metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-hydroxido-bis­­({2,2′-[propane-1,3-diylbis(nitrilo­methyl­­idyne)]diphenolato}iron(III)) di­methyl­formamide disolvate

aSchool of Chemical & Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, People's Republic of China, and bSoil and Fertilizer General Monitoring Station of Shandong Province, Jinan 250100, People's Republic of China
*Correspondence e-mail: qyliusdu@163.com

(Received 11 February 2009; accepted 12 February 2009; online 21 February 2009)

The structure of the title compound, [Fe2(C17H16N2O2)2(OH)2]·2C3H7N, consists of centrosymmetric dimeric units in which crystallographically equivalent FeIII ions are doubly bridged by hydroxide groups. Each FeIII center in the complex has a six-coordinated distorted cis-FeN2O4 octa­hedral geometry.

Related literature

For background to the use of Schiff base ligands in the assembly of hydroxo-, alkoxo- or phenoxo-bridged clusters and polymers, see: Chen et al. (2006[Chen, P., Fan, B. B., Song, M. G., Jin, C., Ma, J. H. & Li, R. F. (2006). Catal. Commun. 7, 969-973.]); Koizumi et al. (2005[Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208-1210.]); Ni & Wang (2007[Ni, Z.-H. & Wang, H.-L. (2007). Acta Cryst. E63, o3799.]). For the use of H2salpn as a flexible ligand, see: Ni et al. (2005[Ni, Z. H., Zhao, Y. H., Zheng, L., Kou, H. Z. & Cui, A. L. (2005). Chin. J. Chem. 23, 786-790.]); Si et al. (2002[Si, S. F., Tang, J. K., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2002). J. Mol. Struct. 606, 87-90.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C17H16N2O2)2(OH)2]·2C3H7N

  • Mr = 852.54

  • Monoclinic, P 21 /c

  • a = 10.768 (2) Å

  • b = 10.136 (2) Å

  • c = 17.540 (4) Å

  • β = 101.27 (3)°

  • V = 1877.5 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 293 K

  • 0.21 × 0.15 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.862, Tmax = 0.908

  • 10664 measured reflections

  • 3221 independent reflections

  • 2809 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.143

  • S = 1.04

  • 3221 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XP in SHELXTL.

Supporting information


Comment top

Recently, the the Schiff base ligands, especially the relative flexible symmetrical or unsymmetrical Schiff base ligands and their hydrogenerated derivatives have been widely employed to assembly hydroxo-, alkoxo- or phenoxo-bridged clusters and polymers with novel topological structures and interesting magnetic, catalysis and photochemical properties (Chen et al., 2006; Koizumi et al., 2005; Ni & Wang, 2007). Among Schiff base ligands, H2salpn is a special symmetrical tetradentate Schiff base which can be used as rigid ligand located on the equatorial plane of central metal ion. However, sometimes it also exhibits characteristics of a flexible ligand situated at the terminal of metal ions like a cap. To date, several examples in which H2salpn is used as flexible ligand have been synthesized (Ni et al., 2005; Si et al., 2002) We recently synthesized a doubly hydroxo-bridged FeIII dimeric complex where Schiff base H2salpn exist as flexible terminal ligand with two free DMF solvate molecules, Herein, we reported the synthesis and crystal structure of the complex [FeIII(salpn)OH]2.2DMF (I).

The geometry and labeling scheme for the crystal structure of [FeIII(salpn)OH]2.2DMF (I) is depicted in Figure 1. The structure of I consists of centrosymmetric dimer units in which crystallographically equivalent iron(III) ions are doubly bridged by hydroxo groups. The ligand with N2O2 donating atoms occupies four coordination sites of the FeIII ion while the two remaining ones are filled by the bridging hydroxo groups. The FeIII ions have a slightly distorted-octahedral coordination geometry. The four coordination atoms from salpn2- are not in a plane for distortion of carbon linkage and the requirement of coordination of hydroxo-bridging groups from the same side to take cis-disposition. The two Fe—O bond distances in the bridging unit are 1.8158 (18) and 1.8172 (18) Å, respectively.

Related literature top

For background to the use of Schiff base ligands in the assembly of hydroxo-, alkoxo- or phenoxo-bridged clusters and polymers with novel topological structures and interesting magnetic, catalytic and photochemical properties, see: Chen et al. (2006); Koizumi et al. (2005); Ni & Wang (2007). For the use of H2salpn as a flexible ligand, see: Ni et al. (2005); Si et al. (2002).

Experimental top

Ligand H2salpn (0.5 mmol) was added to a solution of Fe(ClO4)2.4H2O (0.5 mmol) in MeOH and DMF mixing solvent (1/1, v/v). The mixture was stirred for about four hours, and then filtered. The filrate was evaporated in room temperature for two days yielding red brown single-crystals. Yield: 30%. Elemental analysis [found (calculated)] for C40H48Fe2N6O8: C 56.08 (56.35), H 5.45 (5.67), N 9.80 (9.86%).

Refinement top

H atoms bound to C and O atoms were visible in difference maps and were placed using the HFIX commands in SHELXL-97. H atoms were placed in calculated positions and were included in the refinement in the riding-model approximation, All H atoms were allowed for as riding atoms (C—H 0.96 Å or C—H 0.93 Å, and O—H 0.85 Å) with the constraint Uiso(H) = 1.5Ueq(methyl carrier), 1.5Ueq(O) and Uiso(H) = 1.2Ueq(C) for all other H atoms..

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Di-µ-hydroxido-bis({2,2'-[propane-1,3- diylbis(nitrilomethylidyne)]diphenolato}iron(III)) dimethylformamide disolvate top
Crystal data top
[Fe2(C17H16N2O2)2(OH)2]·2C3H7NF(000) = 892
Mr = 852.54Dx = 1.508 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 221 reflections
a = 10.768 (2) Åθ = 3.1–25.0°
b = 10.136 (2) ŵ = 0.84 mm1
c = 17.540 (4) ÅT = 293 K
β = 101.27 (3)°Block, brown
V = 1877.5 (7) Å30.21 × 0.15 × 0.12 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3221 independent reflections
Radiation source: fine-focus sealed tube2809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.862, Tmax = 0.908k = 1211
10664 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0957P)2 + 1.7319P]
where P = (Fo2 + 2Fc2)/3
3221 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Fe2(C17H16N2O2)2(OH)2]·2C3H7NV = 1877.5 (7) Å3
Mr = 852.54Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.768 (2) ŵ = 0.84 mm1
b = 10.136 (2) ÅT = 293 K
c = 17.540 (4) Å0.21 × 0.15 × 0.12 mm
β = 101.27 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3221 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2809 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.908Rint = 0.038
10664 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.04Δρmax = 0.48 e Å3
3221 reflectionsΔρmin = 0.65 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50501 (4)0.37734 (4)0.03284 (2)0.01386 (19)
O10.54651 (17)0.43569 (19)0.13793 (11)0.0140 (4)
O20.63819 (18)0.24760 (19)0.05879 (11)0.0148 (4)
O30.39002 (17)0.50795 (18)0.00288 (10)0.0127 (4)
H3B0.33900.55760.02090.015*
O40.9440 (2)0.6587 (3)0.27864 (14)0.0360 (6)
N10.3654 (2)0.2624 (2)0.06536 (13)0.0135 (5)
N20.4579 (2)0.2834 (2)0.07001 (13)0.0128 (5)
N30.9331 (2)0.5320 (3)0.16973 (15)0.0251 (6)
C10.4628 (3)0.4666 (3)0.18093 (15)0.0131 (6)
C20.4952 (3)0.5623 (3)0.24001 (17)0.0186 (6)
H2A0.57540.60020.24860.022*
C30.4098 (3)0.6008 (3)0.28532 (18)0.0216 (7)
H3A0.43220.66650.32250.026*
C40.2905 (3)0.5423 (3)0.27608 (17)0.0213 (7)
H4A0.23290.57010.30590.026*
C50.2586 (3)0.4420 (3)0.22176 (17)0.0206 (7)
H5A0.18110.39930.21730.025*
C60.3431 (3)0.4043 (3)0.17312 (17)0.0152 (6)
C70.3077 (3)0.2952 (3)0.12009 (16)0.0156 (6)
H7A0.23790.24510.12610.019*
C80.3228 (3)0.1439 (3)0.01922 (18)0.0190 (6)
H8A0.26760.09280.04540.023*
H8B0.39570.08970.01560.023*
C90.2526 (3)0.1786 (3)0.06223 (17)0.0231 (7)
H9A0.17010.21390.05890.028*
H9B0.23910.09850.09300.028*
C100.3225 (3)0.2798 (3)0.10456 (17)0.0170 (6)
H10A0.31160.25620.15910.020*
H10B0.28610.36660.10130.020*
C110.5369 (3)0.2250 (3)0.10447 (16)0.0146 (6)
H11A0.50690.19280.15430.018*
C120.6696 (3)0.2055 (3)0.07143 (17)0.0149 (6)
C130.7523 (3)0.1622 (3)0.11903 (18)0.0199 (6)
H13A0.72220.15420.17230.024*
C140.8760 (3)0.1314 (3)0.0891 (2)0.0236 (7)
H14A0.92970.10350.12150.028*
C150.9204 (3)0.1426 (3)0.00837 (19)0.0209 (7)
H15A1.00460.12320.01240.025*
C160.8409 (3)0.1821 (3)0.04073 (17)0.0172 (6)
H16A0.87180.18700.09400.021*
C170.7135 (3)0.2150 (3)0.01030 (17)0.0146 (6)
C180.9718 (3)0.6354 (3)0.2146 (2)0.0293 (8)
H18A1.02430.69570.19640.035*
C190.8528 (3)0.4313 (3)0.1945 (2)0.0289 (7)
H19A0.83660.45370.24480.043*
H19B0.89480.34740.19710.043*
H19C0.77410.42640.15780.043*
C200.9676 (4)0.5132 (4)0.0947 (2)0.0354 (8)
H20A1.02080.58460.08470.053*
H20B0.89240.51110.05490.053*
H20C1.01250.43140.09460.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0147 (3)0.0133 (3)0.0142 (3)0.00014 (14)0.00425 (18)0.00012 (15)
O10.0146 (10)0.0165 (10)0.0118 (10)0.0006 (7)0.0051 (8)0.0002 (8)
O20.0164 (10)0.0152 (10)0.0140 (10)0.0044 (8)0.0055 (8)0.0018 (8)
O30.0124 (10)0.0121 (9)0.0149 (11)0.0020 (7)0.0056 (7)0.0010 (8)
O40.0397 (15)0.0405 (14)0.0263 (14)0.0019 (12)0.0025 (11)0.0087 (11)
N10.0130 (11)0.0143 (12)0.0130 (12)0.0004 (9)0.0021 (9)0.0018 (9)
N20.0134 (12)0.0112 (11)0.0139 (12)0.0014 (8)0.0029 (9)0.0008 (9)
N30.0229 (14)0.0270 (15)0.0244 (15)0.0009 (11)0.0022 (11)0.0015 (11)
C10.0159 (14)0.0142 (14)0.0089 (14)0.0031 (10)0.0017 (11)0.0045 (11)
C20.0246 (15)0.0183 (15)0.0134 (15)0.0006 (12)0.0046 (12)0.0006 (12)
C30.0320 (18)0.0206 (15)0.0130 (16)0.0014 (12)0.0066 (13)0.0017 (12)
C40.0264 (16)0.0239 (16)0.0167 (16)0.0065 (12)0.0118 (13)0.0009 (12)
C50.0198 (15)0.0237 (16)0.0204 (16)0.0039 (12)0.0093 (12)0.0028 (13)
C60.0167 (14)0.0174 (14)0.0119 (15)0.0020 (11)0.0039 (11)0.0032 (11)
C70.0137 (13)0.0146 (14)0.0196 (15)0.0009 (10)0.0056 (11)0.0047 (11)
C80.0193 (15)0.0140 (14)0.0260 (17)0.0047 (11)0.0102 (13)0.0008 (12)
C90.0217 (16)0.0279 (17)0.0207 (16)0.0119 (13)0.0069 (13)0.0075 (13)
C100.0154 (14)0.0169 (15)0.0174 (15)0.0032 (11)0.0001 (11)0.0018 (12)
C110.0235 (15)0.0098 (13)0.0112 (14)0.0026 (11)0.0051 (11)0.0007 (11)
C120.0198 (14)0.0099 (13)0.0165 (15)0.0010 (10)0.0075 (11)0.0019 (11)
C130.0243 (16)0.0184 (14)0.0188 (16)0.0003 (12)0.0088 (12)0.0000 (12)
C140.0219 (16)0.0235 (17)0.0309 (19)0.0037 (12)0.0184 (14)0.0025 (13)
C150.0142 (14)0.0189 (15)0.0306 (18)0.0020 (11)0.0070 (13)0.0021 (13)
C160.0191 (15)0.0157 (15)0.0176 (15)0.0018 (11)0.0057 (12)0.0015 (12)
C170.0175 (14)0.0075 (13)0.0198 (16)0.0008 (10)0.0056 (12)0.0025 (11)
C180.0253 (17)0.0283 (18)0.032 (2)0.0040 (13)0.0003 (15)0.0003 (14)
C190.0254 (17)0.0279 (17)0.033 (2)0.0028 (14)0.0044 (14)0.0001 (15)
C200.037 (2)0.039 (2)0.031 (2)0.0001 (16)0.0084 (15)0.0057 (16)
Geometric parameters (Å, º) top
Fe1—O3i1.8163 (18)C6—C71.447 (4)
Fe1—O31.8186 (19)C7—H7A0.9300
Fe1—O11.9040 (19)C8—C91.521 (4)
Fe1—O21.9334 (19)C8—H8A0.9700
Fe1—N22.015 (2)C8—H8B0.9700
Fe1—N12.069 (2)C9—C101.546 (4)
Fe1—Fe1i2.7337 (9)C9—H9A0.9700
O1—C11.321 (3)C9—H9B0.9700
O2—C171.327 (3)C10—H10A0.9700
O3—Fe1i1.8163 (18)C10—H10B0.9700
O3—H3B0.8500C11—C121.447 (4)
O4—C181.241 (4)C11—H11A0.9300
N1—C71.285 (4)C12—C131.405 (4)
N1—C81.471 (4)C12—C171.422 (4)
N2—C111.281 (4)C13—C141.369 (4)
N2—C101.465 (4)C13—H13A0.9300
N3—C181.328 (4)C14—C151.407 (5)
N3—C201.449 (4)C14—H14A0.9300
N3—C191.458 (4)C15—C161.386 (4)
C1—C21.412 (4)C15—H15A0.9300
C1—C61.417 (4)C16—C171.412 (4)
C2—C31.384 (4)C16—H16A0.9300
C2—H2A0.9300C18—H18A0.9300
C3—C41.395 (5)C19—H19A0.9600
C3—H3A0.9300C19—H19B0.9600
C4—C51.389 (4)C19—H19C0.9600
C4—H4A0.9300C20—H20A0.9600
C5—C61.416 (4)C20—H20B0.9600
C5—H5A0.9300C20—H20C0.9600
O3i—Fe1—O382.46 (9)C6—C7—H7A117.5
O3i—Fe1—O195.22 (8)N1—C8—C9111.9 (2)
O3—Fe1—O194.09 (8)N1—C8—H8A109.2
O3i—Fe1—O291.93 (8)C9—C8—H8A109.2
O3—Fe1—O2174.23 (8)N1—C8—H8B109.2
O1—Fe1—O287.73 (9)C9—C8—H8B109.2
O3i—Fe1—N293.36 (9)H8A—C8—H8B107.9
O3—Fe1—N292.70 (9)C8—C9—C10113.9 (2)
O1—Fe1—N2169.68 (9)C8—C9—H9A108.8
O2—Fe1—N286.26 (9)C10—C9—H9A108.8
O3i—Fe1—N1172.13 (9)C8—C9—H9B108.8
O3—Fe1—N189.95 (9)C10—C9—H9B108.8
O1—Fe1—N187.35 (9)H9A—C9—H9B107.7
O2—Fe1—N195.61 (9)N2—C10—C9110.9 (2)
N2—Fe1—N184.90 (9)N2—C10—H10A109.5
O3i—Fe1—Fe1i41.26 (6)C9—C10—H10A109.5
O3—Fe1—Fe1i41.20 (6)N2—C10—H10B109.5
O1—Fe1—Fe1i96.19 (6)C9—C10—H10B109.5
O2—Fe1—Fe1i133.18 (6)H10A—C10—H10B108.0
N2—Fe1—Fe1i94.03 (7)N2—C11—C12124.7 (3)
N1—Fe1—Fe1i131.11 (7)N2—C11—H11A117.6
C1—O1—Fe1124.69 (17)C12—C11—H11A117.6
C17—O2—Fe1122.47 (17)C13—C12—C17119.7 (3)
Fe1i—O3—Fe197.54 (9)C13—C12—C11119.7 (3)
Fe1i—O3—H3B103.9C17—C12—C11120.1 (2)
Fe1—O3—H3B140.9C14—C13—C12121.7 (3)
C7—N1—C8118.6 (2)C14—C13—H13A119.2
C7—N1—Fe1122.95 (19)C12—C13—H13A119.2
C8—N1—Fe1118.25 (17)C13—C14—C15118.8 (3)
C11—N2—C10119.5 (2)C13—C14—H14A120.6
C11—N2—Fe1124.5 (2)C15—C14—H14A120.6
C10—N2—Fe1115.99 (17)C16—C15—C14121.2 (3)
C18—N3—C20122.4 (3)C16—C15—H15A119.4
C18—N3—C19120.8 (3)C14—C15—H15A119.4
C20—N3—C19116.8 (3)C15—C16—C17120.4 (3)
O1—C1—C2118.9 (2)C15—C16—H16A119.8
O1—C1—C6123.2 (3)C17—C16—H16A119.8
C2—C1—C6117.8 (2)O2—C17—C16119.2 (3)
C3—C2—C1121.2 (3)O2—C17—C12122.6 (2)
C3—C2—H2A119.4C16—C17—C12118.2 (2)
C1—C2—H2A119.4O4—C18—N3125.7 (3)
C2—C3—C4120.9 (3)O4—C18—H18A117.1
C2—C3—H3A119.5N3—C18—H18A117.1
C4—C3—H3A119.5N3—C19—H19A109.5
C3—C4—C5119.2 (3)N3—C19—H19B109.5
C3—C4—H4A120.4H19A—C19—H19B109.5
C5—C4—H4A120.4N3—C19—H19C109.5
C4—C5—C6120.6 (3)H19A—C19—H19C109.5
C4—C5—H5A119.7H19B—C19—H19C109.5
C6—C5—H5A119.7N3—C20—H20A109.5
C1—C6—C5120.0 (3)N3—C20—H20B109.5
C1—C6—C7121.6 (2)H20A—C20—H20B109.5
C5—C6—C7118.3 (3)N3—C20—H20C109.5
N1—C7—C6124.9 (3)H20A—C20—H20C109.5
N1—C7—H7A117.5H20B—C20—H20C109.5
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe2(C17H16N2O2)2(OH)2]·2C3H7N
Mr852.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.768 (2), 10.136 (2), 17.540 (4)
β (°) 101.27 (3)
V3)1877.5 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.21 × 0.15 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.862, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
10664, 3221, 2809
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.143, 1.04
No. of reflections3221
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.65

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Science Foundation of Shandong Provincial Education Department, China.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, P., Fan, B. B., Song, M. G., Jin, C., Ma, J. H. & Li, R. F. (2006). Catal. Commun. 7, 969–973.  Web of Science CrossRef CAS Google Scholar
First citationKoizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208–1210.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNi, Z.-H. & Wang, H.-L. (2007). Acta Cryst. E63, o3799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNi, Z. H., Zhao, Y. H., Zheng, L., Kou, H. Z. & Cui, A. L. (2005). Chin. J. Chem. 23, 786–790.  CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSi, S. F., Tang, J. K., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2002). J. Mol. Struct. 606, 87–90.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds