organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Chloro-5-nitro­benzyl­­idene)isonicotinohydrazide

aModern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China
*Correspondence e-mail: czfph@126.com

(Received 20 February 2009; accepted 23 February 2009; online 28 February 2009)

The title compound, C13H9ClN4O3, was synthesized by the condensation reaction of 2-chloro-5-nitro­benzaldehyde with isonicotinohydrazide in a methanol solution. The mol­ecule of the compound displays a trans configuration with respect to the C=N and C—N bonds. The dihedral angle between the benzene and pyridine rings is 12.1 (2)°. In the crystal structure, adjacent mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming dimers.

Related literature

For Schiff base compounds, see: Fan et al. (2007[Fan, Y. H., He, X. T., Bi, C. F., Guo, F., Bao, Y. & Chen, R. (2007). Russ. J. Coord. Chem. 33, 535-538.]); Kim et al. (2005[Kim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc. 127, 16776-16777.]); Nimitsiriwat et al. (2004[Nimitsiriwat, N., Marshall, E. L., Gibson, V. C., Elsegood, M. R. J. & Dale, S. H. (2004). J. Am. Chem. Soc. 126, 13598-13599.]). For the biological activity of Schiff base compounds, see: Chen et al. (1997[Chen, H. Q., Hall, S., Zheng, B. & Rhodes, J. (1997). Biodrugs, 7, 217-231.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]). For similar structures, see: Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Yang (2008[Yang, D.-S. (2008). Acta Cryst. E64, o1850.]); Zhi (2008[Zhi, F. (2008). Acta Cryst. E64, o150.]); Zhi & Yang (2007[Zhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClN4O3

  • Mr = 304.69

  • Tetragonal, I 41 /a

  • a = 18.586 (3) Å

  • c = 15.183 (3) Å

  • V = 5244.9 (15) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.964, Tmax = 0.970

  • 16616 measured reflections

  • 2869 independent reflections

  • 1685 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.131

  • S = 1.03

  • 2869 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.892 (10) 2.187 (13) 3.055 (3) 164 (3)
Symmetry code: (i) [y-{\script{1\over 4}}, -x+{\script{3\over 4}}, z-{\script{1\over 4}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base compounds have been widely investigated over a century (Fan et al., 2007; Kim et al., 2005; Nimitsiriwat et al., 2004). Some of the compounds have been found to have pharmacological and antibacterial activity (Chen et al., 1997; Ren et al., 2002). In this paper, the crystal structure of a new Schiff base compound, (I), Fig. 1, derived from the condensation reaction of 2-chloro-5-nitrobenzaldehyde with isonicotinohydrazide is reported.

In (I), the molecular structure of the compound displays a trans configuration with respect to the C=N and C-N bonds. The dihedral angle between the benzene ring and the pyridine ring is 12.1 (2)°. The dihedral angle between the O1/N4/O2 plane and the benzene ring is 8.1 (2)°. All the bond lengths are within normal ranges and comparable to those in other similar compounds (Mohd Lair et al., 2009; Fun et al., 2008; Yang, 2008; Zhi, 2008; Zhi & Yang, 2007).

In the crystal structure, adjacent molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming dimers (Fig. 2).

Related literature top

For Schiff base compounds, see: Fan et al. (2007); Kim et al. (2005); Nimitsiriwat et al. (2004). For the biological activity, see: Chen et al. (1997); Ren et al. (2002). For similar structures, see: Mohd Lair et al. (2009); Fun et al. (2008); Yang (2008); Zhi (2008); Zhi & Yang (2007).

Experimental top

2-Chloro-5-nitrobenzaldehyde (0.01 mol, 1.85 g) and isonicotinohydrazide (0.01 mol, 1.37 g) were dissolved in a methanol solution (50 ml). The mixture was stirred at room temperature to give a clear colorless solution. Crystals of the title compound were formed by gradual evaporation of the solvent for a week at room temperature.

Refinement top

The N proton H2 was located in a difference map and refined with N–H distance restrained to 0.90 (1) Å. All other H atoms were positioned geometrically [C–H = 0.93 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing of (I), viewed along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.
N'-(2-Chloro-5-nitrobenzylidene)isonicotinohydrazide top
Crystal data top
C13H9ClN4O3Dx = 1.543 Mg m3
Mr = 304.69Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 1528 reflections
Hall symbol: -I 4adθ = 2.2–24.5°
a = 18.586 (3) ŵ = 0.31 mm1
c = 15.183 (3) ÅT = 298 K
V = 5244.9 (15) Å3Block, colorless
Z = 160.12 × 0.10 × 0.10 mm
F(000) = 2496
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2869 independent reflections
Radiation source: fine-focus sealed tube1685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2322
Tmin = 0.964, Tmax = 0.970k = 2123
16616 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0346P)2 + 2.6778P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2869 reflectionsΔρmax = 0.17 e Å3
194 parametersΔρmin = 0.21 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00084 (18)
Crystal data top
C13H9ClN4O3Z = 16
Mr = 304.69Mo Kα radiation
Tetragonal, I41/aµ = 0.31 mm1
a = 18.586 (3) ÅT = 298 K
c = 15.183 (3) Å0.12 × 0.10 × 0.10 mm
V = 5244.9 (15) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2869 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1685 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.970Rint = 0.083
16616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
2869 reflectionsΔρmin = 0.21 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.14870 (5)0.28558 (6)0.06873 (6)0.0950 (4)
O10.24702 (14)0.38109 (14)0.46884 (14)0.0866 (7)
O20.17681 (13)0.29247 (14)0.49968 (15)0.0980 (8)
O30.36910 (10)0.56885 (10)0.18178 (11)0.0646 (5)
N10.29514 (11)0.44612 (12)0.16009 (13)0.0507 (5)
N20.33431 (12)0.47740 (12)0.09354 (12)0.0520 (6)
N30.50947 (13)0.62326 (13)0.09159 (15)0.0627 (6)
N40.20600 (15)0.33277 (15)0.44731 (16)0.0674 (7)
C10.21758 (13)0.35202 (14)0.20311 (17)0.0497 (6)
C20.16520 (15)0.30249 (16)0.17913 (19)0.0624 (8)
C30.12506 (16)0.26504 (17)0.2413 (3)0.0767 (10)
H30.08930.23330.22310.092*
C40.13799 (16)0.27471 (16)0.3291 (2)0.0723 (9)
H40.11200.24940.37130.087*
C50.19049 (14)0.32300 (14)0.35332 (18)0.0540 (7)
C60.22899 (13)0.36163 (14)0.29285 (16)0.0505 (6)
H60.26320.39470.31200.061*
C70.25958 (14)0.39094 (15)0.13746 (17)0.0544 (7)
H70.26030.37530.07930.065*
C80.37206 (13)0.53777 (14)0.11106 (15)0.0471 (6)
C90.41915 (13)0.56487 (13)0.03806 (15)0.0446 (6)
C100.41588 (15)0.54180 (14)0.04791 (15)0.0543 (7)
H100.38360.50600.06450.065*
C110.46139 (17)0.57273 (16)0.10915 (17)0.0643 (8)
H110.45800.55680.16710.077*
C120.51235 (15)0.64389 (16)0.00807 (19)0.0632 (8)
H120.54590.67890.00700.076*
C130.46919 (15)0.61719 (15)0.05767 (17)0.0588 (7)
H130.47370.63430.11500.071*
H20.3334 (16)0.4566 (14)0.0406 (10)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0684 (6)0.1253 (8)0.0914 (6)0.0108 (5)0.0135 (4)0.0546 (6)
O10.1009 (18)0.1033 (19)0.0558 (13)0.0094 (15)0.0011 (12)0.0119 (12)
O20.1027 (18)0.1125 (19)0.0787 (15)0.0079 (15)0.0333 (13)0.0459 (14)
O30.0837 (14)0.0749 (13)0.0351 (10)0.0072 (11)0.0146 (9)0.0096 (9)
N10.0517 (13)0.0618 (14)0.0385 (11)0.0045 (11)0.0075 (10)0.0043 (10)
N20.0645 (14)0.0606 (15)0.0308 (11)0.0020 (12)0.0090 (10)0.0004 (10)
N30.0636 (16)0.0770 (17)0.0476 (15)0.0023 (13)0.0087 (11)0.0066 (12)
N40.0682 (17)0.0753 (18)0.0588 (16)0.0173 (15)0.0191 (13)0.0226 (14)
C10.0445 (15)0.0519 (16)0.0526 (15)0.0061 (12)0.0028 (12)0.0037 (12)
C20.0493 (17)0.0646 (19)0.073 (2)0.0108 (14)0.0018 (15)0.0201 (15)
C30.0525 (19)0.062 (2)0.116 (3)0.0120 (15)0.0152 (19)0.0258 (19)
C40.064 (2)0.0575 (19)0.095 (3)0.0031 (16)0.0257 (18)0.0006 (17)
C50.0489 (16)0.0497 (16)0.0635 (18)0.0065 (13)0.0140 (13)0.0059 (13)
C60.0469 (15)0.0528 (16)0.0519 (16)0.0001 (12)0.0037 (12)0.0029 (12)
C70.0588 (17)0.0681 (19)0.0364 (14)0.0076 (15)0.0028 (12)0.0043 (13)
C80.0546 (16)0.0541 (16)0.0325 (13)0.0091 (13)0.0035 (11)0.0015 (11)
C90.0470 (15)0.0507 (15)0.0359 (13)0.0129 (12)0.0034 (11)0.0023 (11)
C100.0679 (18)0.0570 (16)0.0378 (14)0.0026 (14)0.0091 (12)0.0018 (12)
C110.081 (2)0.074 (2)0.0377 (15)0.0014 (18)0.0124 (14)0.0056 (14)
C120.0542 (17)0.078 (2)0.0572 (18)0.0075 (15)0.0030 (14)0.0078 (15)
C130.0644 (18)0.0738 (19)0.0383 (14)0.0027 (15)0.0019 (13)0.0018 (13)
Geometric parameters (Å, º) top
Cl1—C21.733 (3)C3—H30.9300
O1—N41.222 (3)C4—C51.376 (4)
O2—N41.220 (3)C4—H40.9300
O3—C81.221 (3)C5—C61.368 (3)
N1—C71.268 (3)C6—H60.9300
N1—N21.374 (3)C7—H70.9300
N2—C81.350 (3)C8—C91.499 (3)
N2—H20.892 (10)C9—C101.375 (3)
N3—C111.324 (4)C9—C131.378 (3)
N3—C121.326 (3)C10—C111.382 (4)
N4—C51.467 (4)C10—H100.9300
C1—C21.388 (4)C11—H110.9300
C1—C61.391 (3)C12—C131.373 (4)
C1—C71.458 (4)C12—H120.9300
C2—C31.390 (4)C13—H130.9300
C3—C41.367 (4)
C7—N1—N2114.8 (2)C5—C6—H6119.6
C8—N2—N1118.8 (2)C1—C6—H6119.6
C8—N2—H2123 (2)N1—C7—C1119.7 (2)
N1—N2—H2118 (2)N1—C7—H7120.2
C11—N3—C12115.2 (2)C1—C7—H7120.2
O2—N4—O1123.7 (3)O3—C8—N2122.9 (2)
O2—N4—C5118.1 (3)O3—C8—C9121.2 (2)
O1—N4—C5118.3 (2)N2—C8—C9115.9 (2)
C2—C1—C6116.7 (2)C10—C9—C13117.1 (2)
C2—C1—C7121.7 (3)C10—C9—C8124.8 (2)
C6—C1—C7121.6 (2)C13—C9—C8118.1 (2)
C1—C2—C3122.0 (3)C9—C10—C11118.8 (3)
C1—C2—Cl1119.9 (2)C9—C10—H10120.6
C3—C2—Cl1118.1 (2)C11—C10—H10120.6
C4—C3—C2120.1 (3)N3—C11—C10124.9 (3)
C4—C3—H3119.9N3—C11—H11117.5
C2—C3—H3119.9C10—C11—H11117.5
C3—C4—C5118.1 (3)N3—C12—C13124.6 (3)
C3—C4—H4120.9N3—C12—H12117.7
C5—C4—H4120.9C13—C12—H12117.7
C6—C5—C4122.3 (3)C12—C13—C9119.5 (2)
C6—C5—N4119.0 (3)C12—C13—H13120.3
C4—C5—N4118.7 (3)C9—C13—H13120.3
C5—C6—C1120.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.89 (1)2.19 (1)3.055 (3)164 (3)
Symmetry code: (i) y1/4, x+3/4, z1/4.

Experimental details

Crystal data
Chemical formulaC13H9ClN4O3
Mr304.69
Crystal system, space groupTetragonal, I41/a
Temperature (K)298
a, c (Å)18.586 (3), 15.183 (3)
V3)5244.9 (15)
Z16
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.12 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.964, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
16616, 2869, 1685
Rint0.083
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.131, 1.03
No. of reflections2869
No. of parameters194
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.21

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.892 (10)2.187 (13)3.055 (3)164 (3)
Symmetry code: (i) y1/4, x+3/4, z1/4.
 

Acknowledgements

Financial support from the Third Affiliated Hospital of Suzhou University is acknowledged.

References

First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. Q., Hall, S., Zheng, B. & Rhodes, J. (1997). Biodrugs, 7, 217–231.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFan, Y. H., He, X. T., Bi, C. F., Guo, F., Bao, Y. & Chen, R. (2007). Russ. J. Coord. Chem. 33, 535–538.  Web of Science CrossRef CAS Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc. 127, 16776–16777.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNimitsiriwat, N., Marshall, E. L., Gibson, V. C., Elsegood, M. R. J. & Dale, S. H. (2004). J. Am. Chem. Soc. 126, 13598–13599.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2008). Acta Cryst. E64, o1850.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhi, F. (2008). Acta Cryst. E64, o150.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds