organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-4-nitro­aniline

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 1 February 2009; accepted 3 February 2009; online 6 February 2009)

In the mol­ecule of the title compound, C6H5BrN2O2, the dihedral angle between the nitro group and the aromatic ring is 4.57 (4)°. An intra­molecular N—H⋯Br inter­action results in the formation of a planar five-membered ring, which is oriented with respect to the aromatic ring at a dihedral angle of 1.64 (6)°. In the crystal structure, inter­molecular N—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For related structures, see: Arshad et al. (2008[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.], 2009[Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o230.]); McPhail & Sim (1965[McPhail, A. T. & Sim, G. A. (1965). J. Chem. Soc. pp. 227-236.]); McWilliam et al. (2001[McWilliam, S. A., Skakle, J. M. S., Low, J. N., Wardell, J. L., Garden, S. J., Pinto, A. C., Torres, J. C. & Glidewell, C. (2001). Acta Cryst. C57, 942-945.]); Krishna Mohan et al. (2004[Krishna Mohan, K. V. V., Narender, N., Srinivasu, P., Kulkarni, S. J. & Raghavan, K. V. (2004). Synth. Commun. 34, 2143-2152.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5BrN2O2

  • Mr = 217.03

  • Orthorhombic, P n a 21

  • a = 11.098 (3) Å

  • b = 16.763 (4) Å

  • c = 3.9540 (9) Å

  • V = 735.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.53 mm−1

  • T = 296 (2) K

  • 0.26 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.450, Tmax = 0.578

  • 4932 measured reflections

  • 1542 independent reflections

  • 986 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.092

  • S = 1.00

  • 1542 reflections

  • 100 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.62 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 469 Friedel pairs

  • Flack parameter: 0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N1i 0.86 2.32 3.158 (7) 167.00
N1—H1B⋯Br1 0.86 2.68 3.095 (5) 111.00
N1—H1B⋯O2ii 0.86 2.32 3.049 (7) 143.00
Symmetry codes: (i) [-x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound, (I), has been prepared as an intermediate for the synthesis of sulfonamides (Arshad et al., 2009) and benzothiazines (Arshad et al., 2008).

The crystal structures of 2-iodo-4-nitroaniline, (II) (McWilliam et al., 2001) and 2-chloro-4-nitroaniline, (III) (McPhail & Sim, 1965) have been reported. The title compound, (I), (Fig 1) is structural isomer of (III). It is essentially planar. The dihedral angle between the nitro group (O1/O2/N2) and the aromatic ring A (C1-C6) is 4.57 (4)°. The intramolecular N-H···Br interaction (Table 1) results in the formation of a planar five-membered ring (Br1/N1/C3/C4/H1B), which is oriented with respect to ring A at a dihedral angle of 1.64 (6)°. So, they are nearly coplanar.

In the crystal structure, intermolecular N-H···N and N-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related structures, see: Arshad et al. (2008, 2009); McPhail & Sim (1965); McWilliam et al. (2001); Krishna Mohan et al. (2004).

Experimental top

The title compound was synthesized following the method available in literature (Krishna Mohan et al., 2004). 4-Nitro aniline (6 g, 0.0435 mol) and ammonium bromide (4.5 g, 0.0479 mol) were charged to a flask (50 ml) containing acetic acid (30 ml). Hydrogen peroxide (1.629 g, 0.0479 mol, 35%) was added dropwise to the mixture, and stirred at room temperature for 3 h. Then, the obtained precipitate was filtered and washed with water and recrystallized in dichloromethane and methanol.

Refinement top

H-atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2-Bromo-4-nitroaniline top
Crystal data top
C6H5BrN2O2F(000) = 424
Mr = 217.03Dx = 1.960 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1542 reflections
a = 11.098 (3) Åθ = 3.1–28.6°
b = 16.763 (4) ŵ = 5.53 mm1
c = 3.9540 (9) ÅT = 296 K
V = 735.6 (3) Å3Needle, yellow
Z = 40.26 × 0.12 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1542 independent reflections
Radiation source: fine-focus sealed tube986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 7.40 pixels mm-1θmax = 28.6°, θmin = 3.1°
ω scansh = 1314
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2222
Tmin = 0.450, Tmax = 0.578l = 35
4932 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0302P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
1542 reflectionsΔρmax = 0.50 e Å3
100 parametersΔρmin = 0.62 e Å3
1 restraintAbsolute structure: Flack (1983), 469 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
C6H5BrN2O2V = 735.6 (3) Å3
Mr = 217.03Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 11.098 (3) ŵ = 5.53 mm1
b = 16.763 (4) ÅT = 296 K
c = 3.9540 (9) Å0.26 × 0.12 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1542 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
986 reflections with I > 2σ(I)
Tmin = 0.450, Tmax = 0.578Rint = 0.058
4932 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.50 e Å3
S = 1.00Δρmin = 0.62 e Å3
1542 reflectionsAbsolute structure: Flack (1983), 469 Friedel pairs
100 parametersAbsolute structure parameter: 0.01 (2)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.34261 (5)0.56438 (3)0.7237 (2)0.0524 (2)
O10.4834 (5)0.2673 (3)0.5214 (15)0.088 (3)
O20.3637 (4)0.1882 (2)0.763 (3)0.101 (2)
N10.1095 (4)0.5118 (3)1.0912 (13)0.0510 (18)
N20.3960 (5)0.2544 (3)0.689 (2)0.064 (2)
C10.3231 (4)0.3212 (3)0.8007 (18)0.043 (3)
C20.3615 (4)0.3974 (3)0.730 (3)0.0420 (17)
C30.2913 (5)0.4600 (3)0.8270 (13)0.0347 (19)
C40.1833 (5)0.4491 (3)0.9987 (15)0.0377 (17)
C50.1479 (5)0.3705 (4)1.0711 (16)0.048 (2)
C60.2169 (5)0.3076 (3)0.9745 (17)0.051 (2)
H1A0.043320.502581.197380.0611*
H1B0.129760.559931.042600.0611*
H20.434050.406040.618230.0502*
H50.076270.361371.186760.0576*
H60.192970.255791.024780.0605*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0557 (3)0.0436 (3)0.0578 (4)0.0094 (3)0.0026 (7)0.0100 (5)
O10.075 (4)0.077 (4)0.112 (5)0.028 (3)0.016 (4)0.009 (3)
O20.110 (4)0.037 (2)0.157 (6)0.010 (2)0.000 (5)0.006 (5)
N10.035 (2)0.056 (3)0.062 (4)0.001 (2)0.003 (2)0.008 (2)
N20.063 (3)0.051 (3)0.078 (5)0.017 (3)0.018 (5)0.007 (5)
C10.041 (3)0.046 (3)0.041 (7)0.001 (2)0.010 (3)0.000 (3)
C20.034 (3)0.049 (3)0.043 (3)0.001 (2)0.005 (5)0.009 (6)
C30.034 (3)0.037 (3)0.033 (4)0.007 (2)0.007 (2)0.002 (2)
C40.038 (3)0.049 (3)0.026 (3)0.002 (3)0.012 (3)0.000 (3)
C50.043 (3)0.053 (4)0.047 (4)0.015 (3)0.002 (3)0.006 (3)
C60.056 (4)0.037 (3)0.059 (5)0.008 (3)0.018 (4)0.005 (3)
Geometric parameters (Å, º) top
Br1—C31.885 (5)C1—C21.375 (7)
O1—N21.195 (9)C2—C31.362 (8)
O2—N21.202 (7)C3—C41.390 (8)
N1—C41.382 (7)C4—C51.404 (8)
N2—C11.450 (8)C5—C61.358 (8)
N1—H1B0.8600C2—H20.9300
N1—H1A0.8600C5—H50.9300
C1—C61.383 (8)C6—H60.9300
Br1···N13.095 (5)C5···C1ix3.576 (9)
Br1···H1B2.6800C5···C2ix3.551 (11)
Br1···H2i2.9700C6···C1ix3.480 (10)
O1···C6ii3.391 (8)C6···O1x3.391 (8)
O2···N1iii3.049 (7)C4···H1Av2.9000
O1···H22.4200H1A···H52.4000
O1···H5iv2.7300H1A···N1v2.9500
O2···H62.4400H1A···N1vi2.3200
O2···H1Biii2.3200H1A···C4vi2.9000
N1···Br13.095 (5)H1A···H1Av2.2000
N1···N1v3.158 (7)H1A···H1Avi2.2000
N1···N1vi3.158 (7)H1A···H1Bvi2.5800
N1···O2vii3.049 (7)H1B···Br12.6800
N1···H1Av2.3200H1B···H1Av2.5800
N1···H1Avi2.9500H1B···O2vii2.3200
C1···C5viii3.576 (9)H2···O12.4200
C1···C6viii3.480 (10)H2···Br1xi2.9700
C2···C5viii3.551 (11)H5···H1A2.4000
C3···C4viii3.492 (8)H5···O1xii2.7300
C4···C3ix3.492 (8)H6···O22.4400
O1—N2—O2123.0 (6)C2—C3—C4122.0 (5)
O1—N2—C1118.8 (5)N1—C4—C5119.6 (5)
O2—N2—C1118.2 (6)N1—C4—C3122.7 (5)
H1A—N1—H1B120.00C3—C4—C5117.7 (5)
C4—N1—H1A120.00C4—C5—C6120.9 (5)
C4—N1—H1B120.00C1—C6—C5119.5 (5)
N2—C1—C6120.0 (5)C1—C2—H2121.00
N2—C1—C2118.8 (5)C3—C2—H2121.00
C2—C1—C6121.2 (5)C4—C5—H5120.00
C1—C2—C3118.8 (6)C6—C5—H5120.00
Br1—C3—C2118.8 (4)C1—C6—H6120.00
Br1—C3—C4119.2 (4)C5—C6—H6120.00
O1—N2—C1—C24.5 (11)C1—C2—C3—C40.9 (12)
O1—N2—C1—C6175.4 (7)Br1—C3—C4—N11.6 (8)
O2—N2—C1—C2177.4 (9)Br1—C3—C4—C5179.9 (4)
O2—N2—C1—C62.8 (11)C2—C3—C4—N1178.3 (7)
N2—C1—C2—C3178.2 (7)C2—C3—C4—C50.1 (10)
C6—C1—C2—C31.6 (13)N1—C4—C5—C6178.1 (6)
N2—C1—C6—C5178.5 (6)C3—C4—C5—C60.3 (9)
C2—C1—C6—C51.4 (11)C4—C5—C6—C10.4 (10)
C1—C2—C3—Br1179.0 (6)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z1/2; (iv) x+1/2, y+1/2, z1; (v) x, y+1, z1/2; (vi) x, y+1, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x, y, z1; (ix) x, y, z+1; (x) x1/2, y+1/2, z; (xi) x+1, y+1, z1/2; (xii) x1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N1vi0.862.323.158 (7)167.00
N1—H1B···Br10.862.683.095 (5)111.00
N1—H1B···O2vii0.862.323.049 (7)143.00
Symmetry codes: (vi) x, y+1, z+1/2; (vii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H5BrN2O2
Mr217.03
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)11.098 (3), 16.763 (4), 3.9540 (9)
V3)735.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.53
Crystal size (mm)0.26 × 0.12 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.450, 0.578
No. of measured, independent and
observed [I > 2σ(I)] reflections
4932, 1542, 986
Rint0.058
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 1.00
No. of reflections1542
No. of parameters100
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.62
Absolute structureFlack (1983), 469 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N1i0.862.323.158 (7)167.00
N1—H1B···Br10.862.683.095 (5)111.00
N1—H1B···O2ii0.862.323.049 (7)143.00
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

MNA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholarship under the Indigenous PhD Program (PIN 042–120607-PS2–183).

References

First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKrishna Mohan, K. V. V., Narender, N., Srinivasu, P., Kulkarni, S. J. & Raghavan, K. V. (2004). Synth. Commun. 34, 2143–2152.  Web of Science CrossRef CAS Google Scholar
First citationMcPhail, A. T. & Sim, G. A. (1965). J. Chem. Soc. pp. 227–236.  CrossRef Web of Science Google Scholar
First citationMcWilliam, S. A., Skakle, J. M. S., Low, J. N., Wardell, J. L., Garden, S. J., Pinto, A. C., Torres, J. C. & Glidewell, C. (2001). Acta Cryst. C57, 942–945.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds