metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m328-m329

Poly[[di-μ3-nicotinato-hemi-μ4-oxalato-hemi-μ2-oxalato-neodymium(III)silver(I)] dihydrate]

aDepartment of Chemistry, Bijie University, Bijie, Guiyang 551700, People's Republic of China
*Correspondence e-mail: liqz75@yahoo.com.cn

(Received 11 January 2009; accepted 19 February 2009; online 25 February 2009)

The asymmetric unit of the title compound, {[AgNd(C6H4NO2)2(C2O4)]·2H2O}n, contains one NdIII atom, one AgI atom, one oxalate ligand, two nicotinate ligands and two uncoordinated water mol­ecules. The NdIII atom is eight-coordinated in a distorted square-anti­prismatic coordination geometry by four O atoms from two oxalate ligands and four O atoms from four nicotinate ligands. The AgI atom has a T-shaped configuration, defined by two N atoms from two nicotinate ligands and one O atom from one oxalate ligand. The nicotinate and oxalate ligands link the Nd and Ag atoms into a three-dimensional coordination framework. O—H⋯O and O—H⋯N hydrogen bonds donated by water mol­ecules are observed in the crystal.

Related literature

For general background, see: Barbour (2006[Barbour, L. J. (2006). Chem. Commun. pp. 1163-1168.]); Cheng et al. (2007a[Cheng, J. W., Zheng, S. T. & Yang, G. Y. (2007a). Dalton Trans. pp. 4059-4066.],b[Cheng, J. W., Zheng, S. T. & Yang, G. Y. (2007b). Inorg. Chem. 46, 10261-10267.]); Kepert (2006[Kepert, C. J. (2006). Chem. Commun. pp. 695-700.]); Kong et al. (2008[Kong, X. J., Ren, Y. P., Chen, W. X., Long, L. S., Zheng, Z. P., Huang, R. B. & Zheng, L. S. (2008). Angew. Chem. Int. Ed. 47, 2398-2401.]); Luo et al. (2006[Luo, F., Che, Y. X. & Zheng, J. M. (2006). Cryst. Growth Des. 6, 2432-2434.], 2007[Luo, F., Hu, D. X., Xue, L., Che, Y. X. & Zheng, J. M. (2007). Cryst. Growth Des. 7, 851-853.]); Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanthan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]); Zhang et al. (2005[Zhang, M. B., Zhang, J., Zheng, S. T. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 1385-1388.]). For related structures, see: Arnold et al. (1997[Arnold, D. I., Cotton, F. A., Matonic, J. H. & Murillo, C. A. (1997). Polyhedron, 16, 1837-1841.]); Hartshorn & Steel (1996[Hartshorn, C. M. & Steel, P. J. (1996). Inorg. Chem. 35, 6902-6903.]); Song & Mao (2005[Song, J.-L. & Mao, J.-G. (2005). Chem. Eur. J. 11, 1417-1424.]).

[Scheme 1]

Experimental

Crystal data
  • [AgNd(C6H4NO2)2(C2O4)]·2H2O

  • Mr = 620.37

  • Monoclinic, P 21 /c

  • a = 9.7441 (1) Å

  • b = 22.4015 (4) Å

  • c = 9.2050 (1) Å

  • β = 116.992 (1)°

  • V = 1790.42 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.02 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.317, Tmax = 0.439

  • 13299 measured reflections

  • 3202 independent reflections

  • 2645 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.072

  • S = 1.05

  • 3202 reflections

  • 253 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—N1i 2.176 (5)
Ag1—N2 2.180 (5)
Ag1—O5 2.491 (3)
Nd1—O4ii 2.387 (4)
Nd1—O8i 2.443 (3)
Nd1—O1 2.449 (4)
Nd1—O3iii 2.450 (4)
Nd1—O2iv 2.451 (4)
Nd1—O5 2.464 (3)
Nd1—O7 2.491 (3)
Nd1—O6v 2.525 (3)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x, -y, -z+1; (v) -x, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H3W⋯N1vi 0.84 2.63 3.308 (9) 138
O2W—H4W⋯O1Wvii 0.84 1.99 2.794 (10) 160
O1W—H2W⋯O7 0.84 2.12 2.962 (7) 176
O1W—H1W⋯O2Wviii 0.84 2.07 2.890 (9) 164
Symmetry codes: (vi) x, y+1, z; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (viii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and construction of transition–lanthanide metal complexes have gained great recognition over the last decade because of their intriguing network topologies and potential applications, and because of their magnetic properties, capacity for gas storage, luminescent properties and so on (Barbour, 2006; Kepert, 2006; Kong et al., 2008; Rao et al., 2004; Zhang et al., 2005). Nicotinic acid is a multifunctional bridging ligand possessing of O and N donors, which can thus be utilized to construct transition–lanthanide heterometallic complexes via the carboxyl O atoms binding to lanthanides and N atoms bonding to transition metal ions such as AgI or CuI (Cheng et al., 2007a,b; Luo et al., 2006, 2007). On the basis of above considerations, a new three-dimensional 4d-4f coordination framework was obtained from the hydrothermal treatment of Nd2O3, AgNO3, oxalic acid, nicotinic acid and nitric acid in water.

As depicted in Fig. 1, the title compound contains one NdIII atom, one AgI atom, one oxalate (1/2 + 1/2) ligand, two nicotinate ligands and two uncoordinated water molecules in the asymmetric unit. The NdIII atom is eight-coordinated in a distorted square-antiprismatic coordination geometry by four O atoms from two oxalate ligands and four O atoms from four nicotinate ligands (Table 1), with Nd—O bond lengths and O—Nd—O bond angles ranging from 2.387 (4) to 2.525 (3) Å and 64.96 (11) to 148.77 (12)°, respectively, all of which are within the range of those observed for other eight-coordinated NdIII complexes with O donor ligands (Song & Mao, 2005). The AgI atom is located in a T-shaped configuration, defined by two N atoms from two nicotinate lignads and one O atom from one oxalate lignad. The Ag—N and Ag—O bond distances and the N—Ag—N angle are similar to those of other AgI structures with T-shaped configuration (Hartshorn & Steel, 1996; Arnold et al., 1997).

In the crystal structure, the Nd and Ag atoms are linked by the carboxylate groups of nicotinate ligands and the oxalate ligands, forming a two-dimensional layer in the ac plane. The shortest Nd···Nd distance is 4.224 (3) Å. The layers are further constructed into a three-dimensional coordination framework through bridging nicotinate ligands (Fig. 2). O—H···O and O—H···N hydrogen bonds donated by water molecules are observed (Table 2).

Related literature top

For general background, see: Barbour (2006); Cheng et al. (2007a,b); Kepert (2006); Kong et al. (2008); Luo et al. (2006, 2007); Rao et al. (2004); Zhang et al. (2005). For related structures, see: Arnold et al. (1997); Hartshorn & Steel (1996); Song & Mao (2005).

Experimental top

A mixture of Nd2O3 (0.168 g, 0.5 mmol), AgNO3 (0.169 g, 1 mmol), nicotinic acid (0.123 g, 1 mmol), oxalic acid (0.090 g, 1 mmol), HNO3 (0.12 ml) and H2O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d and then cooled to room temperature at a rate of 10 K h-1. The pale-purple plate crystals obtained were washed with water and dried in air (yield 46% based on Nd).

Refinement top

Carbon-bound H atoms were positioned geometrically and treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). Water H atoms were tentatively located in difference Fourier maps and were fixed with distance of O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O). The hightest peak is located 0.92 Å from Nd1 and the deepest hole is located 0.81 Å from Ag1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, together with symmetry-related atoms to complete the coordination units. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, y-1/2, -z+1/2; (iii) x, -y+1/2, z+1/2; (iv) -x, -y, -z+1; (v) -x, -y, -z.]
[Figure 2] Fig. 2. View of the structure along the a axis. Dashed lines denote hydrogen bonds.
Poly[[di-µ3-nicotinato-hemi-µ4-oxalato-hemi-µ2-oxalato- neodymium(III)silver(I)] dihydrate] top
Crystal data top
[AgNd(C6H4NO2)2(C2O4)]·2H2OF(000) = 1188
Mr = 620.37Dx = 2.301 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5837 reflections
a = 9.7441 (1) Åθ = 2.8–27.9°
b = 22.4015 (4) ŵ = 4.02 mm1
c = 9.2050 (1) ÅT = 296 K
β = 116.992 (1)°Block, pale-purple
V = 1790.42 (4) Å30.30 × 0.25 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3202 independent reflections
Radiation source: fine-focus sealed tube2645 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.317, Tmax = 0.439k = 2626
13299 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0246P)2 + 1.8836P]
where P = (Fo2 + 2Fc2)/3
3202 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 1.05 e Å3
6 restraintsΔρmin = 0.74 e Å3
Crystal data top
[AgNd(C6H4NO2)2(C2O4)]·2H2OV = 1790.42 (4) Å3
Mr = 620.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7441 (1) ŵ = 4.02 mm1
b = 22.4015 (4) ÅT = 296 K
c = 9.2050 (1) Å0.30 × 0.25 × 0.21 mm
β = 116.992 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3202 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2645 reflections with I > 2σ(I)
Tmin = 0.317, Tmax = 0.439Rint = 0.058
13299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0316 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.05Δρmax = 1.05 e Å3
3202 reflectionsΔρmin = 0.74 e Å3
253 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.17888 (6)0.14737 (2)0.01878 (7)0.05145 (17)
C10.3858 (6)0.0646 (2)0.9171 (6)0.0253 (11)
N10.6264 (5)0.1161 (2)1.0156 (6)0.0364 (11)
Nd10.14173 (3)0.008872 (12)0.38289 (3)0.01977 (10)
O10.2914 (4)0.00473 (16)0.6779 (4)0.0309 (9)
O1W0.3918 (8)0.1959 (3)0.4391 (7)0.098 (2)
H1W0.40950.20810.36290.147*
H2W0.39070.15850.43840.147*
C20.5159 (6)0.0809 (2)0.9055 (7)0.0320 (13)
H20.52860.06710.81720.038*
N20.0364 (5)0.2168 (2)0.0474 (6)0.0367 (11)
O20.1337 (4)0.02728 (19)0.7871 (4)0.0361 (9)
O2W0.4855 (9)0.7657 (3)0.7785 (9)0.119 (3)
H4W0.53870.74270.85600.178*
H3W0.46830.79740.81590.178*
C30.6065 (7)0.1347 (3)1.1434 (7)0.0426 (15)
H30.68040.15971.21940.051*
O30.1134 (4)0.38638 (16)0.0591 (5)0.0368 (10)
C40.4824 (7)0.1187 (3)1.1673 (7)0.0402 (15)
H40.47450.13101.25970.048*
O40.0282 (5)0.42752 (17)0.0429 (5)0.0371 (9)
C50.3706 (7)0.0841 (3)1.0515 (7)0.0339 (13)
H50.28380.07361.06330.041*
O50.1169 (4)0.05546 (16)0.1296 (4)0.0315 (9)
C60.2600 (6)0.0288 (2)0.7832 (6)0.0278 (12)
O60.0401 (4)0.05896 (15)0.1370 (4)0.0278 (8)
C70.0146 (6)0.3216 (2)0.0401 (6)0.0276 (12)
O70.3853 (4)0.06386 (16)0.4497 (4)0.0278 (8)
C80.0645 (6)0.2733 (2)0.0224 (7)0.0305 (13)
H80.14140.28040.00870.037*
O80.6416 (4)0.05526 (16)0.5788 (4)0.0298 (9)
C90.0735 (7)0.2077 (3)0.0938 (8)0.0465 (16)
H90.09350.16870.11310.056*
C100.1580 (8)0.2526 (3)0.1142 (9)0.0530 (18)
H100.23420.24410.14550.064*
C110.1288 (7)0.3105 (3)0.0878 (7)0.0409 (15)
H110.18440.34190.10170.049*
C120.0257 (6)0.3829 (2)0.0058 (6)0.0265 (12)
C130.0207 (6)0.0329 (2)0.0029 (6)0.0246 (11)
C140.5076 (6)0.0349 (2)0.5090 (6)0.0224 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0384 (3)0.0263 (3)0.0940 (4)0.0076 (2)0.0339 (3)0.0094 (2)
C10.021 (3)0.024 (3)0.028 (3)0.002 (2)0.008 (2)0.002 (2)
N10.028 (3)0.034 (3)0.046 (3)0.005 (2)0.016 (2)0.006 (2)
Nd10.01772 (16)0.02063 (17)0.02011 (15)0.00101 (11)0.00786 (12)0.00165 (11)
O10.028 (2)0.038 (2)0.0226 (19)0.0006 (17)0.0074 (17)0.0061 (16)
O1W0.122 (6)0.076 (4)0.107 (5)0.015 (4)0.060 (5)0.011 (4)
C20.032 (3)0.030 (3)0.039 (3)0.006 (3)0.020 (3)0.010 (3)
N20.033 (3)0.023 (3)0.053 (3)0.000 (2)0.019 (3)0.004 (2)
O20.021 (2)0.056 (3)0.029 (2)0.0094 (19)0.0094 (18)0.0049 (18)
O2W0.162 (7)0.076 (5)0.122 (6)0.005 (5)0.067 (6)0.004 (4)
C30.037 (4)0.041 (4)0.038 (4)0.011 (3)0.007 (3)0.015 (3)
O30.038 (2)0.025 (2)0.059 (3)0.0018 (18)0.031 (2)0.0047 (18)
C40.054 (4)0.041 (4)0.025 (3)0.007 (3)0.017 (3)0.009 (3)
O40.045 (2)0.026 (2)0.037 (2)0.0057 (19)0.015 (2)0.0050 (17)
C50.031 (3)0.040 (4)0.034 (3)0.003 (3)0.018 (3)0.000 (3)
O50.035 (2)0.033 (2)0.0225 (19)0.0102 (18)0.0096 (18)0.0002 (16)
C60.022 (3)0.027 (3)0.028 (3)0.003 (2)0.005 (3)0.005 (2)
O60.031 (2)0.024 (2)0.0236 (19)0.0007 (16)0.0081 (17)0.0009 (15)
C70.028 (3)0.022 (3)0.036 (3)0.002 (2)0.017 (3)0.001 (2)
O70.022 (2)0.025 (2)0.036 (2)0.0043 (16)0.0123 (18)0.0038 (16)
C80.025 (3)0.026 (3)0.045 (3)0.001 (2)0.019 (3)0.003 (2)
O80.017 (2)0.030 (2)0.037 (2)0.0010 (16)0.0078 (18)0.0072 (16)
C90.047 (4)0.030 (4)0.068 (5)0.009 (3)0.031 (4)0.009 (3)
C100.052 (4)0.048 (4)0.077 (5)0.001 (3)0.046 (4)0.011 (4)
C110.039 (4)0.037 (4)0.054 (4)0.004 (3)0.028 (3)0.003 (3)
C120.024 (3)0.024 (3)0.025 (3)0.006 (2)0.006 (3)0.000 (2)
C130.025 (3)0.026 (3)0.027 (3)0.001 (2)0.015 (3)0.002 (2)
C140.024 (3)0.032 (3)0.016 (2)0.003 (2)0.012 (2)0.001 (2)
Geometric parameters (Å, º) top
Ag1—N1i2.176 (5)O2W—H3W0.8400
Ag1—N22.180 (5)C3—C41.371 (8)
Ag1—O52.491 (3)C3—H30.9300
C1—C21.369 (7)O3—C121.247 (6)
C1—C51.382 (7)C4—C51.368 (8)
C1—C61.514 (7)C4—H40.9300
N1—C31.343 (7)O4—C121.247 (6)
N1—C21.348 (7)C5—H50.9300
Nd1—O4ii2.387 (4)O5—C131.259 (6)
Nd1—O8i2.443 (3)O6—C131.246 (6)
Nd1—O12.449 (4)C7—C81.382 (7)
Nd1—O3iii2.450 (4)C7—C111.391 (7)
Nd1—O2iv2.451 (4)C7—C121.501 (7)
Nd1—O52.464 (3)O7—C141.244 (6)
Nd1—O72.491 (3)C8—H80.9300
Nd1—O6v2.525 (3)O8—C141.251 (6)
O1—C61.262 (6)C9—C101.366 (9)
O1W—H1W0.8400C9—H90.9300
O1W—H2W0.8400C10—C111.374 (9)
C2—H20.9300C10—H100.9300
N2—C91.336 (7)C11—H110.9300
N2—C81.336 (7)C13—C13v1.536 (11)
O2—C61.248 (6)C14—C14i1.572 (11)
O2W—H4W0.8400
N1i—Ag1—N2153.22 (18)H4W—O2W—H3W109.4
N1i—Ag1—O5100.53 (15)N1—C3—C4123.2 (5)
N2—Ag1—O5104.74 (15)N1—C3—H3118.4
C2—C1—C5117.7 (5)C4—C3—H3118.4
C2—C1—C6120.9 (5)C12—O3—Nd1vi109.5 (3)
C5—C1—C6121.3 (5)C5—C4—C3118.2 (5)
C3—N1—C2117.2 (5)C5—C4—H4120.9
C3—N1—Ag1i120.6 (4)C3—C4—H4120.9
C2—N1—Ag1i122.1 (4)C12—O4—Nd1vii176.5 (4)
O4ii—Nd1—O8i89.54 (13)C4—C5—C1120.3 (5)
O4ii—Nd1—O173.01 (13)C4—C5—H5119.8
O8i—Nd1—O174.10 (12)C1—C5—H5119.8
O4ii—Nd1—O3iii123.80 (13)C13—O5—Nd1117.2 (3)
O8i—Nd1—O3iii135.02 (12)C13—O5—Ag198.5 (3)
O1—Nd1—O3iii86.96 (13)Nd1—O5—Ag1143.11 (15)
O4ii—Nd1—O2iv78.22 (13)O2—C6—O1126.6 (5)
O8i—Nd1—O2iv144.59 (13)O2—C6—C1115.8 (5)
O1—Nd1—O2iv131.08 (12)O1—C6—C1117.5 (5)
O3iii—Nd1—O2iv77.22 (14)C13—O6—Nd1v115.0 (3)
O4ii—Nd1—O5137.30 (12)C8—C7—C11117.8 (5)
O8i—Nd1—O595.33 (12)C8—C7—C12118.6 (5)
O1—Nd1—O5148.77 (12)C11—C7—C12123.6 (5)
O3iii—Nd1—O580.10 (13)C14—O7—Nd1117.7 (3)
O2iv—Nd1—O573.50 (12)N2—C8—C7123.6 (5)
O4ii—Nd1—O7145.13 (12)N2—C8—H8118.2
O8i—Nd1—O765.86 (12)C7—C8—H8118.2
O1—Nd1—O776.51 (12)C14—O8—Nd1i119.5 (3)
O3iii—Nd1—O770.23 (12)N2—C9—C10123.5 (6)
O2iv—Nd1—O7135.96 (12)N2—C9—H9118.3
O5—Nd1—O772.38 (12)C10—C9—H9118.3
O4ii—Nd1—O6v75.69 (12)C9—C10—C11119.0 (6)
O8i—Nd1—O6v74.76 (11)C9—C10—H10120.5
O1—Nd1—O6v135.45 (12)C11—C10—H10120.5
O3iii—Nd1—O6v137.26 (12)C10—C11—C7119.0 (6)
O2iv—Nd1—O6v70.06 (12)C10—C11—H11120.5
O5—Nd1—O6v64.96 (11)C7—C11—H11120.5
O7—Nd1—O6v117.43 (11)O4—C12—O3123.2 (5)
C6—O1—Nd1132.4 (3)O4—C12—C7119.5 (5)
H1W—O1W—H2W109.0O3—C12—C7117.4 (5)
N1—C2—C1123.4 (5)O6—C13—O5125.6 (5)
N1—C2—H2118.3O6—C13—C13v118.0 (6)
C1—C2—H2118.3O5—C13—C13v116.3 (6)
C9—N2—C8117.2 (5)O7—C14—O8127.1 (5)
C9—N2—Ag1125.2 (4)O7—C14—C14i116.6 (5)
C8—N2—Ag1117.6 (4)O8—C14—C14i116.3 (5)
C6—O2—Nd1iv142.6 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y, z+1; (v) x, y, z; (vi) x, y+1/2, z1/2; (vii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H3W···N1viii0.842.633.308 (9)138
O2W—H4W···O1Wix0.841.992.794 (10)160
O1W—H2W···O70.842.122.962 (7)176
O1W—H1W···O2Wx0.842.072.890 (9)164
Symmetry codes: (viii) x, y+1, z; (ix) x+1, y+1/2, z+3/2; (x) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[AgNd(C6H4NO2)2(C2O4)]·2H2O
Mr620.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.7441 (1), 22.4015 (4), 9.2050 (1)
β (°) 116.992 (1)
V3)1790.42 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.02
Crystal size (mm)0.30 × 0.25 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.317, 0.439
No. of measured, independent and
observed [I > 2σ(I)] reflections
13299, 3202, 2645
Rint0.058
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.072, 1.05
No. of reflections3202
No. of parameters253
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.74

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag1—N1i2.176 (5)Nd1—O3iii2.450 (4)
Ag1—N22.180 (5)Nd1—O2iv2.451 (4)
Ag1—O52.491 (3)Nd1—O52.464 (3)
Nd1—O4ii2.387 (4)Nd1—O72.491 (3)
Nd1—O8i2.443 (3)Nd1—O6v2.525 (3)
Nd1—O12.449 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y, z+1; (v) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H3W···N1vi0.842.633.308 (9)138
O2W—H4W···O1Wvii0.841.992.794 (10)160
O1W—H2W···O70.842.122.962 (7)176
O1W—H1W···O2Wviii0.842.072.890 (9)164
Symmetry codes: (vi) x, y+1, z; (vii) x+1, y+1/2, z+3/2; (viii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge Bijie University for supporting this work.

References

First citationArnold, D. I., Cotton, F. A., Matonic, J. H. & Murillo, C. A. (1997). Polyhedron, 16, 1837–1841.  CSD CrossRef CAS Web of Science Google Scholar
First citationBarbour, L. J. (2006). Chem. Commun. pp. 1163–1168.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J. W., Zheng, S. T. & Yang, G. Y. (2007a). Dalton Trans. pp. 4059–4066.  Web of Science CSD CrossRef Google Scholar
First citationCheng, J. W., Zheng, S. T. & Yang, G. Y. (2007b). Inorg. Chem. 46, 10261–10267.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHartshorn, C. M. & Steel, P. J. (1996). Inorg. Chem. 35, 6902–6903.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationKepert, C. J. (2006). Chem. Commun. pp. 695–700.  Web of Science CrossRef Google Scholar
First citationKong, X. J., Ren, Y. P., Chen, W. X., Long, L. S., Zheng, Z. P., Huang, R. B. & Zheng, L. S. (2008). Angew. Chem. Int. Ed. 47, 2398–2401.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, F., Che, Y. X. & Zheng, J. M. (2006). Cryst. Growth Des. 6, 2432–2434.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, F., Hu, D. X., Xue, L., Che, Y. X. & Zheng, J. M. (2007). Cryst. Growth Des. 7, 851–853.  Web of Science CSD CrossRef CAS Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanthan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, J.-L. & Mao, J.-G. (2005). Chem. Eur. J. 11, 1417–1424.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, M. B., Zhang, J., Zheng, S. T. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 1385–1388.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m328-m329
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds