organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,6-Di­chloro­phen­yl)indolin-2-one

aDepartment of Chemistry, Quaid-i-Azam Univeristy, Islamabad 45320, Pakistan, bDepartment of Chemistry, University of Sargodah, Sargodah, Pakistan, and cDepartment of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, People's Republic of China
*Correspondence e-mail: qadeerqau@yahoo.com

(Received 15 February 2009; accepted 18 February 2009; online 25 February 2009)

In the mol­ecule of the title compound, C14H9Cl2NO, the planar indole ring system [with a maximum deviation of 0.020 (2) Å for the N atom] is oriented at a dihedral angle of 72.17 (3)° with respect to the phenyl ring. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules. A weak C—H⋯π inter­action may further stabilize the structure.

Related literature

For general background, see: Hibino & Choshi (2002[Hibino, S. & Choshi, T. (2002). Nat. Prod. Rep. 19, 148-180.]); Somei & Yamada (2003[Somei, M. & Yamada, F. (2003). Nat. Prod. Rep. 20, 216-242.]); Popp (1977[Popp, F. D. (1977). In Anticonvulsants, edited by J. A. Vida. New York: Academic Press.], 1984[Popp, F. D. (1984). J. Heterocycl. Chem. 21, 1641-1643.]). For related structures, see: Chakraborty & Talapatra (1985[Chakraborty, D. K. & Talapatra, S. K. (1985). Acta Cryst. C41, 1365-1366.]); Chakraborty et al. (1985[Chakraborty, D. K., Talapatra, S. K. & Chatterjee, A. (1985). Acta Cryst. C41, 1363-1364.]); De (1992[De, A. (1992). Acta Cryst. C48, 660-662.]); De & Kitagawa (1991a[De, A. & Kitagawa, Y. (1991a). Acta Cryst. C47, 2179-2181.],b[De, A. & Kitagawa, Y. (1991b). Acta Cryst. C47, 2384-2386.]); Itai et al. (1978[Itai, A., Iitaka, Y. & Kubo, A. (1978). Acta Cryst. B34, 3775-3777.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9Cl2NO

  • Mr = 278.12

  • Monoclinic, P 21

  • a = 7.1412 (8) Å

  • b = 8.0241 (9) Å

  • c = 11.0510 (13) Å

  • β = 105.789 (2)°

  • V = 609.35 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 173 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.755, Tmax = 0.902

  • 3710 measured reflections

  • 2328 independent reflections

  • 2295 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.060

  • S = 1.06

  • 2328 reflections

  • 163 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 705 Friedel pairs

  • Flack parameter: −0.02 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1i 0.95 2.55 3.2267 (19) 128
C8—H8ACg1ii 0.99 2.74 3.6125 (23) 147
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]. Cg1 is the centroid of the C9–C14 ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON.

Supporting information


Comment top

Indolinones are a class of heterocyclic compounds found in many natural products and in a number of marketed drugs (Hibino & Choshi, 2002; Somei & Yamada, 2003). They have diverse chemical structures and complex physiological and pharmacological actions. The search for potential drugs and their mechanism of action has been difficult because of their complexity. These compounds contain both oxoindole and dioxolane moieties which have independently been seen in other anticonvulsants (Popp, 1977, 1984). The title compound, a chloro analogue, was found to be most potent in the MES test. Since no common target site has yet been established, X-ray analysis was undertaken to search its crystal structure, which may help to understand the mechanism of action at the molecular level.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6), B (N1/C7-C10) and C (C9-C14) are, of course, planar and the dihedral angles between them are A/B = 71.73 (3)°, A/C = 72.43 (3)° and B/C = 1.07 (3)°. So, rings B and C are nearly coplanar. Ring A is oriented with respect to the planar indole ring system at a dihedral angle of 72.17 (3)°. The C8-C9 [1.4955 (19) Å] bond length may be compared with the corresponding values in other indoline nuclei (Itai et al., 1978; Chakraborty & Talapatra, 1985; Chakraborty et al., 1985; De & Kitagawa, 1991a,b; De, 1992).

In the crystal structure, weak intermolecular C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The weak C—H···π interaction (Table 1) may further stabilize the structure.

Related literature top

For general background, see: Hibino & Choshi (2002); Somei & Yamada (2003); Popp (1977); Popp (1984). For related structures, see: Chakraborty & Talapatra (1985); Chakraborty et al. (1985); De (1992); De & Kitagawa (1991a,b); Itai et al. (1978). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the C9–C14 ring.

Experimental top

For the preparation of the title compound, sodium salt of 2-(2-(2,6-dichloro- phenylamino)phenyl)acetate (3.18 g, 10 mmol) was dissolved in distilled water (50 ml) and heated on a hot plate, until a homogeneous solution obtained, and then filtered to remove the undissolved product. It was poured into concentrated hydrochloric acid (5 ml) diluted with ice water (25 ml) in an Erlenmeyer flask to obtain 2-(2-(2,6-dichlorophenylamino)phenyl)acetic acid. Then, it was stand for 15 min in an ice bath. The crude product was separated and recrystallized in ethanol. 2-(2-(2,6-dichlorophenylamino)phenyl)acetic acid (2.96 g, 10 mmol) was refluxed in methanol (50 ml) in catalytic amount of sulfuric acid. As soon as a methyl ester is formed, it is cyclized to form the title compound, which was recrystallized in ethanol (yield; 79%; m.p. 420-421 K).

Refinement top

H atoms were positioned geometrically, with C-H = 0.95 and 0.99 Å for aromatic, and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The formation of the title compound.
1-(2,6-Dichlorophenyl)indolin-2-one top
Crystal data top
C14H9Cl2NOF(000) = 284
Mr = 278.12Dx = 1.516 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2148 reflections
a = 7.1412 (8) Åθ = 5.2–24.3°
b = 8.0241 (9) ŵ = 0.52 mm1
c = 11.0510 (13) ÅT = 173 K
β = 105.789 (2)°Block, yellow
V = 609.35 (12) Å30.30 × 0.24 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2328 independent reflections
Radiation source: fine-focus sealed tube2295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω and ϕ scansθmax = 28.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.755, Tmax = 0.902k = 910
3710 measured reflectionsl = 1411
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.0681P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2328 reflectionsΔρmax = 0.19 e Å3
163 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 705 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
C14H9Cl2NOV = 609.35 (12) Å3
Mr = 278.12Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.1412 (8) ŵ = 0.52 mm1
b = 8.0241 (9) ÅT = 173 K
c = 11.0510 (13) Å0.30 × 0.24 × 0.20 mm
β = 105.789 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2328 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2295 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 0.902Rint = 0.014
3710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.060Δρmax = 0.19 e Å3
S = 1.06Δρmin = 0.16 e Å3
2328 reflectionsAbsolute structure: Flack (1983), 705 Friedel pairs
163 parametersAbsolute structure parameter: 0.02 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57381 (5)0.76042 (5)0.02255 (3)0.03458 (10)
Cl20.05095 (6)0.97960 (6)0.25885 (3)0.03843 (11)
O10.41005 (16)0.54202 (14)0.22865 (9)0.0304 (2)
N10.43177 (17)0.82839 (15)0.24614 (10)0.0230 (2)
C10.2984 (2)0.86900 (18)0.12903 (12)0.0224 (2)
C20.3471 (2)0.83882 (17)0.01693 (12)0.0243 (3)
C30.2172 (2)0.8739 (2)0.09901 (13)0.0302 (3)
H3A0.25120.85090.17470.036*
C40.0386 (2)0.9425 (2)0.10285 (13)0.0330 (3)
H4A0.05070.96630.18190.040*
C50.0126 (2)0.9774 (2)0.00703 (14)0.0304 (3)
H5A0.13501.02660.00360.036*
C60.1176 (2)0.93932 (19)0.12198 (12)0.0266 (3)
C70.48390 (19)0.66561 (18)0.28346 (12)0.0233 (3)
C80.6499 (2)0.67599 (18)0.40391 (12)0.0249 (3)
H8A0.61350.62230.47490.030*
H8B0.76880.62190.39290.030*
C90.6805 (2)0.85913 (18)0.42570 (12)0.0234 (3)
C100.54970 (19)0.94523 (17)0.32861 (11)0.0219 (2)
C110.5448 (2)1.11669 (19)0.32044 (13)0.0286 (3)
H11A0.45581.17310.25330.034*
C120.6774 (2)1.2032 (2)0.41607 (14)0.0335 (3)
H12A0.67831.32160.41380.040*
C130.8073 (2)1.1219 (2)0.51397 (15)0.0357 (3)
H13A0.89501.18460.57780.043*
C140.8101 (2)0.9477 (2)0.51951 (13)0.0310 (3)
H14A0.89940.89120.58650.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03021 (17)0.0422 (2)0.03333 (16)0.00882 (15)0.01213 (12)0.00025 (14)
Cl20.04088 (19)0.0480 (2)0.03094 (16)0.01679 (17)0.01741 (14)0.00795 (15)
O10.0330 (5)0.0230 (5)0.0309 (5)0.0025 (4)0.0011 (4)0.0026 (4)
N10.0249 (5)0.0208 (5)0.0204 (5)0.0012 (4)0.0010 (4)0.0009 (4)
C10.0235 (6)0.0220 (6)0.0197 (5)0.0010 (5)0.0025 (5)0.0010 (4)
C20.0245 (6)0.0223 (6)0.0256 (6)0.0011 (5)0.0063 (5)0.0021 (5)
C30.0358 (8)0.0322 (8)0.0206 (6)0.0009 (6)0.0043 (5)0.0003 (5)
C40.0320 (7)0.0379 (8)0.0240 (6)0.0021 (6)0.0012 (5)0.0041 (6)
C50.0242 (6)0.0343 (8)0.0303 (6)0.0058 (6)0.0035 (5)0.0062 (6)
C60.0274 (7)0.0276 (7)0.0251 (6)0.0031 (6)0.0077 (5)0.0034 (5)
C70.0216 (6)0.0239 (6)0.0229 (5)0.0004 (5)0.0037 (5)0.0007 (4)
C80.0235 (6)0.0236 (6)0.0241 (6)0.0037 (5)0.0006 (5)0.0007 (5)
C90.0224 (6)0.0244 (7)0.0226 (5)0.0010 (5)0.0049 (5)0.0020 (5)
C100.0236 (6)0.0225 (6)0.0194 (5)0.0006 (5)0.0055 (4)0.0032 (4)
C110.0352 (8)0.0236 (7)0.0290 (6)0.0008 (6)0.0122 (6)0.0003 (5)
C120.0397 (8)0.0230 (7)0.0414 (7)0.0057 (6)0.0173 (7)0.0081 (6)
C130.0303 (8)0.0373 (8)0.0389 (8)0.0068 (7)0.0085 (6)0.0162 (6)
C140.0259 (7)0.0371 (8)0.0272 (6)0.0002 (6)0.0023 (5)0.0080 (5)
Geometric parameters (Å, º) top
C1—C61.392 (2)C8—C91.4955 (19)
C1—C21.3958 (18)C8—H8A0.9900
C1—N11.4203 (15)C8—H8B0.9900
C2—C31.3908 (19)C9—C141.3834 (19)
C2—Cl11.7223 (14)C9—C101.3984 (18)
C3—C41.379 (2)C10—C111.379 (2)
C3—H3A0.9500C10—N11.4146 (16)
C4—C51.389 (2)C11—C121.397 (2)
C4—H4A0.9500C11—H11A0.9500
C5—C61.3890 (19)C12—C131.382 (2)
C5—H5A0.9500C12—H12A0.9500
C6—Cl21.7353 (14)C13—C141.399 (2)
C7—O11.2061 (17)C13—H13A0.9500
C7—N11.3896 (18)C14—H14A0.9500
C7—C81.5250 (17)
C6—C1—C2118.16 (12)C9—C8—H8B111.0
C6—C1—N1121.73 (12)C7—C8—H8B111.0
C2—C1—N1120.12 (12)H8A—C8—H8B109.0
C3—C2—C1121.19 (13)C14—C9—C10119.49 (14)
C3—C2—Cl1119.46 (11)C14—C9—C8131.59 (14)
C1—C2—Cl1119.34 (10)C10—C9—C8108.91 (12)
C4—C3—C2119.23 (13)C11—C10—C9122.89 (13)
C4—C3—H3A120.4C11—C10—N1128.25 (13)
C2—C3—H3A120.4C9—C10—N1108.86 (12)
C3—C4—C5121.01 (13)C10—C11—C12116.53 (14)
C3—C4—H4A119.5C10—C11—H11A121.7
C5—C4—H4A119.5C12—C11—H11A121.7
C4—C5—C6119.01 (14)C13—C12—C11121.99 (15)
C4—C5—H5A120.5C13—C12—H12A119.0
C6—C5—H5A120.5C11—C12—H12A119.0
C5—C6—C1121.38 (12)C12—C13—C14120.31 (14)
C5—C6—Cl2118.81 (11)C12—C13—H13A119.8
C1—C6—Cl2119.81 (10)C14—C13—H13A119.8
O1—C7—N1125.35 (11)C9—C14—C13118.77 (14)
O1—C7—C8127.81 (13)C9—C14—H14A120.6
N1—C7—C8106.83 (11)C13—C14—H14A120.6
C9—C8—C7103.83 (11)C7—N1—C10111.54 (10)
C9—C8—H8A111.0C7—N1—C1123.04 (11)
C7—C8—H8A111.0C10—N1—C1124.68 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.952.553.2267 (19)128
C8—H8A···Cg1ii0.992.743.613 (2)147
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H9Cl2NO
Mr278.12
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)7.1412 (8), 8.0241 (9), 11.0510 (13)
β (°) 105.789 (2)
V3)609.35 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.755, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
3710, 2328, 2295
Rint0.014
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.060, 1.06
No. of reflections2328
No. of parameters163
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.16
Absolute structureFlack (1983), 705 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.952.553.2267 (19)128
C8—H8A···Cg1ii0.992.743.6125 (23)147
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y1/2, z+1.
 

Footnotes

Additonal contact author, e-mail: rwywong@net3.hkbu.edu.hk.

Acknowledgements

The authors gratefully acknowledge the financial support of the Higher Education Commission, Islamabad, Pakistan.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, D. K. & Talapatra, S. K. (1985). Acta Cryst. C41, 1365–1366.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChakraborty, D. K., Talapatra, S. K. & Chatterjee, A. (1985). Acta Cryst. C41, 1363–1364.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDe, A. (1992). Acta Cryst. C48, 660–662.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDe, A. & Kitagawa, Y. (1991a). Acta Cryst. C47, 2179–2181.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDe, A. & Kitagawa, Y. (1991b). Acta Cryst. C47, 2384–2386.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHibino, S. & Choshi, T. (2002). Nat. Prod. Rep. 19, 148–180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationItai, A., Iitaka, Y. & Kubo, A. (1978). Acta Cryst. B34, 3775–3777.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPopp, F. D. (1977). In Anticonvulsants, edited by J. A. Vida. New York: Academic Press.  Google Scholar
First citationPopp, F. D. (1984). J. Heterocycl. Chem. 21, 1641–1643.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSomei, M. & Yamada, F. (2003). Nat. Prod. Rep. 20, 216–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds