organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl N-[4-chloro-3-(tri­fluoro­meth­yl)phen­yl]carbamate

aCollege of Life Sciences and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: fzcpu@163.com

(Received 9 February 2009; accepted 11 February 2009; online 18 February 2009)

In the mol­ecule of the title compound, C14H9ClF3NO2, the aromatic rings are oriented at a dihedral angle of 66.49 (3)°. Intra­molecular C—H⋯F and C—H⋯O inter­actions result in the formation of one planar five- and one non-planar six-membered ring. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9ClF3NO2

  • Mr = 315.67

  • Orthorhombic, P 21 21 21

  • a = 8.5680 (17) Å

  • b = 11.152 (2) Å

  • c = 14.232 (3) Å

  • V = 1359.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.910, Tmax = 0.969

  • 2733 measured reflections

  • 2465 independent reflections

  • 1775 reflections with I > 2σ(I)

  • Rint = 0.034

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.188

  • S = 1.00

  • 2465 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1012 Friedel pairs

  • Flack parameter: −0.1 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O2i 0.86 2.10 2.943 (5) 168
C9—H9A⋯O2 0.93 2.44 2.950 (5) 114
C13—H13A⋯F2 0.93 2.34 2.687 (5) 102
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of benzoic acid are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C8-C13) are, of course, planar and the dihedral angle between them is A/B = 66.49 (3)°. The intramolecular C-H···F and C-H···O interactions (Table 1) result in the formations of one planar five- and one nonplanar six-membered rings C (F2/C12-C14/H13A) and D (O2/N/C7-C9/H9A). Ring C is oriented with respect to rings A and B at dihedral angles of 66.33 (3)° and 0.93 (3)°, respectively. So, rings B and C are nearly coplanar.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, phenyl chloroformate (1.0 ml) was added slowly to a cold solution of 4-chloro-3-(trifluoromethyl)benzenamine (1.0 g) and triethylamine (0.8 ml) in methylene chloride (10 ml) at 273 K. The mixture was then warmed and stirred for 1 h at room temperature. Then, it was washed with water (20 ml), dried and concentrated to give the title compound (yield; 1.3 g). Crystals suitable for X-ray analysis were obtained by slow evaporation of an methanol solution.

Refinement top

H-atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Phenyl N-[4-chloro-3-(trifluoromethyl)phenyl]carbamate top
Crystal data top
C14H9ClF3NO2F(000) = 640
Mr = 315.67Dx = 1.542 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 8.5680 (17) Åθ = 9–13°
b = 11.152 (2) ŵ = 0.32 mm1
c = 14.232 (3) ÅT = 294 K
V = 1359.9 (5) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1775 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.4°, θmin = 2.3°
ω/2θ scansh = 100
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.910, Tmax = 0.969l = 017
2733 measured reflections3 standard reflections every 120 min
2465 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.1P)2 + 0.77P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2465 reflectionsΔρmax = 0.31 e Å3
190 parametersΔρmin = 0.33 e Å3
0 restraintsAbsolute structure: Flack (1983), 1012 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (2)
Crystal data top
C14H9ClF3NO2V = 1359.9 (5) Å3
Mr = 315.67Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5680 (17) ŵ = 0.32 mm1
b = 11.152 (2) ÅT = 294 K
c = 14.232 (3) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1775 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.034
Tmin = 0.910, Tmax = 0.9693 standard reflections every 120 min
2733 measured reflections intensity decay: 1%
2465 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.188Δρmax = 0.31 e Å3
S = 1.00Δρmin = 0.33 e Å3
2465 reflectionsAbsolute structure: Flack (1983), 1012 Friedel pairs
190 parametersAbsolute structure parameter: 0.1 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.0048 (2)0.53814 (16)0.89390 (11)0.0988 (6)
O10.2368 (5)0.1837 (4)0.4272 (2)0.0826 (12)
O20.0472 (4)0.3226 (3)0.4484 (2)0.0666 (9)
N0.2332 (4)0.2838 (4)0.5598 (2)0.0591 (10)
H0A0.32300.25030.56580.071*
F10.0639 (5)0.2695 (4)0.9446 (2)0.1080 (13)
F20.2866 (6)0.2112 (4)0.8948 (2)0.1123 (14)
F30.2646 (5)0.3817 (4)0.9590 (2)0.1006 (12)
C10.1803 (11)0.1852 (9)0.1733 (4)0.113 (3)
H1A0.20770.23060.12100.135*
C20.2231 (8)0.2230 (6)0.2625 (4)0.0855 (17)
H2A0.28010.29330.27050.103*
C30.1805 (6)0.1559 (5)0.3380 (3)0.0640 (12)
C40.0945 (7)0.0528 (6)0.3267 (5)0.0858 (17)
H4A0.06350.00800.37850.103*
C50.0551 (8)0.0171 (7)0.2366 (7)0.108 (2)
H5A0.00230.05280.22790.129*
C60.0982 (10)0.0814 (9)0.1623 (6)0.107 (3)
H6A0.07210.05540.10230.128*
C70.1599 (6)0.2711 (5)0.4764 (3)0.0592 (12)
C80.1749 (5)0.3473 (4)0.6376 (3)0.0552 (10)
C90.0823 (6)0.4470 (4)0.6301 (3)0.0630 (12)
H9A0.05510.47590.57100.076*
C100.0296 (6)0.5046 (5)0.7093 (4)0.0701 (14)
H10A0.03170.57310.70370.084*
C110.0673 (6)0.4609 (5)0.7972 (3)0.0668 (13)
C120.1575 (5)0.3606 (5)0.8067 (3)0.0575 (11)
C130.2113 (6)0.3025 (4)0.7261 (3)0.0575 (11)
H13A0.27170.23360.73160.069*
C140.1934 (7)0.3082 (5)0.9005 (4)0.0750 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.1108 (13)0.0951 (10)0.0905 (9)0.0134 (10)0.0136 (9)0.0296 (8)
O10.076 (2)0.100 (3)0.071 (2)0.028 (2)0.0213 (18)0.0225 (19)
O20.0450 (19)0.081 (2)0.0734 (19)0.0056 (17)0.0076 (16)0.0014 (17)
N0.041 (2)0.078 (2)0.0584 (19)0.0034 (19)0.0061 (17)0.0029 (18)
F10.112 (3)0.130 (3)0.0824 (19)0.030 (3)0.007 (2)0.027 (2)
F20.146 (4)0.112 (3)0.0788 (19)0.032 (3)0.025 (2)0.0049 (19)
F30.106 (3)0.121 (3)0.0750 (18)0.010 (2)0.0225 (19)0.0228 (19)
C10.120 (6)0.150 (8)0.068 (3)0.029 (6)0.003 (4)0.008 (4)
C20.085 (4)0.088 (4)0.083 (3)0.015 (4)0.005 (3)0.004 (3)
C30.055 (3)0.078 (3)0.060 (2)0.010 (3)0.008 (2)0.011 (2)
C40.068 (4)0.086 (4)0.104 (4)0.001 (3)0.006 (3)0.004 (4)
C50.078 (4)0.099 (5)0.146 (7)0.000 (4)0.020 (5)0.052 (5)
C60.091 (5)0.131 (7)0.099 (5)0.021 (5)0.032 (4)0.042 (5)
C70.045 (3)0.074 (3)0.059 (2)0.011 (3)0.003 (2)0.004 (2)
C80.038 (2)0.067 (3)0.060 (2)0.009 (2)0.0014 (19)0.002 (2)
C90.062 (3)0.059 (3)0.068 (3)0.001 (2)0.004 (2)0.006 (2)
C100.069 (3)0.063 (3)0.079 (3)0.007 (3)0.005 (3)0.005 (2)
C110.057 (3)0.073 (3)0.071 (3)0.006 (3)0.003 (2)0.004 (2)
C120.048 (3)0.064 (3)0.061 (2)0.007 (2)0.000 (2)0.002 (2)
C130.049 (3)0.057 (3)0.066 (2)0.000 (2)0.001 (2)0.004 (2)
C140.075 (4)0.085 (4)0.065 (3)0.000 (3)0.001 (3)0.001 (3)
Geometric parameters (Å, º) top
Cl—C111.738 (5)C4—C51.384 (10)
O1—C71.369 (6)C4—H4A0.9300
O1—C31.393 (6)C5—C61.330 (12)
O2—C71.192 (6)C5—H5A0.9300
N—C71.350 (6)C6—H6A0.9300
N—C81.406 (6)C8—C91.370 (7)
N—H0A0.8600C8—C131.390 (6)
F1—C141.346 (7)C9—C101.373 (7)
F2—C141.347 (7)C9—H9A0.9300
F3—C141.318 (6)C10—C111.381 (7)
C1—C61.363 (12)C10—H10A0.9300
C1—C21.386 (9)C11—C121.366 (8)
C1—H1A0.9300C12—C131.395 (7)
C2—C31.360 (8)C12—C141.490 (7)
C2—H2A0.9300C13—H13A0.9300
C3—C41.375 (9)
C7—O1—C3117.2 (4)C9—C8—C13119.5 (4)
C7—N—C8125.5 (4)C9—C8—N123.5 (4)
C7—N—H0A117.3C13—C8—N116.9 (4)
C8—N—H0A117.3C8—C9—C10120.4 (4)
C6—C1—C2120.0 (7)C8—C9—H9A119.8
C6—C1—H1A120.0C10—C9—H9A119.8
C2—C1—H1A120.0C9—C10—C11120.1 (5)
C3—C2—C1119.0 (7)C9—C10—H10A120.0
C3—C2—H2A120.5C11—C10—H10A120.0
C1—C2—H2A120.5C12—C11—C10120.7 (5)
C2—C3—C4120.7 (5)C12—C11—Cl121.9 (4)
C2—C3—O1120.3 (5)C10—C11—Cl117.3 (4)
C4—C3—O1118.6 (5)C11—C12—C13119.1 (4)
C3—C4—C5118.7 (6)C11—C12—C14121.7 (5)
C3—C4—H4A120.6C13—C12—C14119.1 (5)
C5—C4—H4A120.6C8—C13—C12120.2 (4)
C6—C5—C4120.9 (7)C8—C13—H13A119.9
C6—C5—H5A119.6C12—C13—H13A119.9
C4—C5—H5A119.6F3—C14—F1106.6 (5)
C5—C6—C1120.7 (7)F3—C14—F2105.3 (5)
C5—C6—H6A119.7F1—C14—F2105.0 (5)
C1—C6—H6A119.7F3—C14—C12114.7 (5)
O2—C7—N128.4 (5)F1—C14—C12111.9 (5)
O2—C7—O1124.2 (4)F2—C14—C12112.5 (4)
N—C7—O1107.5 (4)
C6—C1—C2—C30.7 (11)C8—C9—C10—C111.2 (8)
C1—C2—C3—C40.9 (10)C9—C10—C11—C120.2 (8)
C1—C2—C3—O1172.5 (6)C9—C10—C11—Cl179.6 (4)
C7—O1—C3—C283.3 (7)C10—C11—C12—C130.0 (7)
C7—O1—C3—C4103.2 (6)Cl—C11—C12—C13179.8 (4)
C2—C3—C4—C51.5 (9)C10—C11—C12—C14177.0 (5)
O1—C3—C4—C5172.0 (5)Cl—C11—C12—C142.8 (7)
C3—C4—C5—C60.5 (10)C9—C8—C13—C121.8 (7)
C4—C5—C6—C11.0 (12)N—C8—C13—C12179.9 (4)
C2—C1—C6—C51.6 (12)C11—C12—C13—C80.8 (7)
C8—N—C7—O211.4 (8)C14—C12—C13—C8177.8 (4)
C8—N—C7—O1167.3 (4)C11—C12—C14—F358.4 (7)
C3—O1—C7—O21.4 (7)C13—C12—C14—F3124.6 (5)
C3—O1—C7—N179.8 (4)C11—C12—C14—F163.3 (7)
C7—N—C8—C932.4 (7)C13—C12—C14—F1113.7 (5)
C7—N—C8—C13145.7 (5)C11—C12—C14—F2178.7 (5)
C13—C8—C9—C102.0 (7)C13—C12—C14—F24.4 (7)
N—C8—C9—C10180.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.102.943 (5)168
C9—H9A···O20.932.442.950 (5)114
C13—H13A···F20.932.342.687 (5)102
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H9ClF3NO2
Mr315.67
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)8.5680 (17), 11.152 (2), 14.232 (3)
V3)1359.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.910, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
2733, 2465, 1775
Rint0.034
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.188, 1.00
No. of reflections2465
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.33
Absolute structureFlack (1983), 1012 Friedel pairs
Absolute structure parameter0.1 (2)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.102.943 (5)168.00
C9—H9A···O20.932.442.950 (5)114.00
C13—H13A···F20.932.342.687 (5)102.00
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds