organic compounds
2-Bromo-4-nitroaniline
aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com
In the molecule of the title compound, C6H5BrN2O2, the dihedral angle between the nitro group and the aromatic ring is 4.57 (4)°. An intramolecular N—H⋯Br interaction results in the formation of a planar five-membered ring, which is oriented with respect to the aromatic ring at a dihedral angle of 1.64 (6)°. In the intermolecular N—H⋯N and N—H⋯O hydrogen bonds link the molecules.
Related literature
For related structures, see: Arshad et al. (2008, 2009); McPhail & Sim (1965); McWilliam et al. (2001); Krishna Mohan et al. (2004).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536809004073/hk2621sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809004073/hk2621Isup2.hkl
The title compound was synthesized following the method available in literature (Krishna Mohan et al., 2004). 4-Nitro aniline (6 g, 0.0435 mol) and ammonium bromide (4.5 g, 0.0479 mol) were charged to a flask (50 ml) containing acetic acid (30 ml). Hydrogen peroxide (1.629 g, 0.0479 mol, 35%) was added dropwise to the mixture, and stirred at room temperature for 3 h. Then, the obtained precipitate was filtered and washed with water and recrystallized in dichloromethane and methanol.
H-atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).C6H5BrN2O2 | F(000) = 424 |
Mr = 217.03 | Dx = 1.960 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 1542 reflections |
a = 11.098 (3) Å | θ = 3.1–28.6° |
b = 16.763 (4) Å | µ = 5.53 mm−1 |
c = 3.9540 (9) Å | T = 296 K |
V = 735.6 (3) Å3 | Needle, yellow |
Z = 4 | 0.26 × 0.12 × 0.10 mm |
Bruker Kappa APEXII CCD diffractometer | 1542 independent reflections |
Radiation source: fine-focus sealed tube | 986 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
Detector resolution: 7.40 pixels mm-1 | θmax = 28.6°, θmin = 3.1° |
ω scans | h = −13→14 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −22→22 |
Tmin = 0.450, Tmax = 0.578 | l = −3→5 |
4932 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0302P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
1542 reflections | Δρmax = 0.50 e Å−3 |
100 parameters | Δρmin = −0.62 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 469 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (2) |
C6H5BrN2O2 | V = 735.6 (3) Å3 |
Mr = 217.03 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 11.098 (3) Å | µ = 5.53 mm−1 |
b = 16.763 (4) Å | T = 296 K |
c = 3.9540 (9) Å | 0.26 × 0.12 × 0.10 mm |
Bruker Kappa APEXII CCD diffractometer | 1542 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 986 reflections with I > 2σ(I) |
Tmin = 0.450, Tmax = 0.578 | Rint = 0.058 |
4932 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.092 | Δρmax = 0.50 e Å−3 |
S = 1.00 | Δρmin = −0.62 e Å−3 |
1542 reflections | Absolute structure: Flack (1983), 469 Friedel pairs |
100 parameters | Absolute structure parameter: 0.01 (2) |
1 restraint |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.34261 (5) | 0.56438 (3) | 0.7237 (2) | 0.0524 (2) | |
O1 | 0.4834 (5) | 0.2673 (3) | 0.5214 (15) | 0.088 (3) | |
O2 | 0.3637 (4) | 0.1882 (2) | 0.763 (3) | 0.101 (2) | |
N1 | 0.1095 (4) | 0.5118 (3) | 1.0912 (13) | 0.0510 (18) | |
N2 | 0.3960 (5) | 0.2544 (3) | 0.689 (2) | 0.064 (2) | |
C1 | 0.3231 (4) | 0.3212 (3) | 0.8007 (18) | 0.043 (3) | |
C2 | 0.3615 (4) | 0.3974 (3) | 0.730 (3) | 0.0420 (17) | |
C3 | 0.2913 (5) | 0.4600 (3) | 0.8270 (13) | 0.0347 (19) | |
C4 | 0.1833 (5) | 0.4491 (3) | 0.9987 (15) | 0.0377 (17) | |
C5 | 0.1479 (5) | 0.3705 (4) | 1.0711 (16) | 0.048 (2) | |
C6 | 0.2169 (5) | 0.3076 (3) | 0.9745 (17) | 0.051 (2) | |
H1A | 0.04332 | 0.50258 | 1.19738 | 0.0611* | |
H1B | 0.12976 | 0.55993 | 1.04260 | 0.0611* | |
H2 | 0.43405 | 0.40604 | 0.61823 | 0.0502* | |
H5 | 0.07627 | 0.36137 | 1.18676 | 0.0576* | |
H6 | 0.19297 | 0.25579 | 1.02478 | 0.0605* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0557 (3) | 0.0436 (3) | 0.0578 (4) | −0.0094 (3) | −0.0026 (7) | 0.0100 (5) |
O1 | 0.075 (4) | 0.077 (4) | 0.112 (5) | 0.028 (3) | 0.016 (4) | −0.009 (3) |
O2 | 0.110 (4) | 0.037 (2) | 0.157 (6) | 0.010 (2) | 0.000 (5) | −0.006 (5) |
N1 | 0.035 (2) | 0.056 (3) | 0.062 (4) | 0.001 (2) | 0.003 (2) | −0.008 (2) |
N2 | 0.063 (3) | 0.051 (3) | 0.078 (5) | 0.017 (3) | −0.018 (5) | −0.007 (5) |
C1 | 0.041 (3) | 0.046 (3) | 0.041 (7) | 0.001 (2) | −0.010 (3) | 0.000 (3) |
C2 | 0.034 (3) | 0.049 (3) | 0.043 (3) | −0.001 (2) | 0.005 (5) | 0.009 (6) |
C3 | 0.034 (3) | 0.037 (3) | 0.033 (4) | −0.007 (2) | −0.007 (2) | 0.002 (2) |
C4 | 0.038 (3) | 0.049 (3) | 0.026 (3) | −0.002 (3) | −0.012 (3) | 0.000 (3) |
C5 | 0.043 (3) | 0.053 (4) | 0.047 (4) | −0.015 (3) | 0.002 (3) | 0.006 (3) |
C6 | 0.056 (4) | 0.037 (3) | 0.059 (5) | −0.008 (3) | −0.018 (4) | 0.005 (3) |
Br1—C3 | 1.885 (5) | C1—C2 | 1.375 (7) |
O1—N2 | 1.195 (9) | C2—C3 | 1.362 (8) |
O2—N2 | 1.202 (7) | C3—C4 | 1.390 (8) |
N1—C4 | 1.382 (7) | C4—C5 | 1.404 (8) |
N2—C1 | 1.450 (8) | C5—C6 | 1.358 (8) |
N1—H1B | 0.8600 | C2—H2 | 0.9300 |
N1—H1A | 0.8600 | C5—H5 | 0.9300 |
C1—C6 | 1.383 (8) | C6—H6 | 0.9300 |
Br1···N1 | 3.095 (5) | C5···C1ix | 3.576 (9) |
Br1···H1B | 2.6800 | C5···C2ix | 3.551 (11) |
Br1···H2i | 2.9700 | C6···C1ix | 3.480 (10) |
O1···C6ii | 3.391 (8) | C6···O1x | 3.391 (8) |
O2···N1iii | 3.049 (7) | C4···H1Av | 2.9000 |
O1···H2 | 2.4200 | H1A···H5 | 2.4000 |
O1···H5iv | 2.7300 | H1A···N1v | 2.9500 |
O2···H6 | 2.4400 | H1A···N1vi | 2.3200 |
O2···H1Biii | 2.3200 | H1A···C4vi | 2.9000 |
N1···Br1 | 3.095 (5) | H1A···H1Av | 2.2000 |
N1···N1v | 3.158 (7) | H1A···H1Avi | 2.2000 |
N1···N1vi | 3.158 (7) | H1A···H1Bvi | 2.5800 |
N1···O2vii | 3.049 (7) | H1B···Br1 | 2.6800 |
N1···H1Av | 2.3200 | H1B···H1Av | 2.5800 |
N1···H1Avi | 2.9500 | H1B···O2vii | 2.3200 |
C1···C5viii | 3.576 (9) | H2···O1 | 2.4200 |
C1···C6viii | 3.480 (10) | H2···Br1xi | 2.9700 |
C2···C5viii | 3.551 (11) | H5···H1A | 2.4000 |
C3···C4viii | 3.492 (8) | H5···O1xii | 2.7300 |
C4···C3ix | 3.492 (8) | H6···O2 | 2.4400 |
O1—N2—O2 | 123.0 (6) | C2—C3—C4 | 122.0 (5) |
O1—N2—C1 | 118.8 (5) | N1—C4—C5 | 119.6 (5) |
O2—N2—C1 | 118.2 (6) | N1—C4—C3 | 122.7 (5) |
H1A—N1—H1B | 120.00 | C3—C4—C5 | 117.7 (5) |
C4—N1—H1A | 120.00 | C4—C5—C6 | 120.9 (5) |
C4—N1—H1B | 120.00 | C1—C6—C5 | 119.5 (5) |
N2—C1—C6 | 120.0 (5) | C1—C2—H2 | 121.00 |
N2—C1—C2 | 118.8 (5) | C3—C2—H2 | 121.00 |
C2—C1—C6 | 121.2 (5) | C4—C5—H5 | 120.00 |
C1—C2—C3 | 118.8 (6) | C6—C5—H5 | 120.00 |
Br1—C3—C2 | 118.8 (4) | C1—C6—H6 | 120.00 |
Br1—C3—C4 | 119.2 (4) | C5—C6—H6 | 120.00 |
O1—N2—C1—C2 | −4.5 (11) | C1—C2—C3—C4 | 0.9 (12) |
O1—N2—C1—C6 | 175.4 (7) | Br1—C3—C4—N1 | 1.6 (8) |
O2—N2—C1—C2 | 177.4 (9) | Br1—C3—C4—C5 | 179.9 (4) |
O2—N2—C1—C6 | −2.8 (11) | C2—C3—C4—N1 | −178.3 (7) |
N2—C1—C2—C3 | 178.2 (7) | C2—C3—C4—C5 | 0.1 (10) |
C6—C1—C2—C3 | −1.6 (13) | N1—C4—C5—C6 | 178.1 (6) |
N2—C1—C6—C5 | −178.5 (6) | C3—C4—C5—C6 | −0.3 (9) |
C2—C1—C6—C5 | 1.4 (11) | C4—C5—C6—C1 | −0.4 (10) |
C1—C2—C3—Br1 | −179.0 (6) |
Symmetry codes: (i) −x+1, −y+1, z+1/2; (ii) x+1/2, −y+1/2, z; (iii) −x+1/2, y−1/2, z−1/2; (iv) x+1/2, −y+1/2, z−1; (v) −x, −y+1, z−1/2; (vi) −x, −y+1, z+1/2; (vii) −x+1/2, y+1/2, z+1/2; (viii) x, y, z−1; (ix) x, y, z+1; (x) x−1/2, −y+1/2, z; (xi) −x+1, −y+1, z−1/2; (xii) x−1/2, −y+1/2, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N1vi | 0.86 | 2.32 | 3.158 (7) | 167.00 |
N1—H1B···Br1 | 0.86 | 2.68 | 3.095 (5) | 111.00 |
N1—H1B···O2vii | 0.86 | 2.32 | 3.049 (7) | 143.00 |
Symmetry codes: (vi) −x, −y+1, z+1/2; (vii) −x+1/2, y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C6H5BrN2O2 |
Mr | 217.03 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 296 |
a, b, c (Å) | 11.098 (3), 16.763 (4), 3.9540 (9) |
V (Å3) | 735.6 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.53 |
Crystal size (mm) | 0.26 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.450, 0.578 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4932, 1542, 986 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.674 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.092, 1.00 |
No. of reflections | 1542 |
No. of parameters | 100 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.50, −0.62 |
Absolute structure | Flack (1983), 469 Friedel pairs |
Absolute structure parameter | 0.01 (2) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N1i | 0.86 | 2.32 | 3.158 (7) | 167.00 |
N1—H1B···Br1 | 0.86 | 2.68 | 3.095 (5) | 111.00 |
N1—H1B···O2ii | 0.86 | 2.32 | 3.049 (7) | 143.00 |
Symmetry codes: (i) −x, −y+1, z+1/2; (ii) −x+1/2, y+1/2, z+1/2. |
Acknowledgements
MNA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholarship under the Indigenous PhD Program (PIN 042–120607-PS2–183).
References
Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045. Web of Science CSD CrossRef IUCr Journals Google Scholar
Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o230. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Krishna Mohan, K. V. V., Narender, N., Srinivasu, P., Kulkarni, S. J. & Raghavan, K. V. (2004). Synth. Commun. 34, 2143–2152. Web of Science CrossRef CAS Google Scholar
McPhail, A. T. & Sim, G. A. (1965). J. Chem. Soc. pp. 227–236. CrossRef Web of Science Google Scholar
McWilliam, S. A., Skakle, J. M. S., Low, J. N., Wardell, J. L., Garden, S. J., Pinto, A. C., Torres, J. C. & Glidewell, C. (2001). Acta Cryst. C57, 942–945. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, (I), has been prepared as an intermediate for the synthesis of sulfonamides (Arshad et al., 2009) and benzothiazines (Arshad et al., 2008).
The crystal structures of 2-iodo-4-nitroaniline, (II) (McWilliam et al., 2001) and 2-chloro-4-nitroaniline, (III) (McPhail & Sim, 1965) have been reported. The title compound, (I), (Fig 1) is structural isomer of (III). It is essentially planar. The dihedral angle between the nitro group (O1/O2/N2) and the aromatic ring A (C1-C6) is 4.57 (4)°. The intramolecular N-H···Br interaction (Table 1) results in the formation of a planar five-membered ring (Br1/N1/C3/C4/H1B), which is oriented with respect to ring A at a dihedral angle of 1.64 (6)°. So, they are nearly coplanar.
In the crystal structure, intermolecular N-H···N and N-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.