organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Fluoro­benz­yl)-1H-isochromene-1-thione

aDepartment of Chemistry, Quaid-i-azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, People's Republic of China
*Correspondence e-mail: qadeerqau@yahoo.com

(Received 23 January 2009; accepted 4 February 2009; online 11 February 2009)

In the mol­ecule of the title compound, C16H11FOS, the benzene ring is oriented at a dihedral angle of 89.68 (3)° with respect to the planar [maximum deviation 0.009 (2) Å] isocoumarin ring system. An intra­molecular C—H⋯S inter­action results in the formation of a planar five-membered ring. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains parallel to the c axis. A ππ contact between the isocoumarin rings [centroid–centroid distance = 3.818 (3) Å] may further stabilize the structure.

Related literature

For general background, see: Barry (1964[Barry, R. D. (1964). Chem. Rev. 64, 239-241.]); Sturtz et al. (2002[Sturtz, G., Meepagala, K. & Wedge, D. (2002). J. Agric. Food Chem. 50, 6979-6984.]); Rossi et al. (2003[Rossi, R., Carpita, A., Bellina, F., Stabile, P. & Mannina, L. (2003). Tetrahedron, 59, 2067-2081.]); Powers et al. (2002[Powers, J. C., Asgian, J. L., Ekici, D. & James, K. E. (2002). Chem. Rev. 102, 4639-4643.]); Thomas & Jens (1999[Thomas, L. & Jens, B. J. (1999). Nat. Prod. 62, 1182-1187.]). For a related structure, see: Abid et al. (2006[Abid, O., Rama, N. H., Qadeer, G., Khan, G. S. & Lu, X.-M. (2006). Acta Cryst. E62, o2895-o2896.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11FOS

  • Mr = 270.31

  • Monoclinic, P 21 /c

  • a = 8.7346 (6) Å

  • b = 17.9516 (11) Å

  • c = 8.4481 (5) Å

  • β = 95.026 (1)°

  • V = 1319.57 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 294 (2) K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.805, Tmax = 0.952

  • 7856 measured reflections

  • 3188 independent reflections

  • 2655 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.150

  • S = 1.03

  • 3188 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯S1 0.93 2.78 3.142 (2) 105
C3—H3A⋯O1i 0.93 2.60 3.529 (2) 178
Symmetry code: (i) x, y, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON.

Supporting information


Comment top

The isocoumarin nucleus is an abundant structural motif in natural products (Barry, 1964). Many constituents of the steadily growing class of known isocoumarins exhibit valuable biological properties such as antifungal (Sturtz et al., 2002), antitumor or cytotoxic, anti-inflammatory, anti-allergic (Rossi et al., 2003) and enzyme inhibitory (Powers et al., 2002) activities. Naturally occurring halo-isocoumarins and their halogeno-3,4-dihydroiscoumarin derivatives are very rare. However, a few examples of naturally occurring chlorine containing isocoumarins are known (Thomas & Jens, 1999). In view of the importance of this class of compounds, the title compound, an isocoumarine derivative containing 4-fluorobenzyl substituent has been synthesized, and we report herein its crystal structure.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges, and comparable with the corresponding values in 3-(2-chlorobenzyl)isocoumarin (Abid et al., 2006). Rings A (C1-C6), B (O1/C5-C9) and C (C11-C16) are, of course, planar and the dihedral angles between them are A/B = 0.29 (3)°, A/C = 89.77 (4)° and B/C = 89.53 (3)°. The intramolecular C-H···S interaction (Table 1) results in the formation of a planar five-membered ring D (S1/C1/C6/C7/H1A).

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into chains parallel to the c-axis (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contact between the isocoumarine rings, Cg1—Cg2i [symmetry code: (i) -x, -y, 1 - z, where Cg1 and Cg2 are centroids of the rings A (C1-C6) and B (O1/C5-C9), respectively] may further stabilize the structure, with centroid-centroid distance of 3.818 (3) Å.

Related literature top

For general background, see: Barry (1964); Sturtz et al. (2002); Rossi et al. (2003); Powers et al. (2002); Thomas & Jens (1999). For a related structure, see: Abid et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

As shown in Scheme 2, the title compound was synthesized by refluxing 3-(4-fluorobenzyl)-1H-isochromen-1-one (0.5 g, 1.8 mmol) with Lawesson's reagent (0.89 g, 2.2 mmol) in dry toluene for 4 h. Pure thioisocoumarin was obtained by recrystalization in methanol (yield; 90%, m.p. 665-667 K).

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The formation of the title compound.
3-(4-Fluorobenzyl)-1H-isochromene-1-thione top
Crystal data top
C16H11FOSF(000) = 560
Mr = 270.31Dx = 1.361 Mg m3
Monoclinic, P21/cMelting point: 392(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.7346 (6) ÅCell parameters from 1423 reflections
b = 17.9516 (11) Åθ = 4.2–25.4°
c = 8.4481 (5) ŵ = 0.25 mm1
β = 95.026 (1)°T = 294 K
V = 1319.57 (14) Å3Block, yellow
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3188 independent reflections
Radiation source: fine-focus sealed tube2655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.805, Tmax = 0.952k = 2322
7856 measured reflectionsl = 811
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0856P)2 + 0.2983P]
where P = (Fo2 + 2Fc2)/3
3188 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H11FOSV = 1319.57 (14) Å3
Mr = 270.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7346 (6) ŵ = 0.25 mm1
b = 17.9516 (11) ÅT = 294 K
c = 8.4481 (5) Å0.30 × 0.25 × 0.20 mm
β = 95.026 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3188 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2655 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.952Rint = 0.016
7856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
3188 reflectionsΔρmin = 0.30 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07012 (6)0.65948 (3)0.36335 (6)0.0646 (2)
O10.20272 (15)0.53300 (6)0.37410 (13)0.0506 (3)
F10.51024 (16)0.13358 (7)0.29180 (19)0.0845 (4)
C10.0938 (2)0.63191 (10)0.0010 (2)0.0563 (4)
H1A0.04720.67450.03500.068*
C20.1045 (3)0.62201 (12)0.1609 (2)0.0665 (5)
H2A0.06560.65810.23260.080*
C30.1727 (3)0.55866 (12)0.2156 (2)0.0706 (6)
H3A0.17850.55210.32410.085*
C40.2320 (3)0.50543 (11)0.1113 (2)0.0656 (5)
H4A0.27840.46330.14960.079*
C50.2234 (2)0.51390 (9)0.05279 (18)0.0483 (4)
C60.15271 (18)0.57814 (8)0.10781 (17)0.0439 (3)
C70.14344 (18)0.58791 (9)0.27669 (18)0.0446 (3)
C80.2707 (2)0.46929 (8)0.32005 (19)0.0482 (4)
C90.2829 (2)0.45929 (9)0.1661 (2)0.0523 (4)
H9A0.33040.41660.13130.063*
C100.3182 (3)0.41971 (10)0.4583 (2)0.0615 (5)
H10A0.23200.41410.52220.074*
H10B0.40060.44380.52370.074*
C110.3716 (2)0.34333 (9)0.4123 (2)0.0515 (4)
C120.5239 (3)0.32831 (12)0.3957 (3)0.0741 (6)
H12A0.59610.36620.41290.089*
C130.5718 (2)0.25794 (14)0.3540 (3)0.0799 (7)
H13A0.67480.24830.34210.096*
C140.4648 (2)0.20356 (10)0.3309 (2)0.0585 (4)
C150.3136 (2)0.21543 (11)0.3461 (3)0.0671 (5)
H15A0.24250.17710.32920.081*
C160.2677 (2)0.28622 (11)0.3875 (3)0.0644 (5)
H16A0.16440.29520.39870.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0761 (4)0.0604 (3)0.0583 (3)0.0200 (2)0.0112 (2)0.0054 (2)
O10.0702 (8)0.0431 (6)0.0390 (5)0.0077 (5)0.0071 (5)0.0006 (4)
F10.0826 (9)0.0557 (7)0.1132 (11)0.0188 (6)0.0030 (8)0.0146 (7)
C10.0629 (11)0.0529 (9)0.0526 (9)0.0022 (8)0.0028 (7)0.0071 (7)
C20.0840 (14)0.0661 (11)0.0485 (9)0.0040 (10)0.0003 (9)0.0157 (9)
C30.1044 (17)0.0684 (12)0.0396 (8)0.0116 (11)0.0106 (9)0.0040 (8)
C40.1026 (16)0.0520 (9)0.0441 (9)0.0023 (10)0.0173 (9)0.0040 (7)
C50.0635 (10)0.0415 (7)0.0408 (7)0.0063 (7)0.0093 (7)0.0009 (6)
C60.0473 (8)0.0431 (7)0.0412 (7)0.0052 (6)0.0042 (6)0.0012 (6)
C70.0462 (8)0.0438 (7)0.0437 (7)0.0001 (6)0.0043 (6)0.0000 (6)
C80.0623 (10)0.0364 (7)0.0460 (8)0.0016 (6)0.0053 (7)0.0004 (6)
C90.0713 (11)0.0383 (7)0.0484 (8)0.0032 (7)0.0110 (7)0.0020 (6)
C100.0910 (14)0.0465 (9)0.0466 (9)0.0090 (9)0.0037 (8)0.0035 (7)
C110.0653 (10)0.0424 (8)0.0464 (8)0.0041 (7)0.0019 (7)0.0069 (6)
C120.0598 (12)0.0560 (11)0.1061 (18)0.0107 (9)0.0047 (11)0.0067 (11)
C130.0506 (11)0.0685 (13)0.121 (2)0.0047 (9)0.0111 (12)0.0073 (13)
C140.0621 (11)0.0453 (8)0.0666 (11)0.0093 (7)0.0027 (8)0.0016 (8)
C150.0561 (11)0.0462 (9)0.0976 (15)0.0034 (8)0.0018 (10)0.0022 (9)
C160.0508 (10)0.0538 (10)0.0891 (14)0.0065 (8)0.0080 (9)0.0029 (9)
Geometric parameters (Å, º) top
C1—C21.373 (3)C8—C101.498 (2)
C1—C61.400 (2)C9—H9A0.9300
C1—H1A0.9300C10—C111.510 (2)
C2—C31.382 (3)C10—H10A0.9700
C2—H2A0.9300C10—H10B0.9700
C3—C41.370 (3)C11—C161.373 (3)
C3—H3A0.9300C11—C121.376 (3)
C4—C51.403 (2)C12—C131.386 (3)
C4—H4A0.9300C12—H12A0.9300
C5—C61.406 (2)C13—C141.353 (3)
C5—C91.435 (2)C13—H13A0.9300
C6—C71.447 (2)C14—C151.355 (3)
C7—O11.3573 (19)C14—F11.367 (2)
C7—S11.6367 (16)C15—C161.387 (3)
C8—C91.327 (2)C15—H15A0.9300
C8—O11.3843 (18)C16—H16A0.9300
C2—C1—C6120.26 (18)C5—C9—H9A119.8
C2—C1—H1A119.9C8—C10—C11114.22 (15)
C6—C1—H1A119.9C8—C10—H10A108.7
C1—C2—C3120.26 (18)C11—C10—H10A108.7
C1—C2—H2A119.9C8—C10—H10B108.7
C3—C2—H2A119.9C11—C10—H10B108.7
C4—C3—C2120.55 (17)H10A—C10—H10B107.6
C4—C3—H3A119.7C16—C11—C12118.03 (17)
C2—C3—H3A119.7C16—C11—C10120.16 (18)
C3—C4—C5120.66 (18)C12—C11—C10121.81 (18)
C3—C4—H4A119.7C11—C12—C13121.35 (19)
C5—C4—H4A119.7C11—C12—H12A119.3
C4—C5—C6118.58 (15)C13—C12—H12A119.3
C4—C5—C9122.49 (16)C14—C13—C12118.3 (2)
C6—C5—C9118.92 (14)C14—C13—H13A120.8
C1—C6—C5119.68 (15)C12—C13—H13A120.8
C1—C6—C7121.00 (15)C13—C14—C15122.61 (18)
C5—C6—C7119.31 (14)C13—C14—F1119.12 (18)
O1—C7—C6117.29 (13)C15—C14—F1118.27 (18)
O1—C7—S1116.25 (11)C14—C15—C16118.29 (18)
C6—C7—S1126.45 (12)C14—C15—H15A120.9
C9—C8—O1120.60 (14)C16—C15—H15A120.9
C9—C8—C10130.03 (16)C11—C16—C15121.39 (18)
O1—C8—C10109.36 (13)C11—C16—H16A119.3
C8—C9—C5120.38 (15)C15—C16—H16A119.3
C8—C9—H9A119.8C7—O1—C8123.49 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···S10.932.783.142 (2)105
C3—H3A···O1i0.932.603.529 (2)178
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC16H11FOS
Mr270.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)8.7346 (6), 17.9516 (11), 8.4481 (5)
β (°) 95.026 (1)
V3)1319.57 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.805, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
7856, 3188, 2655
Rint0.016
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.150, 1.03
No. of reflections3188
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.30

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···S10.932.783.142 (2)105
C3—H3A···O1i0.932.603.529 (2)178
Symmetry code: (i) x, y, z1.
 

Footnotes

Additional correspondence author, e-mail nasimhrama@yahoo.com.

§Additional correspondence author, e-mail rwywong@hkbu.edu.hk.

Acknowledgements

The authors gratefully acknowledge the financial support of the Higher Education Commission, Islamabad, Pakistan.

References

First citationAbid, O., Rama, N. H., Qadeer, G., Khan, G. S. & Lu, X.-M. (2006). Acta Cryst. E62, o2895–o2896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBarry, R. D. (1964). Chem. Rev. 64, 239–241.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPowers, J. C., Asgian, J. L., Ekici, D. & James, K. E. (2002). Chem. Rev. 102, 4639–4643.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRossi, R., Carpita, A., Bellina, F., Stabile, P. & Mannina, L. (2003). Tetrahedron, 59, 2067–2081.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSturtz, G., Meepagala, K. & Wedge, D. (2002). J. Agric. Food Chem. 50, 6979–6984.  Google Scholar
First citationThomas, L. & Jens, B. J. (1999). Nat. Prod. 62, 1182–1187.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds