.69(CHCl3)V = 6027.2 (7) Å3
Mr = 1427.14Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 24.7118 (18) ŵ = 2.82 mm1
b = 20.4364 (13) ÅT = 173 K
c = 11.9345 (8) Å0.41 × 0.25 × 0.17 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5927 independent reflections
Absorption correction: integration
(XPREP in SAINT-NT; Bruker 2005)
3945 reflections with I > 2σ(I)
Tmin = 0.391, Tmax = 0.645Rint = 0.080
21376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 0.96Δρmax = 1.23 e Å3
5927 reflectionsΔρmin = 0.60 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.20422 (14)0.05762 (19)0.3969 (3)0.0311 (9)
C20.16575 (15)0.0724 (2)0.3167 (3)0.0319 (9)
C30.11888 (15)0.1056 (2)0.3475 (3)0.0311 (9)
C40.11216 (14)0.12196 (19)0.4597 (3)0.0308 (9)
H40.08070.14540.48130.037*
C50.14965 (14)0.10541 (19)0.5412 (3)0.0279 (8)
C60.19612 (15)0.07329 (19)0.5079 (3)0.0282 (8)
C70.27265 (16)0.0977 (2)0.6250 (3)0.0388 (10)
H7A0.28120.12860.56350.047*
H7B0.30640.07430.64470.047*
C80.22623 (15)0.1911 (2)0.6997 (3)0.0298 (9)
C90.17120 (14)0.19043 (19)0.6789 (3)0.0263 (8)
C100.14312 (15)0.1245 (2)0.6645 (3)0.0298 (9)
H100.16400.09190.70950.036*
C110.1443 (2)0.25000.6679 (4)0.0272 (12)
H110.10660.25000.65230.033*
C120.2540 (2)0.25000.7082 (4)0.0297 (12)
C130.19362 (17)0.0980 (2)0.1308 (3)0.0382 (10)
H13A0.21680.12940.17180.046*
H13B0.21650.07530.07510.046*
C140.13603 (16)0.1905 (2)0.1238 (3)0.0381 (10)
C150.09748 (15)0.1902 (2)0.2090 (3)0.0325 (9)
C160.07762 (15)0.1257 (2)0.2572 (3)0.0358 (10)
H160.07900.09220.19610.043*
C170.0795 (2)0.25000.2504 (4)0.0364 (14)
H170.05380.25000.30960.044*
C180.1557 (2)0.25000.0836 (4)0.0370 (14)
C190.08446 (15)0.1224 (2)0.7067 (3)0.0349 (9)
H19A0.06360.15820.67120.042*
H19B0.06770.08040.68450.042*
C200.08183 (18)0.1297 (3)0.8338 (3)0.0566 (14)
H20A0.10050.17060.85600.068*0.50
H20B0.10120.09260.86910.068*0.50
H20C0.11180.10400.86690.068*0.50
H20D0.08830.17620.85270.068*0.50
C210.0221 (2)0.1314 (5)0.8782 (6)0.054 (4)0.50
C220.0170 (3)0.0885 (4)0.8379 (6)0.063 (3)0.50
H220.00880.06040.77670.076*0.50
C230.0680 (2)0.0867 (4)0.8870 (7)0.074 (4)0.50
H230.09470.05740.85950.089*0.50
C240.0798 (2)0.1278 (5)0.9765 (7)0.077 (5)0.50
H240.11470.12661.01010.093*0.50
C250.0408 (3)0.1707 (5)1.0168 (5)0.146 (9)0.50
H250.04890.19881.07800.175*0.50
C260.0102 (3)0.1725 (4)0.9677 (6)0.066 (4)0.50
H260.03690.20180.99520.079*0.50
C21A0.0304 (3)0.1088 (5)0.8884 (7)0.056 (4)0.50
C22A0.0197 (4)0.0446 (4)0.9198 (7)0.071 (3)0.50
H22A0.04720.01230.91380.085*0.50
C23A0.0311 (4)0.0276 (4)0.9602 (8)0.114 (6)0.50
H23A0.03840.01620.98170.137*0.50
C24A0.0714 (3)0.0749 (6)0.9691 (10)0.114 (7)0.50
H24A0.10610.06330.99670.137*0.50
C25A0.0607 (4)0.1391 (6)0.9376 (11)0.28 (2)0.50
H25A0.08830.17140.94360.335*0.50
C26A0.0099 (5)0.1561 (4)0.8972 (10)0.132 (8)0.50
H26A0.00260.19990.87570.159*0.50
C270.01933 (16)0.1291 (2)0.2997 (3)0.0400 (10)
H27A0.01770.15930.36450.048*
H27B0.00400.14730.23990.048*
C280.00227 (19)0.0639 (2)0.3342 (5)0.0637 (15)
H28A0.02530.04090.37990.076*
H28B0.00930.03720.26660.076*
C290.05422 (19)0.0702 (2)0.4016 (5)0.0557 (13)
C300.10474 (19)0.0702 (3)0.3462 (5)0.0608 (14)
H300.10590.06350.26750.073*
C310.1520 (2)0.0797 (3)0.4036 (6)0.0733 (17)
H310.18550.08110.36470.088*
C320.1507 (2)0.0872 (3)0.5188 (7)0.0804 (19)
H320.18350.09280.55900.096*
C330.1023 (3)0.0865 (3)0.5757 (6)0.0841 (19)
H330.10160.09170.65480.101*
C340.0531 (2)0.0778 (3)0.5146 (5)0.0693 (15)
H340.01950.07740.55320.083*
C350.0304 (3)0.25000.5415 (6)0.0545 (18)
C360.0759 (3)0.25000.4528 (9)0.095 (3)
H36A0.05940.25000.37810.142*
H36B0.09840.28920.46160.142*
C370.0438 (3)0.25000.6615 (6)0.075 (2)
H37A0.01050.25000.70630.112*
H37B0.06500.21080.67900.112*
O10.23403 (10)0.05210 (13)0.5868 (2)0.0325 (6)
O20.25454 (10)0.13379 (13)0.7197 (2)0.0333 (6)
O30.17310 (11)0.05159 (14)0.2073 (2)0.0391 (7)
O40.15316 (11)0.13257 (16)0.0747 (2)0.0425 (7)
O50.01602 (19)0.25000.5104 (4)0.0638 (13)
Br10.268387 (17)0.01324 (2)0.35408 (3)0.04481 (16)
Br20.32890 (2)0.25000.73692 (6)0.0501 (2)
Br30.20877 (3)0.25000.02924 (5)0.0641 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.033 (2)0.023 (2)0.037 (2)0.0032 (17)0.0034 (16)0.0012 (18)
C20.041 (2)0.027 (2)0.0282 (18)0.0036 (18)0.0019 (16)0.0046 (18)
C30.038 (2)0.027 (2)0.0288 (18)0.0046 (17)0.0025 (15)0.0052 (17)
C40.0304 (19)0.027 (2)0.035 (2)0.0039 (17)0.0025 (15)0.0022 (18)
C50.0351 (19)0.021 (2)0.0276 (18)0.0087 (17)0.0011 (15)0.0002 (16)
C60.0358 (19)0.022 (2)0.0271 (17)0.0018 (17)0.0028 (15)0.0013 (16)
C70.039 (2)0.041 (3)0.037 (2)0.007 (2)0.0006 (17)0.002 (2)
C80.038 (2)0.030 (2)0.0212 (16)0.0028 (18)0.0021 (14)0.0006 (17)
C90.0364 (19)0.026 (2)0.0166 (15)0.0031 (17)0.0021 (14)0.0026 (16)
C100.037 (2)0.028 (2)0.0252 (18)0.0012 (17)0.0009 (15)0.0019 (17)
C110.030 (3)0.027 (3)0.024 (2)0.0000.004 (2)0.000
C120.028 (3)0.031 (4)0.030 (3)0.0000.002 (2)0.000
C130.045 (2)0.043 (3)0.0265 (18)0.005 (2)0.0019 (17)0.0077 (19)
C140.042 (2)0.049 (3)0.0241 (18)0.006 (2)0.0105 (16)0.0080 (19)
C150.036 (2)0.037 (3)0.0248 (17)0.0015 (18)0.0106 (15)0.0030 (18)
C160.039 (2)0.035 (3)0.033 (2)0.0027 (19)0.0084 (16)0.009 (2)
C170.032 (3)0.053 (4)0.024 (3)0.0000.011 (2)0.000
C180.045 (3)0.049 (4)0.018 (2)0.0000.002 (2)0.000
C190.040 (2)0.035 (3)0.0304 (19)0.0059 (19)0.0027 (16)0.0037 (19)
C200.049 (3)0.086 (4)0.035 (2)0.020 (3)0.0105 (19)0.009 (3)
C210.037 (6)0.100 (11)0.024 (6)0.012 (7)0.001 (4)0.003 (6)
C220.043 (5)0.084 (9)0.064 (6)0.014 (6)0.024 (5)0.031 (6)
C230.046 (7)0.084 (11)0.093 (9)0.009 (7)0.008 (6)0.014 (9)
C240.041 (6)0.139 (15)0.052 (7)0.008 (8)0.009 (5)0.017 (9)
C250.070 (9)0.33 (3)0.039 (6)0.079 (13)0.021 (6)0.056 (11)
C260.056 (6)0.109 (10)0.034 (5)0.020 (6)0.020 (5)0.019 (6)
C21A0.068 (8)0.074 (9)0.027 (6)0.007 (7)0.006 (5)0.006 (6)
C22A0.082 (8)0.077 (9)0.053 (6)0.000 (7)0.025 (5)0.024 (6)
C23A0.142 (15)0.097 (13)0.103 (11)0.053 (11)0.025 (10)0.034 (9)
C24A0.069 (10)0.18 (2)0.097 (12)0.022 (12)0.003 (9)0.046 (15)
C25A0.120 (17)0.32 (4)0.40 (5)0.17 (2)0.19 (3)0.29 (4)
C26A0.100 (12)0.115 (15)0.182 (19)0.045 (11)0.103 (13)0.082 (14)
C270.037 (2)0.039 (3)0.044 (2)0.0059 (19)0.0069 (18)0.004 (2)
C280.047 (3)0.045 (3)0.099 (4)0.013 (2)0.001 (3)0.004 (3)
C290.049 (3)0.032 (3)0.086 (4)0.009 (2)0.005 (3)0.007 (3)
C300.049 (3)0.050 (3)0.084 (4)0.012 (2)0.005 (3)0.003 (3)
C310.043 (3)0.064 (4)0.113 (5)0.017 (3)0.007 (3)0.008 (4)
C320.059 (4)0.059 (4)0.123 (6)0.016 (3)0.016 (4)0.022 (4)
C330.101 (5)0.067 (5)0.085 (4)0.014 (4)0.013 (4)0.022 (4)
C340.065 (3)0.061 (4)0.082 (4)0.008 (3)0.014 (3)0.024 (3)
C350.046 (4)0.039 (4)0.079 (5)0.0000.013 (3)0.000
C360.063 (5)0.081 (7)0.141 (9)0.0000.022 (5)0.000
C370.062 (5)0.092 (7)0.071 (5)0.0000.022 (4)0.000
O10.0423 (15)0.0252 (16)0.0298 (13)0.0013 (12)0.0057 (11)0.0008 (12)
O20.0426 (15)0.0283 (17)0.0289 (12)0.0066 (13)0.0055 (11)0.0008 (12)
O30.0514 (16)0.0368 (19)0.0291 (13)0.0033 (14)0.0004 (12)0.0115 (13)
O40.0543 (17)0.049 (2)0.0240 (13)0.0071 (15)0.0065 (12)0.0091 (14)
O50.052 (3)0.067 (3)0.073 (3)0.0000.002 (2)0.000
Br10.0470 (3)0.0497 (3)0.0377 (2)0.0141 (2)0.00437 (17)0.0069 (2)
Br20.0349 (3)0.0451 (4)0.0703 (4)0.0000.0152 (3)0.000
Br30.0855 (5)0.0737 (6)0.0331 (3)0.0000.0234 (3)0.000
Geometric parameters (Å, º) top
C1—C61.377 (5)C20—H20C0.9900
C1—C21.383 (5)C20—H20D0.9900
C1—Br11.897 (4)C21—C221.3900
C2—O31.385 (4)C21—C261.3900
C2—C31.391 (5)C22—C231.3900
C3—C41.389 (5)C22—H220.9500
C3—C161.540 (5)C23—C241.3900
C4—C51.385 (5)C23—H230.9500
C4—H40.9500C24—C251.3900
C5—C61.381 (5)C24—H240.9500
C5—C101.531 (5)C25—C261.3900
C6—O11.397 (4)C25—H250.9500
C7—O11.410 (5)C26—H260.9500
C7—O21.422 (5)C21A—C22A1.3900
C7—H7A0.9900C21A—C26A1.3900
C7—H7B0.9900C22A—C23A1.3900
C8—C91.382 (5)C22A—H22A0.9500
C8—O21.385 (5)C23A—C24A1.3900
C8—C121.389 (5)C23A—H23A0.9500
C9—C111.394 (5)C24A—C25A1.3900
C9—C101.526 (5)C24A—H24A0.9500
C10—C191.535 (5)C25A—C26A1.3900
C10—H101.0000C25A—H25A0.9500
C11—C9i1.394 (5)C26A—H26A0.9500
C11—H110.9500C27—C281.494 (6)
C12—C8i1.389 (5)C27—H27A0.9900
C12—Br21.882 (5)C27—H27B0.9900
C13—O41.395 (5)C28—C291.520 (7)
C13—O31.411 (5)C28—H28A0.9900
C13—H13A0.9900C28—H28B0.9900
C13—H13B0.9900C29—C341.357 (7)
C14—O41.388 (5)C29—C301.413 (7)
C14—C151.393 (5)C30—C311.368 (7)
C14—C181.394 (5)C30—H300.9500
C15—C171.391 (5)C31—C321.383 (9)
C15—C161.520 (6)C31—H310.9500
C16—C271.529 (5)C32—C331.375 (9)
C16—H161.0000C32—H320.9500
C17—C15i1.391 (5)C33—C341.428 (8)
C17—H170.9500C33—H330.9500
C18—C14i1.394 (5)C34—H340.9500
C18—Br31.880 (5)C35—O51.204 (7)
C19—C201.526 (5)C35—C371.470 (10)
C19—H19A0.9900C35—C361.544 (11)
C19—H19B0.9900C36—H36A0.9800
C20—C21A1.491 (7)C36—H36B0.9800
C20—C211.569 (7)C37—H37A0.9800
C20—H20A0.9900C37—H37B0.9800
C20—H20B0.9900
C6—C1—C2121.0 (3)C19—C20—H20D108.2
C6—C1—Br1119.5 (3)H20C—C20—H20D107.4
C2—C1—Br1119.5 (3)C22—C21—C26120.0
C1—C2—O3119.7 (3)C22—C21—C20121.5 (5)
C1—C2—C3119.7 (3)C26—C21—C20118.2 (5)
O3—C2—C3120.6 (3)C21—C22—C23120.0
C4—C3—C2118.1 (3)C21—C22—H22120.0
C4—C3—C16122.1 (3)C23—C22—H22120.0
C2—C3—C16119.7 (3)C22—C23—C24120.0
C5—C4—C3122.5 (4)C22—C23—H23120.0
C5—C4—H4118.7C24—C23—H23120.0
C3—C4—H4118.7C25—C24—C23120.0
C6—C5—C4118.1 (3)C25—C24—H24120.0
C6—C5—C10119.0 (3)C23—C24—H24120.0
C4—C5—C10122.8 (3)C26—C25—C24120.0
C1—C6—C5120.5 (3)C26—C25—H25120.0
C1—C6—O1118.6 (3)C24—C25—H25120.0
C5—C6—O1120.8 (3)C25—C26—C21120.0
O1—C7—O2112.8 (3)C25—C26—H26120.0
O1—C7—H7A109.0C21—C26—H26120.0
O2—C7—H7A109.0C22A—C21A—C26A120.0
O1—C7—H7B109.0C22A—C21A—C20123.3 (7)
O2—C7—H7B109.0C26A—C21A—C20116.4 (7)
H7A—C7—H7B107.8C21A—C22A—C23A120.0
C9—C8—O2121.3 (4)C21A—C22A—H22A120.0
C9—C8—C12120.5 (4)C23A—C22A—H22A120.0
O2—C8—C12118.1 (3)C22A—C23A—C24A120.0
C8—C9—C11118.6 (4)C22A—C23A—H23A120.0
C8—C9—C10118.4 (3)C24A—C23A—H23A120.0
C11—C9—C10122.9 (3)C23A—C24A—C25A120.0
C9—C10—C5106.6 (3)C23A—C24A—H24A120.0
C9—C10—C19114.6 (3)C25A—C24A—H24A120.0
C5—C10—C19114.1 (3)C26A—C25A—C24A120.0
C9—C10—H10107.0C26A—C25A—H25A120.0
C5—C10—H10107.0C24A—C25A—H25A120.0
C19—C10—H10107.0C25A—C26A—C21A120.0
C9i—C11—C9121.7 (5)C25A—C26A—H26A120.0
C9i—C11—H11119.1C21A—C26A—H26A120.0
C9—C11—H11119.1C28—C27—C16112.8 (4)
C8—C12—C8i120.1 (5)C28—C27—H27A109.0
C8—C12—Br2119.9 (2)C16—C27—H27A109.0
C8i—C12—Br2119.9 (2)C28—C27—H27B109.0
O4—C13—O3113.2 (3)C16—C27—H27B109.0
O4—C13—H13A108.9H27A—C27—H27B107.8
O3—C13—H13A108.9C27—C28—C29111.8 (4)
O4—C13—H13B108.9C27—C28—H28A109.2
O3—C13—H13B108.9C29—C28—H28A109.2
H13A—C13—H13B107.8C27—C28—H28B109.2
O4—C14—C15120.8 (4)C29—C28—H28B109.2
O4—C14—C18119.5 (3)H28A—C28—H28B107.9
C15—C14—C18119.6 (4)C34—C29—C30118.8 (5)
C17—C15—C14118.2 (4)C34—C29—C28121.2 (5)
C17—C15—C16121.7 (4)C30—C29—C28119.9 (5)
C14—C15—C16120.1 (4)C31—C30—C29121.3 (5)
C15—C16—C27112.9 (4)C31—C30—H30119.3
C15—C16—C3106.4 (3)C29—C30—H30119.3
C27—C16—C3113.8 (3)C30—C31—C32119.5 (5)
C15—C16—H16107.8C30—C31—H31120.3
C27—C16—H16107.8C32—C31—H31120.3
C3—C16—H16107.8C33—C32—C31120.8 (6)
C15i—C17—C15122.9 (5)C33—C32—H32119.6
C15i—C17—H17118.5C31—C32—H32119.6
C15—C17—H17118.5C32—C33—C34119.2 (6)
C14i—C18—C14121.3 (5)C32—C33—H33120.4
C14i—C18—Br3119.4 (2)C34—C33—H33120.4
C14—C18—Br3119.4 (2)C29—C34—C33120.3 (5)
C20—C19—C10111.3 (3)C29—C34—H34119.8
C20—C19—H19A109.4C33—C34—H34119.8
C10—C19—H19A109.4O5—C35—C37120.9 (7)
C20—C19—H19B109.4O5—C35—C36118.9 (7)
C10—C19—H19B109.4C37—C35—C36120.2 (7)
H19A—C19—H19B108.0C35—C36—H36A108.7
C21A—C20—C19116.3 (5)C35—C36—H36B109.9
C19—C20—C21112.2 (4)H36A—C36—H36B109.5
C19—C20—H20A109.2C35—C37—H37A110.0
C21—C20—H20A109.2C35—C37—H37B109.2
C19—C20—H20B109.2H37A—C37—H37B109.5
C21—C20—H20B109.2C6—O1—C7117.8 (3)
H20A—C20—H20B107.9C8—O2—C7117.4 (3)
C21A—C20—H20C108.2C2—O3—C13116.7 (3)
C19—C20—H20C108.2C14—O4—C13116.6 (3)
C21A—C20—H20D108.2
C6—C1—C2—O3175.0 (4)C15—C14—C18—Br3178.7 (3)
Br1—C1—C2—O33.5 (5)C9—C10—C19—C2067.1 (5)
C6—C1—C2—C32.1 (6)C5—C10—C19—C20169.7 (4)
Br1—C1—C2—C3179.3 (3)C10—C19—C20—C21A162.2 (6)
C1—C2—C3—C40.8 (6)C10—C19—C20—C21177.0 (5)
O3—C2—C3—C4176.3 (4)C21A—C20—C21—C2262.9 (15)
C1—C2—C3—C16176.4 (4)C19—C20—C21—C2243.4 (8)
O3—C2—C3—C166.5 (6)C21A—C20—C21—C26110.6 (18)
C2—C3—C4—C51.3 (6)C19—C20—C21—C26143.1 (5)
C16—C3—C4—C5178.5 (4)C26—C21—C22—C230.0
C3—C4—C5—C62.2 (6)C20—C21—C22—C23173.3 (8)
C3—C4—C5—C10178.7 (4)C21—C22—C23—C240.0
C2—C1—C6—C51.3 (6)C22—C23—C24—C250.0
Br1—C1—C6—C5179.8 (3)C23—C24—C25—C260.0
C2—C1—C6—O1174.4 (3)C24—C25—C26—C210.0
Br1—C1—C6—O14.1 (5)C22—C21—C26—C250.0
C4—C5—C6—C10.8 (6)C20—C21—C26—C25173.6 (8)
C10—C5—C6—C1177.5 (4)C19—C20—C21A—C22A85.6 (8)
C4—C5—C6—O1176.4 (3)C21—C20—C21A—C22A167.9 (19)
C10—C5—C6—O16.9 (5)C19—C20—C21A—C26A88.3 (8)
O2—C8—C9—C11175.2 (3)C21—C20—C21A—C26A6.0 (13)
C12—C8—C9—C110.6 (6)C26A—C21A—C22A—C23A0.0
O2—C8—C9—C107.2 (5)C20—C21A—C22A—C23A173.7 (8)
C12—C8—C9—C10176.9 (4)C21A—C22A—C23A—C24A0.0
C8—C9—C10—C585.6 (4)C22A—C23A—C24A—C25A0.0
C11—C9—C10—C591.8 (4)C23A—C24A—C25A—C26A0.0
C8—C9—C10—C19147.2 (3)C24A—C25A—C26A—C21A0.0
C11—C9—C10—C1935.4 (5)C22A—C21A—C26A—C25A0.0
C6—C5—C10—C985.6 (4)C20—C21A—C26A—C25A174.1 (8)
C4—C5—C10—C990.9 (4)C15—C16—C27—C28173.1 (4)
C6—C5—C10—C19146.9 (4)C3—C16—C27—C2865.4 (5)
C4—C5—C10—C1936.6 (5)C16—C27—C28—C29166.2 (4)
C8—C9—C11—C9i1.0 (7)C27—C28—C29—C3488.0 (6)
C10—C9—C11—C9i178.5 (3)C27—C28—C29—C3090.1 (6)
C9—C8—C12—C8i2.3 (7)C34—C29—C30—C312.1 (8)
O2—C8—C12—C8i173.7 (3)C28—C29—C30—C31176.1 (5)
C9—C8—C12—Br2179.8 (3)C29—C30—C31—C322.3 (9)
O2—C8—C12—Br23.9 (5)C30—C31—C32—C331.3 (10)
O4—C14—C15—C17176.2 (3)C31—C32—C33—C340.1 (10)
C18—C14—C15—C170.6 (6)C30—C29—C34—C330.8 (8)
O4—C14—C15—C166.0 (5)C28—C29—C34—C33177.3 (5)
C18—C14—C15—C16177.2 (4)C32—C33—C34—C290.2 (9)
C17—C15—C16—C2732.1 (5)C1—C6—O1—C7100.6 (4)
C14—C15—C16—C27150.1 (3)C5—C6—O1—C783.7 (4)
C17—C15—C16—C393.5 (4)O2—C7—O1—C688.9 (4)
C14—C15—C16—C384.3 (4)C9—C8—O2—C784.2 (4)
C4—C3—C16—C1593.1 (4)C12—C8—O2—C799.9 (4)
C2—C3—C16—C1584.0 (4)O1—C7—O2—C888.9 (4)
C4—C3—C16—C2731.9 (5)C1—C2—O3—C1399.3 (4)
C2—C3—C16—C27150.9 (4)C3—C2—O3—C1383.6 (5)
C14—C15—C17—C15i1.3 (7)O4—C13—O3—C291.8 (4)
C16—C15—C17—C15i179.1 (3)C15—C14—O4—C1383.1 (4)
O4—C14—C18—C14i174.3 (3)C18—C14—O4—C13100.1 (5)
C15—C14—C18—C14i2.6 (8)O3—C13—O4—C1491.1 (4)
O4—C14—C18—Br34.4 (6)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC64H52Br4O8·0.31(C3H6O)·0.69(CHCl3)
Mr1427.14
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)173
a, b, c (Å)24.7118 (18), 20.4364 (13), 11.9345 (8)
V3)6027.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.82
Crystal size (mm)0.41 × 0.25 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionIntegration
(XPREP in SAINT-NT; Bruker 2005)
Tmin, Tmax0.391, 0.645
No. of measured, independent and
observed [I > 2σ(I)] reflections
21376, 5927, 3945
Rint0.080
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.138, 0.96
No. of reflections5927
No. of parameters406
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 0.60

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Bruker, 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The financial support of the DST-NRF Centre of Excellence in Catalysis is duly acknowledged. Our thanks to Dr Manuel Fernandes at the University of the Witwatersrand for performing the data acquisition and structure solution.

References

First citationBruker (2005). APEX2 and SAINT (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBryant, J. A., Blanda, M. T., Vincenti, M. & Cram, D. J. (1991). J. Am. Chem. Soc. 113, 2167–2172.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFriedrich, H. B., Howie, R. A., Maguire, G. E. M. & Mc Kay, M. G. (2007). Acta Cryst. E63, o4346.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKay, M. G., Friedrich, H. B. & Maguire, G. E. M. (2007). Acta Cryst. E63, o4345.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMc Kay, M. G., Friedrich, H. B. & Maguire, G. E. M. (2008). Acta Cryst. E64, o98.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSherman, J. C., Knobler, C. B. & Cram, D. J. (1991). J. Am. Chem. Soc. 113, 2194–2204.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTam, T. F., Leung-Toung, R., Wang, Y., Spino, M. & Lough, A. J. (2005). Acta Cryst. E61, m2601–m2603.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o631-o632
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds