organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl­isochroman-1-one

aDepartment of Chemistry, Quaid-i-azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, People's Republic of China
*Correspondence e-mail: qadeerqau@yahoo.com

(Received 22 January 2009; accepted 4 February 2009; online 11 February 2009)

In the mol­ecule of the title compound, C16H14O2, the aromatic rings are oriented at a dihedral angle of 78.49 (3)°. The heterocyclic ring adopts a twist conformation. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains along the c axis.

Related literature

For related structures, see: Schmalle et al. (1982[Schmalle, H. W., Jarchow, O. H., Hausen, B. M. & Schulz, K.-H. (1982). Acta Cryst. B38, 2938-2941.]); Schnebel et al. (2003[Schnebel, M., Weidner, I., Wartchow, R. & Butenschon, H. (2003). Eur. J. Org. Chem. pp. 4363-4372.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O2

  • Mr = 238.27

  • Monoclinic, P 21 /c

  • a = 12.503 (5) Å

  • b = 8.0200 (9) Å

  • c = 12.892 (5) Å

  • β = 102.43 (2)°

  • V = 1262.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 (2) K

  • 0.32 × 0.26 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.820, Tmax = 0.983

  • 7148 measured reflections

  • 3024 independent reflections

  • 2546 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.136

  • S = 1.03

  • 3024 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O1i 0.97 2.53 3.2922 (18) 135
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound was prepared in order to evalute its potential as antibacterial and antifungal agents. The CCDC search (Allen, 2002) showed that the crystal structures of rac-exo-tricarbonyl-(h6-3-phenyl isochromanone) -chromium (Schnebel et al., 2003) and 3,4-dihydro-8-hydroxy-3-(4-hydroxy- phenyl)-isocoumarin (Schmalle et al., 1982) have been reported, which have close resemblance as far as isochromane and attached phenyl ring is considered. We report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and C (C11-C16) are, of course, planar, and they are oriented at a dihedral angle of 78.49 (3)°. Ring B (O2/C5-C9) is not planar, having total puckering amplitude, QT, of 2.420 (3) Å and twisted conformation [ϕ = 151.98 (3)° and θ = 88.50 (3)°] (Cremer & Pople, 1975).

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into chains along the c axis, in which they may be effective in the stabilization of the structure.

Related literature top

For related structures, see: Schmalle et al. (1982); Schnebel et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

As shown in Scheme 2, a mixture of homophthalic acid (1.98 g, 11.0 mmol) and 2-phenylacetyl chloride (7.08 g, 46 mmol) was heated under reflux for 6 h at 473 K. After concentration, the residue was chromatographed on silica gel column using petroleum ether (333–353 K) to give 3-benzyl-1H-isochromen-1-one. 2-(2-oxo-3-phenylpropyl) benzoic acid was obtained by refluxing a solution of 3-benzyl-1H-isochromen-1-one (4 g, 15.9 mmol) in ethanol (200 ml) and potassium hydroxide (5%,200 ml) for 6 h. NaBH4 (1.6 g) was added to a solution of 2-(2-oxo-3-phenylpropyl) benzoic acid (4.81 g, 17.8 mmol) in sodium hydroxide (1%, 180 ml) and the resulting solution was stirred overnight at room temperature. After being acidified with HCl, the whole mixture was extracted with dichloromethane (2 \ times 15 ml). Usual work-up gave crude racemic hydroxy-acid, 2-(2-hydroxy-3-phenylpropyl)benzoic acid, which was dissolved in acetic anhydride (5 ml) and heated under reflux for 2 h to get the title compound (yield; 73%, m.p. 605-606 K). The crude compound was purified by column chromatography on silica gel with petroleum ether and recrystallized in ethanol.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The formation of the title compound.
3-Benzylisochroman-1-one top
Crystal data top
C16H14O2F(000) = 504
Mr = 238.27Dx = 1.254 Mg m3
Monoclinic, P21/cMelting point: 332(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.503 (5) ÅCell parameters from 1316 reflections
b = 8.0200 (9) Åθ = 5.3–25.2°
c = 12.892 (5) ŵ = 0.08 mm1
β = 102.43 (2)°T = 294 K
V = 1262.4 (7) Å3Block, colorless
Z = 40.32 × 0.26 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3024 independent reflections
Radiation source: fine-focus sealed tube2546 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and ϕ scansθmax = 28.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1616
Tmin = 0.820, Tmax = 0.983k = 1010
7148 measured reflectionsl = 1017
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0818P)2 + 0.1131P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3024 reflectionsΔρmax = 0.18 e Å3
164 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.058 (7)
Crystal data top
C16H14O2V = 1262.4 (7) Å3
Mr = 238.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.503 (5) ŵ = 0.08 mm1
b = 8.0200 (9) ÅT = 294 K
c = 12.892 (5) Å0.32 × 0.26 × 0.21 mm
β = 102.43 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3024 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2546 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.983Rint = 0.021
7148 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
3024 reflectionsΔρmin = 0.14 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00370 (8)0.34647 (13)0.09298 (6)0.0694 (3)
O20.04862 (6)0.20854 (10)0.05531 (6)0.0513 (2)
C10.27750 (10)0.22424 (17)0.10333 (11)0.0614 (3)
H1A0.29840.16040.15580.074*
C20.35219 (11)0.3310 (2)0.04219 (14)0.0770 (4)
H2A0.42300.33830.05360.092*
C30.32221 (12)0.4264 (2)0.03548 (14)0.0793 (4)
H3A0.37280.49780.07660.095*
C40.21631 (11)0.41640 (17)0.05268 (11)0.0653 (3)
H4A0.19610.48150.10500.078*
C50.14040 (9)0.30857 (13)0.00867 (8)0.0481 (3)
C60.17032 (8)0.21122 (13)0.08690 (8)0.0461 (2)
C70.02835 (9)0.29314 (14)0.01389 (8)0.0495 (3)
C80.02859 (8)0.16880 (12)0.15967 (7)0.0439 (2)
H8A0.03410.27130.20190.053*
C90.08557 (9)0.09595 (13)0.14927 (8)0.0484 (3)
H9A0.08960.01130.11380.058*
H9B0.10020.07860.21940.058*
C100.11974 (9)0.05047 (14)0.21118 (9)0.0528 (3)
H10A0.10790.01850.28040.063*
H10B0.11470.04980.16830.063*
C110.23470 (9)0.12051 (13)0.22511 (9)0.0506 (3)
C120.30019 (11)0.08497 (17)0.15378 (11)0.0647 (3)
H12A0.27250.01810.09520.078*
C130.40664 (12)0.1470 (2)0.16750 (15)0.0809 (4)
H13A0.44880.12090.11850.097*
C140.44906 (13)0.2457 (2)0.25261 (17)0.0870 (5)
H14A0.52000.28700.26220.104*
C150.38502 (15)0.2832 (2)0.32398 (15)0.0894 (5)
H15A0.41310.35090.38200.107*
C160.27839 (13)0.22086 (18)0.31051 (11)0.0708 (4)
H16A0.23650.24750.35970.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0738 (6)0.0907 (7)0.0453 (4)0.0159 (5)0.0161 (4)0.0086 (4)
O20.0496 (4)0.0622 (5)0.0443 (4)0.0036 (3)0.0148 (3)0.0004 (3)
C10.0497 (6)0.0677 (7)0.0686 (7)0.0063 (5)0.0169 (5)0.0006 (6)
C20.0477 (6)0.0826 (9)0.0997 (11)0.0023 (6)0.0136 (7)0.0030 (8)
C30.0588 (7)0.0751 (9)0.0955 (10)0.0062 (6)0.0020 (7)0.0134 (8)
C40.0631 (7)0.0630 (7)0.0640 (7)0.0052 (6)0.0008 (5)0.0107 (6)
C50.0504 (6)0.0486 (5)0.0430 (5)0.0087 (4)0.0045 (4)0.0041 (4)
C60.0464 (5)0.0478 (5)0.0438 (5)0.0073 (4)0.0086 (4)0.0074 (4)
C70.0566 (6)0.0529 (6)0.0387 (5)0.0123 (4)0.0098 (4)0.0043 (4)
C80.0483 (5)0.0457 (5)0.0380 (5)0.0015 (4)0.0100 (4)0.0036 (4)
C90.0506 (5)0.0508 (5)0.0453 (5)0.0044 (4)0.0138 (4)0.0014 (4)
C100.0533 (6)0.0488 (6)0.0564 (6)0.0023 (4)0.0121 (4)0.0014 (5)
C110.0500 (5)0.0460 (5)0.0527 (6)0.0073 (4)0.0047 (4)0.0031 (4)
C120.0598 (7)0.0671 (7)0.0680 (7)0.0025 (6)0.0152 (6)0.0048 (6)
C130.0600 (8)0.0819 (9)0.1042 (11)0.0051 (7)0.0252 (8)0.0072 (9)
C140.0520 (7)0.0795 (10)0.1203 (14)0.0013 (7)0.0019 (8)0.0093 (10)
C150.0777 (10)0.0835 (10)0.0908 (11)0.0065 (8)0.0181 (8)0.0153 (8)
C160.0699 (8)0.0730 (8)0.0633 (8)0.0056 (6)0.0009 (6)0.0116 (6)
Geometric parameters (Å, º) top
C1—C21.382 (2)C8—H8A0.9800
C1—C61.405 (2)C9—H9A0.9700
C1—H1A0.9300C9—H9B0.9700
C2—C31.375 (3)C10—C111.517 (2)
C2—H2A0.9300C10—H10A0.9700
C3—C41.391 (3)C10—H10B0.9700
C3—H3A0.9300C11—C161.378 (2)
C4—C51.3968 (19)C11—C121.386 (2)
C4—H4A0.9300C12—C131.396 (2)
C5—C61.3889 (18)C12—H12A0.9300
C5—C71.496 (2)C13—C141.365 (3)
C6—C91.5023 (19)C13—H13A0.9300
C7—O11.2054 (17)C14—C151.377 (3)
C7—O21.3463 (17)C14—H14A0.9300
C8—O21.4559 (19)C15—C161.399 (3)
C8—C91.521 (2)C15—H15A0.9300
C8—C101.5214 (19)C16—H16A0.9300
C2—C1—C6120.63 (13)C8—C9—H9A109.5
C2—C1—H1A119.7C6—C9—H9B109.5
C6—C1—H1A119.7C8—C9—H9B109.5
C3—C2—C1120.23 (14)H9A—C9—H9B108.1
C3—C2—H2A119.9C11—C10—C8114.97 (12)
C1—C2—H2A119.9C11—C10—H10A108.5
C2—C3—C4120.14 (13)C8—C10—H10A108.5
C2—C3—H3A119.9C11—C10—H10B108.5
C4—C3—H3A119.9C8—C10—H10B108.5
C3—C4—C5119.97 (13)H10A—C10—H10B107.5
C3—C4—H4A120.0C16—C11—C12117.44 (14)
C5—C4—H4A120.0C16—C11—C10120.88 (11)
C6—C5—C4120.18 (13)C12—C11—C10121.68 (12)
C6—C5—C7120.30 (10)C11—C12—C13121.74 (15)
C4—C5—C7119.46 (12)C11—C12—H12A119.1
C5—C6—C1118.84 (11)C13—C12—H12A119.1
C5—C6—C9117.73 (11)C14—C13—C12120.23 (15)
C1—C6—C9123.42 (11)C14—C13—H13A119.9
O1—C7—O2117.57 (12)C12—C13—H13A119.9
O1—C7—C5123.76 (11)C13—C14—C15118.86 (16)
O2—C7—C5118.59 (11)C13—C14—H14A120.6
O2—C8—C9110.33 (8)C15—C14—H14A120.6
O2—C8—C10106.16 (9)C14—C15—C16120.99 (16)
C9—C8—C10113.54 (11)C14—C15—H15A119.5
O2—C8—H8A108.9C16—C15—H15A119.5
C9—C8—H8A108.9C11—C16—C15120.73 (15)
C10—C8—H8A108.9C11—C16—H16A119.6
C6—C9—C8110.56 (11)C15—C16—H16A119.6
C6—C9—H9A109.5C7—O2—C8118.82 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O1i0.972.533.2922 (18)135
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H14O2
Mr238.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)12.503 (5), 8.0200 (9), 12.892 (5)
β (°) 102.43 (2)
V3)1262.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.26 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.820, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7148, 3024, 2546
Rint0.021
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.136, 1.03
No. of reflections3024
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O1i0.972.533.2922 (18)135
Symmetry code: (i) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail nasimhrama@yahoo.com.

§Additional correspondence author, e-mail rwywong@hkbu.edu.hk.

Acknowledgements

The authors gratefully acknowledge the financial support of the Higher Education Commission, Islamabad, Pakistan.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSchmalle, H. W., Jarchow, O. H., Hausen, B. M. & Schulz, K.-H. (1982). Acta Cryst. B38, 2938–2941.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchnebel, M., Weidner, I., Wartchow, R. & Butenschon, H. (2003). Eur. J. Org. Chem. pp. 4363–4372.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds