organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(N-meth­oxy­carbonyl­meth­yl-N-methylsulfamo­yl)benzoate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 24 January 2009; accepted 30 January 2009; online 4 February 2009)

In the title compound, C12H15NO6S, the aromatic ring is oriented at dihedral angles of 64.76 (11) and 56.42 (13)° with respect to the planar methyl ester unit and the SO2 group, respectively. The dihedral angle between the SO2 group and the planar methoxy­carbonyl­methyl group is 50.42 (14)°. Intra­molecular C—H⋯O hydrogen bonding results in the formation of an eight-membered ring. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For general background, see: Hanson et al. (1999[Hanson, P. R., Probst, D. A., Robinson, R. E. & Yau, M. (1999). Tetrahedron Lett. 40, 4761-4764.]). For related structures, see: Arshad et al. (2008[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.]); Shafiq et al. (2008a[Shafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008a). Acta Cryst. E64, o558.],b[Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008b). Acta Cryst. E64, o1270.]); Ma et al., 2003[Ma, N., Wang, B., Wang, J., Song, H., Wang, S. & Li, Z. (2003). Acta Cryst. E59, o438-o440.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15NO6S

  • Mr = 301.31

  • Orthorhombic, P 21 21 21

  • a = 8.5830 (3) Å

  • b = 9.0966 (3) Å

  • c = 18.3329 (7) Å

  • V = 1431.36 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 (2) K

  • 0.22 × 0.18 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.965

  • 16627 measured reflections

  • 3558 independent reflections

  • 2513 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.098

  • S = 1.01

  • 3558 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1509 Friedel pairs

  • Flack parameter: 0.12 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1 0.97 2.20 3.125 (3) 159
C9—H9B⋯O1i 0.97 2.56 3.321 (3) 135
C12—H12B⋯O4ii 0.96 2.44 3.041 (4) 120
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamides are a class of compounds, which find wide applications in medicinal chemistry (Hanson et al., 1999). Cyclic sulfonamides (benzothiazine) have biological activities such as lipoxygenase inhibition, and they are used as drugs for heart diseases. We are engaged in the syntheses of various derivatives of benzothiazine molecule (Arshad et al., 2008; Shafiq et al., 20082008a,b). We report herein the crystal structure of the title compound, (I), which is used as an intermediate for further syntheses.

In the molecule of the title compound, (I), (Fig. 1), the coordination around the S atom is a distorted tetrahedral. The crystal structure of methyl 2-(4-methoxypyrimidin-2-ylcarbamoylsulfamoyl)benzoate, (II) (Ma et al., 2003) has been reported, which also has a sulfamoylbenzoate moiety. In (I), the benzene ring A (C1-C6) is oriented with respect to the planar methyl ester moiety (O1/O2/C7/C8) and SO2 group at dihedral angles of 64.76 (11)° and 56.42 (13)°, respectively. The dihedral angle between SO2 moiety and the planar methoxycarbonylmethyl group (O5/O6/N1/C9/C10/C12) is 50.42 (14)°. Intramolecular C—H···O hydrogen bonding (Table 1) results in the formation of an eight-membered ring (S1/O1/N1/C1/C6/C7/C9/H9A).

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Hanson et al. (1999). For related structures, see: Arshad et al. (2008); Shafiq et al. (2008a,b); Ma et al., 2003).

Experimental top

For the preparation of the title compound, sodium saccharine (20.5 g, 0.1 mol) and methylchloroacetic acid (10.85 g, 0.1 mol) were dissolved in DMF (50 ml) and refluxed for 1 h, and then ice was added for precipitation. The precipitate (12.8 g, 0.05 mol) was dissolved in methanol (50 ml), and sodium methoxide (5.4 g, 0.1 mol) was added, and then refluxed for 3 h. The volume was reduced to half by evaporation. Then, HCl was added on cooling and left overnight in refrigerator, which was then recrystallized from absolute ethanol.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methylene group and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dotted line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Methyl 2-(N-methoxycarbonylmethyl-N-methylsulfamoyl)benzoate top
Crystal data top
C12H15NO6SF(000) = 632
Mr = 301.31Dx = 1.398 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3558 reflections
a = 8.5830 (3) Åθ = 2.2–28.3°
b = 9.0966 (3) ŵ = 0.25 mm1
c = 18.3329 (7) ÅT = 296 K
V = 1431.36 (9) Å3Prism, colorless
Z = 40.22 × 0.18 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3558 independent reflections
Radiation source: fine-focus sealed tube2513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.2°
ω scansh = 117
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1210
Tmin = 0.942, Tmax = 0.965l = 2424
16627 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.0688P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3558 reflectionsΔρmax = 0.16 e Å3
184 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 1509 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (8)
Crystal data top
C12H15NO6SV = 1431.36 (9) Å3
Mr = 301.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5830 (3) ŵ = 0.25 mm1
b = 9.0966 (3) ÅT = 296 K
c = 18.3329 (7) Å0.22 × 0.18 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3558 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2513 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.965Rint = 0.039
16627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.16 e Å3
S = 1.01Δρmin = 0.24 e Å3
3558 reflectionsAbsolute structure: Flack (1983), 1509 Friedel pairs
184 parametersAbsolute structure parameter: 0.12 (8)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48790 (6)0.03278 (6)0.16077 (3)0.0454 (2)
O10.78607 (18)0.0316 (2)0.03285 (9)0.0594 (6)
O20.8987 (2)0.15351 (18)0.09228 (8)0.0578 (6)
O30.5106 (2)0.09093 (17)0.11432 (8)0.0528 (5)
O40.3864 (2)0.0227 (2)0.22151 (9)0.0730 (7)
O50.1989 (2)0.0586 (2)0.01831 (11)0.0744 (8)
O60.3568 (3)0.0937 (2)0.07700 (10)0.0802 (8)
N10.4279 (2)0.1681 (2)0.11144 (10)0.0534 (7)
C10.6735 (3)0.0822 (2)0.19630 (11)0.0437 (7)
C20.6751 (3)0.1563 (3)0.26251 (12)0.0581 (8)
C30.8149 (4)0.1958 (3)0.29366 (16)0.0783 (11)
C40.9518 (4)0.1598 (3)0.26066 (17)0.0883 (12)
C50.9524 (3)0.0831 (3)0.19607 (15)0.0705 (10)
C60.8129 (3)0.0454 (2)0.16210 (12)0.0453 (7)
C70.8263 (2)0.0253 (3)0.08873 (12)0.0451 (7)
C80.9334 (3)0.2224 (3)0.02298 (14)0.0691 (10)
C90.4512 (3)0.1665 (3)0.03348 (12)0.0551 (8)
C100.3184 (3)0.0993 (3)0.00666 (13)0.0524 (8)
C110.3366 (4)0.2883 (3)0.14377 (16)0.0815 (11)
C120.2408 (5)0.0357 (5)0.12639 (17)0.1163 (16)
H20.581870.179130.285770.0698*
H30.815830.247360.337470.0940*
H41.045650.187420.282000.1058*
H51.046660.056090.174910.0846*
H8A0.837890.243430.002230.1037*
H8B0.989330.312250.031230.1037*
H8C0.995840.157220.006000.1037*
H9A0.545470.112010.022500.0661*
H9B0.465770.266580.016530.0661*
H11A0.374750.380790.126020.1224*
H11B0.346310.285200.195910.1224*
H11C0.229010.277310.130490.1224*
H12A0.211960.061640.111280.1744*
H12B0.282840.032150.174880.1744*
H12C0.150560.098000.125800.1744*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0541 (3)0.0436 (3)0.0386 (3)0.0130 (3)0.0029 (3)0.0013 (3)
O10.0599 (9)0.0687 (12)0.0497 (9)0.0096 (9)0.0026 (8)0.0119 (9)
O20.0758 (11)0.0440 (10)0.0535 (10)0.0095 (9)0.0038 (8)0.0040 (8)
O30.0687 (10)0.0402 (8)0.0495 (8)0.0140 (8)0.0024 (9)0.0063 (7)
O40.0796 (11)0.0836 (13)0.0558 (10)0.0252 (11)0.0226 (9)0.0036 (10)
O50.0505 (10)0.0879 (16)0.0849 (13)0.0031 (10)0.0139 (10)0.0223 (12)
O60.1054 (14)0.0852 (14)0.0501 (11)0.0268 (12)0.0149 (10)0.0049 (10)
N10.0599 (11)0.0491 (12)0.0511 (11)0.0039 (9)0.0131 (9)0.0068 (10)
C10.0611 (13)0.0340 (12)0.0360 (11)0.0023 (10)0.0100 (10)0.0024 (9)
C20.0782 (16)0.0507 (15)0.0455 (13)0.0060 (14)0.0108 (12)0.0074 (12)
C30.100 (2)0.069 (2)0.0658 (18)0.0140 (18)0.0382 (17)0.0274 (15)
C40.084 (2)0.077 (2)0.104 (2)0.0090 (17)0.0509 (18)0.0333 (19)
C50.0603 (15)0.0640 (18)0.0873 (19)0.0066 (13)0.0235 (14)0.0177 (15)
C60.0534 (11)0.0350 (13)0.0476 (12)0.0020 (10)0.0107 (11)0.0001 (11)
C70.0418 (11)0.0428 (13)0.0506 (13)0.0012 (10)0.0020 (10)0.0018 (11)
C80.0825 (18)0.0591 (18)0.0657 (16)0.0050 (14)0.0069 (14)0.0177 (14)
C90.0541 (13)0.0553 (16)0.0559 (14)0.0002 (11)0.0089 (11)0.0131 (12)
C100.0553 (14)0.0493 (14)0.0526 (15)0.0177 (12)0.0147 (12)0.0042 (12)
C110.0798 (19)0.0618 (19)0.103 (2)0.0132 (16)0.0086 (17)0.0203 (17)
C120.148 (3)0.124 (3)0.077 (2)0.057 (3)0.064 (2)0.044 (2)
Geometric parameters (Å, º) top
S1—O31.4246 (16)C6—C71.495 (3)
S1—O41.4168 (18)C9—C101.488 (4)
S1—N11.6119 (19)C2—H20.9300
S1—C11.779 (3)C3—H30.9300
O1—C71.199 (3)C4—H40.9300
O2—C71.323 (3)C5—H50.9300
O2—C81.448 (3)C8—H8A0.9600
O5—C101.183 (3)C8—H8B0.9600
O6—C101.332 (3)C8—H8C0.9600
O6—C121.446 (4)C9—H9A0.9700
N1—C91.443 (3)C9—H9B0.9700
N1—C111.470 (3)C11—H11A0.9600
C1—C21.389 (3)C11—H11B0.9600
C1—C61.392 (3)C11—H11C0.9600
C2—C31.377 (4)C12—H12A0.9600
C3—C41.362 (5)C12—H12B0.9600
C4—C51.374 (4)C12—H12C0.9600
C5—C61.393 (4)
S1···O13.4712 (17)C9···O13.125 (3)
O1···S13.4712 (17)C9···O1v3.321 (3)
O1···O33.011 (2)C9···O5i3.417 (3)
O1···C93.125 (3)C10···O33.261 (3)
O1···C9i3.321 (3)C10···C8ii3.580 (4)
O1···C10i3.403 (3)C10···O1v3.403 (3)
O3···O13.011 (2)C11···O53.325 (3)
O3···C8ii3.108 (3)C12···O4x3.041 (4)
O3···C72.814 (2)C7···H9A2.9700
O3···C103.261 (3)C10···H11C3.0900
O4···C12iii3.041 (4)C10···H8Bii3.0300
O4···C2iv3.387 (3)C11···H12Ci2.9100
O5···N12.788 (3)H2···O42.5000
O5···C113.325 (3)H2···O3viii2.8900
O5···C9v3.417 (3)H3···O2xi2.9100
O1···H8C2.5900H4···O2xi2.7600
O1···H9Bi2.5600H5···O22.7500
O1···H8A2.6200H8A···O12.6200
O1···H9A2.2000H8B···O3ix2.8200
O2···H4vi2.7600H8B···C10ix3.0300
O2···H52.7500H8C···O12.5900
O2···H3vi2.9100H8C···O5xii2.6600
O3···H2iv2.8900H9A···O12.2000
O3···H8Bii2.8200H9A···O32.5200
O3···H9A2.5200H9A···C72.9700
O4···H22.5000H9B···H11A2.3900
O4···H11B2.4600H9B···O1v2.5600
O4···H12Biii2.4400H9B···O5i2.6300
O5···H8Cvii2.6600H11A···H9B2.3900
O5···H12A2.6200H11A···H12Ci2.3800
O5···H12C2.7000H11B···O42.4600
O5···H11C2.8700H11C···O52.8700
O5···H9Bv2.6300H11C···C103.0900
N1···O52.788 (3)H12A···O52.6200
N1···H12Ci2.8700H12B···O4x2.4400
C2···O4viii3.387 (3)H12C···O52.7000
C7···O32.814 (2)H12C···N1v2.8700
C8···O3ix3.108 (3)H12C···C11v2.9100
C8···C10ix3.580 (4)H12C···H11Av2.3800
O3—S1—O4120.18 (10)C2—C3—H3120.00
O3—S1—N1108.15 (10)C4—C3—H3120.00
O3—S1—C1107.22 (10)C3—C4—H4120.00
O4—S1—N1107.09 (10)C5—C4—H4120.00
O4—S1—C1106.21 (10)C4—C5—H5120.00
N1—S1—C1107.37 (9)C6—C5—H5120.00
C7—O2—C8115.79 (18)O2—C8—H8A109.00
C10—O6—C12116.7 (3)O2—C8—H8B109.00
S1—N1—C9120.24 (16)O2—C8—H8C109.00
S1—N1—C11120.81 (16)H8A—C8—H8B109.00
C9—N1—C11118.7 (2)H8A—C8—H8C109.00
S1—C1—C2116.85 (19)H8B—C8—H8C110.00
S1—C1—C6122.97 (16)N1—C9—H9A109.00
C2—C1—C6120.1 (2)N1—C9—H9B109.00
C1—C2—C3119.9 (2)C10—C9—H9A109.00
C2—C3—C4120.3 (3)C10—C9—H9B109.00
C3—C4—C5120.5 (3)H9A—C9—H9B108.00
C4—C5—C6120.5 (3)N1—C11—H11A109.00
C1—C6—C5118.6 (2)N1—C11—H11B109.00
C1—C6—C7125.1 (2)N1—C11—H11C109.00
C5—C6—C7116.2 (2)H11A—C11—H11B109.00
O1—C7—O2123.9 (2)H11A—C11—H11C109.00
O1—C7—C6124.1 (2)H11B—C11—H11C109.00
O2—C7—C6111.78 (18)O6—C12—H12A109.00
N1—C9—C10112.8 (2)O6—C12—H12B109.00
O5—C10—O6125.3 (2)O6—C12—H12C109.00
O5—C10—C9127.0 (2)H12A—C12—H12B109.00
O6—C10—C9107.8 (2)H12A—C12—H12C109.00
C1—C2—H2120.00H12B—C12—H12C109.00
C3—C2—H2120.00
O3—S1—N1—C919.1 (2)S1—C1—C2—C3179.0 (2)
O3—S1—N1—C11155.37 (19)C6—C1—C2—C31.2 (3)
O4—S1—N1—C9149.96 (17)S1—C1—C6—C5176.98 (17)
O4—S1—N1—C1124.5 (2)S1—C1—C6—C76.6 (3)
C1—S1—N1—C996.32 (18)C2—C1—C6—C50.7 (3)
C1—S1—N1—C1189.2 (2)C2—C1—C6—C7175.8 (2)
O3—S1—C1—C2154.78 (17)C1—C2—C3—C41.4 (4)
O3—S1—C1—C622.94 (19)C2—C3—C4—C50.3 (4)
O4—S1—C1—C225.1 (2)C3—C4—C5—C62.2 (4)
O4—S1—C1—C6152.60 (17)C4—C5—C6—C12.4 (4)
N1—S1—C1—C289.20 (19)C4—C5—C6—C7174.4 (2)
N1—S1—C1—C693.09 (18)C1—C6—C7—O164.8 (3)
C8—O2—C7—O12.1 (3)C1—C6—C7—O2120.0 (2)
C8—O2—C7—C6173.08 (19)C5—C6—C7—O1111.8 (2)
C12—O6—C10—O51.3 (4)C5—C6—C7—O263.4 (3)
C12—O6—C10—C9178.1 (3)N1—C9—C10—O55.0 (4)
S1—N1—C9—C1091.0 (2)N1—C9—C10—O6175.5 (2)
C11—N1—C9—C1083.6 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z; (iii) x+1/2, y, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x1/2, y+1/2, z; (vi) x+2, y1/2, z+1/2; (vii) x1, y, z; (viii) x+1, y+1/2, z+1/2; (ix) x+1/2, y1/2, z; (x) x+1/2, y, z1/2; (xi) x+2, y+1/2, z+1/2; (xii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.972.203.125 (3)159
C9—H9B···O1v0.972.563.321 (3)135
C12—H12B···O4x0.962.443.041 (4)120
Symmetry codes: (v) x1/2, y+1/2, z; (x) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC12H15NO6S
Mr301.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.5830 (3), 9.0966 (3), 18.3329 (7)
V3)1431.36 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.22 × 0.18 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.942, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
16627, 3558, 2513
Rint0.039
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 1.01
No. of reflections3558
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.24
Absolute structureFlack (1983), 1509 Friedel pairs
Absolute structure parameter0.12 (8)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.972.203.125 (3)159
C9—H9B···O1i0.972.563.321 (3)135
C12—H12B···O4ii0.962.443.041 (4)120
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y, z1/2.
 

Acknowledgements

NA gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing his Scholarship under the Indigenous PhD Program (PIN 042–120599-PS2–156).

References

First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHanson, P. R., Probst, D. A., Robinson, R. E. & Yau, M. (1999). Tetrahedron Lett. 40, 4761–4764.  Web of Science CrossRef CAS Google Scholar
First citationMa, N., Wang, B., Wang, J., Song, H., Wang, S. & Li, Z. (2003). Acta Cryst. E59, o438–o440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008a). Acta Cryst. E64, o558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008b). Acta Cryst. E64, o1270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds