organic compounds
3-(4-Fluorobenzyl)-1H-isochromene-1-thione
aDepartment of Chemistry, Quaid-i-azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, People's Republic of China
*Correspondence e-mail: qadeerqau@yahoo.com
In the molecule of the title compound, C16H11FOS, the benzene ring is oriented at a dihedral angle of 89.68 (3)° with respect to the planar [maximum deviation 0.009 (2) Å] isocoumarin ring system. An intramolecular C—H⋯S interaction results in the formation of a planar five-membered ring. In the intermolecular C—H⋯O hydrogen bonds link the molecules into chains parallel to the c axis. A π–π contact between the isocoumarin rings [centroid–centroid distance = 3.818 (3) Å] may further stabilize the structure.
Related literature
For general background, see: Barry (1964); Sturtz et al. (2002); Rossi et al. (2003); Powers et al. (2002); Thomas & Jens (1999). For a related structure, see: Abid et al. (2006). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON.
Supporting information
10.1107/S1600536809004152/hk2617sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809004152/hk2617Isup2.hkl
As shown in Scheme 2, the title compound was synthesized by refluxing 3-(4-fluorobenzyl)-1H-isochromen-1-one (0.5 g, 1.8 mmol) with Lawesson's reagent (0.89 g, 2.2 mmol) in dry toluene for 4 h. Pure thioisocoumarin was obtained by recrystalization in methanol (yield; 90%, m.p. 665-667 K).
H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).C16H11FOS | F(000) = 560 |
Mr = 270.31 | Dx = 1.361 Mg m−3 |
Monoclinic, P21/c | Melting point: 392(2) K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7346 (6) Å | Cell parameters from 1423 reflections |
b = 17.9516 (11) Å | θ = 4.2–25.4° |
c = 8.4481 (5) Å | µ = 0.25 mm−1 |
β = 95.026 (1)° | T = 294 K |
V = 1319.57 (14) Å3 | Block, yellow |
Z = 4 | 0.30 × 0.25 × 0.20 mm |
Bruker SMART CCD area-detector diffractometer | 3188 independent reflections |
Radiation source: fine-focus sealed tube | 2655 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −11→11 |
Tmin = 0.805, Tmax = 0.952 | k = −23→22 |
7856 measured reflections | l = −8→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.150 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0856P)2 + 0.2983P] where P = (Fo2 + 2Fc2)/3 |
3188 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C16H11FOS | V = 1319.57 (14) Å3 |
Mr = 270.31 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.7346 (6) Å | µ = 0.25 mm−1 |
b = 17.9516 (11) Å | T = 294 K |
c = 8.4481 (5) Å | 0.30 × 0.25 × 0.20 mm |
β = 95.026 (1)° |
Bruker SMART CCD area-detector diffractometer | 3188 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2655 reflections with I > 2σ(I) |
Tmin = 0.805, Tmax = 0.952 | Rint = 0.016 |
7856 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.150 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.34 e Å−3 |
3188 reflections | Δρmin = −0.30 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.07012 (6) | 0.65948 (3) | 0.36335 (6) | 0.0646 (2) | |
O1 | 0.20272 (15) | 0.53300 (6) | 0.37410 (13) | 0.0506 (3) | |
F1 | 0.51024 (16) | 0.13358 (7) | 0.29180 (19) | 0.0845 (4) | |
C1 | 0.0938 (2) | 0.63191 (10) | −0.0010 (2) | 0.0563 (4) | |
H1A | 0.0472 | 0.6745 | 0.0350 | 0.068* | |
C2 | 0.1045 (3) | 0.62201 (12) | −0.1609 (2) | 0.0665 (5) | |
H2A | 0.0656 | 0.6581 | −0.2326 | 0.080* | |
C3 | 0.1727 (3) | 0.55866 (12) | −0.2156 (2) | 0.0706 (6) | |
H3A | 0.1785 | 0.5521 | −0.3241 | 0.085* | |
C4 | 0.2320 (3) | 0.50543 (11) | −0.1113 (2) | 0.0656 (5) | |
H4A | 0.2784 | 0.4633 | −0.1496 | 0.079* | |
C5 | 0.2234 (2) | 0.51390 (9) | 0.05279 (18) | 0.0483 (4) | |
C6 | 0.15271 (18) | 0.57814 (8) | 0.10781 (17) | 0.0439 (3) | |
C7 | 0.14344 (18) | 0.58791 (9) | 0.27669 (18) | 0.0446 (3) | |
C8 | 0.2707 (2) | 0.46929 (8) | 0.32005 (19) | 0.0482 (4) | |
C9 | 0.2829 (2) | 0.45929 (9) | 0.1661 (2) | 0.0523 (4) | |
H9A | 0.3304 | 0.4166 | 0.1313 | 0.063* | |
C10 | 0.3182 (3) | 0.41971 (10) | 0.4583 (2) | 0.0615 (5) | |
H10A | 0.2320 | 0.4141 | 0.5222 | 0.074* | |
H10B | 0.4006 | 0.4438 | 0.5237 | 0.074* | |
C11 | 0.3716 (2) | 0.34333 (9) | 0.4123 (2) | 0.0515 (4) | |
C12 | 0.5239 (3) | 0.32831 (12) | 0.3957 (3) | 0.0741 (6) | |
H12A | 0.5961 | 0.3662 | 0.4129 | 0.089* | |
C13 | 0.5718 (2) | 0.25794 (14) | 0.3540 (3) | 0.0799 (7) | |
H13A | 0.6748 | 0.2483 | 0.3421 | 0.096* | |
C14 | 0.4648 (2) | 0.20356 (10) | 0.3309 (2) | 0.0585 (4) | |
C15 | 0.3136 (2) | 0.21543 (11) | 0.3461 (3) | 0.0671 (5) | |
H15A | 0.2425 | 0.1771 | 0.3292 | 0.081* | |
C16 | 0.2677 (2) | 0.28622 (11) | 0.3875 (3) | 0.0644 (5) | |
H16A | 0.1644 | 0.2952 | 0.3987 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0761 (4) | 0.0604 (3) | 0.0583 (3) | 0.0200 (2) | 0.0112 (2) | −0.0054 (2) |
O1 | 0.0702 (8) | 0.0431 (6) | 0.0390 (5) | 0.0077 (5) | 0.0071 (5) | −0.0006 (4) |
F1 | 0.0826 (9) | 0.0557 (7) | 0.1132 (11) | 0.0188 (6) | −0.0030 (8) | −0.0146 (7) |
C1 | 0.0629 (11) | 0.0529 (9) | 0.0526 (9) | 0.0022 (8) | 0.0028 (7) | 0.0071 (7) |
C2 | 0.0840 (14) | 0.0661 (11) | 0.0485 (9) | −0.0040 (10) | −0.0003 (9) | 0.0157 (9) |
C3 | 0.1044 (17) | 0.0684 (12) | 0.0396 (8) | −0.0116 (11) | 0.0106 (9) | 0.0040 (8) |
C4 | 0.1026 (16) | 0.0520 (9) | 0.0441 (9) | −0.0023 (10) | 0.0173 (9) | −0.0040 (7) |
C5 | 0.0635 (10) | 0.0415 (7) | 0.0408 (7) | −0.0063 (7) | 0.0093 (7) | −0.0009 (6) |
C6 | 0.0473 (8) | 0.0431 (7) | 0.0412 (7) | −0.0052 (6) | 0.0042 (6) | 0.0012 (6) |
C7 | 0.0462 (8) | 0.0438 (7) | 0.0437 (7) | −0.0001 (6) | 0.0043 (6) | 0.0000 (6) |
C8 | 0.0623 (10) | 0.0364 (7) | 0.0460 (8) | 0.0016 (6) | 0.0053 (7) | −0.0004 (6) |
C9 | 0.0713 (11) | 0.0383 (7) | 0.0484 (8) | 0.0032 (7) | 0.0110 (7) | −0.0020 (6) |
C10 | 0.0910 (14) | 0.0465 (9) | 0.0466 (9) | 0.0090 (9) | 0.0037 (8) | 0.0035 (7) |
C11 | 0.0653 (10) | 0.0424 (8) | 0.0464 (8) | 0.0041 (7) | 0.0019 (7) | 0.0069 (6) |
C12 | 0.0598 (12) | 0.0560 (11) | 0.1061 (18) | −0.0107 (9) | 0.0047 (11) | −0.0067 (11) |
C13 | 0.0506 (11) | 0.0685 (13) | 0.121 (2) | 0.0047 (9) | 0.0111 (12) | −0.0073 (13) |
C14 | 0.0621 (11) | 0.0453 (8) | 0.0666 (11) | 0.0093 (7) | −0.0027 (8) | −0.0016 (8) |
C15 | 0.0561 (11) | 0.0462 (9) | 0.0976 (15) | −0.0034 (8) | −0.0018 (10) | −0.0022 (9) |
C16 | 0.0508 (10) | 0.0538 (10) | 0.0891 (14) | 0.0065 (8) | 0.0080 (9) | 0.0029 (9) |
C1—C2 | 1.373 (3) | C8—C10 | 1.498 (2) |
C1—C6 | 1.400 (2) | C9—H9A | 0.9300 |
C1—H1A | 0.9300 | C10—C11 | 1.510 (2) |
C2—C3 | 1.382 (3) | C10—H10A | 0.9700 |
C2—H2A | 0.9300 | C10—H10B | 0.9700 |
C3—C4 | 1.370 (3) | C11—C16 | 1.373 (3) |
C3—H3A | 0.9300 | C11—C12 | 1.376 (3) |
C4—C5 | 1.403 (2) | C12—C13 | 1.386 (3) |
C4—H4A | 0.9300 | C12—H12A | 0.9300 |
C5—C6 | 1.406 (2) | C13—C14 | 1.353 (3) |
C5—C9 | 1.435 (2) | C13—H13A | 0.9300 |
C6—C7 | 1.447 (2) | C14—C15 | 1.355 (3) |
C7—O1 | 1.3573 (19) | C14—F1 | 1.367 (2) |
C7—S1 | 1.6367 (16) | C15—C16 | 1.387 (3) |
C8—C9 | 1.327 (2) | C15—H15A | 0.9300 |
C8—O1 | 1.3843 (18) | C16—H16A | 0.9300 |
C2—C1—C6 | 120.26 (18) | C5—C9—H9A | 119.8 |
C2—C1—H1A | 119.9 | C8—C10—C11 | 114.22 (15) |
C6—C1—H1A | 119.9 | C8—C10—H10A | 108.7 |
C1—C2—C3 | 120.26 (18) | C11—C10—H10A | 108.7 |
C1—C2—H2A | 119.9 | C8—C10—H10B | 108.7 |
C3—C2—H2A | 119.9 | C11—C10—H10B | 108.7 |
C4—C3—C2 | 120.55 (17) | H10A—C10—H10B | 107.6 |
C4—C3—H3A | 119.7 | C16—C11—C12 | 118.03 (17) |
C2—C3—H3A | 119.7 | C16—C11—C10 | 120.16 (18) |
C3—C4—C5 | 120.66 (18) | C12—C11—C10 | 121.81 (18) |
C3—C4—H4A | 119.7 | C11—C12—C13 | 121.35 (19) |
C5—C4—H4A | 119.7 | C11—C12—H12A | 119.3 |
C4—C5—C6 | 118.58 (15) | C13—C12—H12A | 119.3 |
C4—C5—C9 | 122.49 (16) | C14—C13—C12 | 118.3 (2) |
C6—C5—C9 | 118.92 (14) | C14—C13—H13A | 120.8 |
C1—C6—C5 | 119.68 (15) | C12—C13—H13A | 120.8 |
C1—C6—C7 | 121.00 (15) | C13—C14—C15 | 122.61 (18) |
C5—C6—C7 | 119.31 (14) | C13—C14—F1 | 119.12 (18) |
O1—C7—C6 | 117.29 (13) | C15—C14—F1 | 118.27 (18) |
O1—C7—S1 | 116.25 (11) | C14—C15—C16 | 118.29 (18) |
C6—C7—S1 | 126.45 (12) | C14—C15—H15A | 120.9 |
C9—C8—O1 | 120.60 (14) | C16—C15—H15A | 120.9 |
C9—C8—C10 | 130.03 (16) | C11—C16—C15 | 121.39 (18) |
O1—C8—C10 | 109.36 (13) | C11—C16—H16A | 119.3 |
C8—C9—C5 | 120.38 (15) | C15—C16—H16A | 119.3 |
C8—C9—H9A | 119.8 | C7—O1—C8 | 123.49 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···S1 | 0.93 | 2.78 | 3.142 (2) | 105 |
C3—H3A···O1i | 0.93 | 2.60 | 3.529 (2) | 178 |
Symmetry code: (i) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C16H11FOS |
Mr | 270.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 294 |
a, b, c (Å) | 8.7346 (6), 17.9516 (11), 8.4481 (5) |
β (°) | 95.026 (1) |
V (Å3) | 1319.57 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.805, 0.952 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7856, 3188, 2655 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.150, 1.03 |
No. of reflections | 3188 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.30 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···S1 | 0.93 | 2.78 | 3.142 (2) | 105 |
C3—H3A···O1i | 0.93 | 2.60 | 3.529 (2) | 178 |
Symmetry code: (i) x, y, z−1. |
Acknowledgements
The authors gratefully acknowledge the financial support of the Higher Education Commission, Islamabad, Pakistan.
References
Abid, O., Rama, N. H., Qadeer, G., Khan, G. S. & Lu, X.-M. (2006). Acta Cryst. E62, o2895–o2896. Web of Science CSD CrossRef IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Barry, R. D. (1964). Chem. Rev. 64, 239–241. CrossRef Web of Science Google Scholar
Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Powers, J. C., Asgian, J. L., Ekici, D. & James, K. E. (2002). Chem. Rev. 102, 4639–4643. Web of Science CrossRef PubMed CAS Google Scholar
Rossi, R., Carpita, A., Bellina, F., Stabile, P. & Mannina, L. (2003). Tetrahedron, 59, 2067–2081. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sturtz, G., Meepagala, K. & Wedge, D. (2002). J. Agric. Food Chem. 50, 6979–6984. Google Scholar
Thomas, L. & Jens, B. J. (1999). Nat. Prod. 62, 1182–1187. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The isocoumarin nucleus is an abundant structural motif in natural products (Barry, 1964). Many constituents of the steadily growing class of known isocoumarins exhibit valuable biological properties such as antifungal (Sturtz et al., 2002), antitumor or cytotoxic, anti-inflammatory, anti-allergic (Rossi et al., 2003) and enzyme inhibitory (Powers et al., 2002) activities. Naturally occurring halo-isocoumarins and their halogeno-3,4-dihydroiscoumarin derivatives are very rare. However, a few examples of naturally occurring chlorine containing isocoumarins are known (Thomas & Jens, 1999). In view of the importance of this class of compounds, the title compound, an isocoumarine derivative containing 4-fluorobenzyl substituent has been synthesized, and we report herein its crystal structure.
In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges, and comparable with the corresponding values in 3-(2-chlorobenzyl)isocoumarin (Abid et al., 2006). Rings A (C1-C6), B (O1/C5-C9) and C (C11-C16) are, of course, planar and the dihedral angles between them are A/B = 0.29 (3)°, A/C = 89.77 (4)° and B/C = 89.53 (3)°. The intramolecular C-H···S interaction (Table 1) results in the formation of a planar five-membered ring D (S1/C1/C6/C7/H1A).
In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into chains parallel to the c-axis (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contact between the isocoumarine rings, Cg1—Cg2i [symmetry code: (i) -x, -y, 1 - z, where Cg1 and Cg2 are centroids of the rings A (C1-C6) and B (O1/C5-C9), respectively] may further stabilize the structure, with centroid-centroid distance of 3.818 (3) Å.