metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-hy­droxy­phenyl­acetato-κ2O,O′)bis­­(1H-imidazole-κN3)nickel(II)

aDepartment of Chemistry, Bijie University, Bijie 551700, People's Republic of China
*Correspondence e-mail: qianzhuli77@yahoo.com.cn

(Received 19 January 2009; accepted 19 February 2009; online 28 February 2009)

In the title mononuclear complex, [Ni(C8H7O3)2(C3H4N2)2], the NiII atom, lying on a twofold rotation axis, is coordinated by four carboxyl­ate O atoms from two bidentate 3-hydroxy­phenylacetato ligands and two N atoms from two imidazole mol­ecules in a distorted octa­hedral geometry. A three-dimensional network is formed via inter­molecular O—H⋯O and N—H⋯O hydrogen bonds and ππ stacking inter­actions between the imidazole and benzene rings of neighboring mol­ecules [centroid–centroid distance = 3.856 (2) Å].

Related literature

For the use of coordination polymers and open framework materials in catalysis, separation, gas storage and molecular recognition, see: James (2003[James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.]); Serre et al. (2004[Serre, C., Millange, F., Thouvenot, C., Gardant, N., Pelle, F. & Ferey, G. (2004). J. Mater. Chem. 14, 1540-1543.]); Yaghi et al. (1998[Yaghi, O. M., Li, H. L., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.], 2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H7O3)2(C3H4N2)2]

  • Mr = 497.15

  • Monoclinic, C 2/c

  • a = 12.8481 (14) Å

  • b = 10.6829 (12) Å

  • c = 16.3051 (19) Å

  • β = 101.410 (1)°

  • V = 2193.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 296 K

  • 0.32 × 0.27 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.762, Tmax = 0.811

  • 5522 measured reflections

  • 1960 independent reflections

  • 1509 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.094

  • S = 1.01

  • 1960 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 2.004 (2)
Ni1—O2 2.1128 (19)
Ni1—O1 2.1404 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 1.88 2.734 (3) 171
O3—H3⋯O2ii 0.82 1.96 2.763 (3) 168
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The use of multifunctional organic linker molecules in the preparation of coordination polymers and open-framework materials has led to the development of a rich field of chemistry, owing to the potential applications of these materials in catalysis, separation, gas storage and molecular recognition (James, 2003; Serre et al., 2004; Yaghi et al., 1998, 2003). 3-Hydroxyphenylacetic acid has a versatile binding ability. Structures of the complexes with 3-hydroxyphenylacetate have not been reported to date. We obtained a new NiII complex from the reaction of 3-hydroxyphenylacetic acid, imidazole and NiCl2 in an alkaline aqueous solution.

As illustrated in Fig. 1, the NiII atom, lying on a twofold rotation axis, has a distorted octahedral environment, defined by four carboxylate O atoms from two bidentate 3-hydroxyphenylacetate ligands and two N atoms from two imidazole molecules. Intermolecular O—H···O and N—H···O hydrogen bonds form a three-dimensional network, which is further consolidated by ππ stacking interactions between the imidazole and phenyl rings of neighboring complexes, with a centroid–centroid distance of 3.856 (2) Å.

Related literature top

For general background, see: James (2003); Serre et al. (2004); Yaghi et al. (1998, 2003).

Experimental top

A mixture of nickel chloride (0.13 g, 1 mmol), 3-hydroxyphenylacetic acid (0.152 g, 1 mmol), imidazole (0.068 g, 1 mmol), NaOH (0.06 g, 1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dried in air.

Refinement top

H atoms were positioned geometrically and treated as riding on the parent C atoms, with C—H = 0.93 (CH) and 0.97 (CH2) Å, N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (iii) -x, y, 1/2 - z.]
[Figure 2] Fig. 2. A packing view of the title compound. The intermolecluar hydrogen bonds and ππ stacking interactions are shown as dashed lines.
Bis(3-hydroxyphenylacetato-κ2O,O')bis(1H- imidazole-κN3)nickel(II) top
Crystal data top
[Ni(C8H7O3)2(C3H4N2)2]F(000) = 1032
Mr = 497.15Dx = 1.505 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5837 reflections
a = 12.8481 (14) Åθ = 2.8–27.9°
b = 10.6829 (12) ŵ = 0.93 mm1
c = 16.3051 (19) ÅT = 296 K
β = 101.410 (1)°Block, blue
V = 2193.7 (4) Å30.32 × 0.27 × 0.24 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1960 independent reflections
Radiation source: fine-focus sealed tube1509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 25.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1315
Tmin = 0.762, Tmax = 0.811k = 1012
5522 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0443P)2]
where P = (Fo2 + 2Fc2)/3
1960 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ni(C8H7O3)2(C3H4N2)2]V = 2193.7 (4) Å3
Mr = 497.15Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.8481 (14) ŵ = 0.93 mm1
b = 10.6829 (12) ÅT = 296 K
c = 16.3051 (19) Å0.32 × 0.27 × 0.24 mm
β = 101.410 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1960 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1509 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.811Rint = 0.045
5522 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
1960 reflectionsΔρmin = 0.25 e Å3
151 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0902 (2)0.0767 (3)0.43721 (17)0.0387 (7)
N10.10445 (18)0.5333 (2)0.22611 (15)0.0392 (6)
Ni10.00000.40576 (5)0.25000.03283 (19)
O10.06407 (15)0.25890 (17)0.31434 (12)0.0421 (5)
C20.1936 (2)0.0654 (3)0.48209 (18)0.0438 (8)
H20.22080.12630.52130.053*
N20.2479 (2)0.6473 (3)0.24415 (17)0.0543 (8)
H2A0.31040.67470.26510.065*
O20.07730 (15)0.36060 (19)0.37318 (12)0.0423 (5)
C30.2567 (2)0.0347 (3)0.46956 (19)0.0451 (8)
O30.35853 (19)0.0487 (2)0.51162 (17)0.0704 (8)
H30.37690.01410.53970.106*
C40.2166 (3)0.1259 (3)0.4120 (2)0.0521 (9)
H40.25800.19450.40400.063*
C50.1146 (3)0.1143 (3)0.3666 (2)0.0566 (9)
H50.08770.17510.32720.068*
C60.0517 (3)0.0144 (3)0.37856 (19)0.0503 (8)
H60.01690.00790.34720.060*
C70.0230 (3)0.1885 (3)0.45013 (18)0.0476 (8)
H7A0.04620.16020.45780.057*
H7B0.05650.23320.50020.057*
C80.0100 (2)0.2748 (3)0.37584 (17)0.0369 (7)
C90.1992 (2)0.5532 (3)0.2722 (2)0.0534 (9)
H90.22830.50600.31910.064*
C100.0930 (3)0.6207 (3)0.1660 (2)0.0586 (10)
H100.03350.63040.12360.070*
C110.1815 (3)0.6928 (4)0.1766 (2)0.0699 (11)
H110.19390.76020.14370.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0439 (19)0.0382 (18)0.0339 (16)0.0014 (14)0.0076 (14)0.0093 (14)
N10.0313 (14)0.0370 (14)0.0487 (16)0.0043 (11)0.0066 (12)0.0007 (12)
Ni10.0233 (3)0.0304 (3)0.0417 (3)0.0000.0010 (2)0.000
O10.0325 (11)0.0430 (12)0.0454 (12)0.0088 (9)0.0050 (10)0.0045 (10)
C20.055 (2)0.0348 (18)0.0385 (17)0.0029 (14)0.0013 (16)0.0036 (13)
N20.0370 (16)0.0630 (19)0.0620 (19)0.0242 (14)0.0077 (14)0.0082 (15)
O20.0316 (11)0.0438 (12)0.0458 (12)0.0053 (10)0.0060 (10)0.0007 (10)
C30.0437 (19)0.0416 (18)0.0447 (18)0.0013 (15)0.0042 (15)0.0026 (15)
O30.0543 (15)0.0611 (16)0.0821 (19)0.0126 (13)0.0195 (14)0.0175 (14)
C40.054 (2)0.0443 (19)0.053 (2)0.0052 (16)0.0004 (18)0.0078 (16)
C50.062 (2)0.050 (2)0.054 (2)0.0066 (17)0.0004 (18)0.0176 (16)
C60.0437 (19)0.056 (2)0.047 (2)0.0042 (16)0.0015 (16)0.0030 (17)
C70.053 (2)0.050 (2)0.0401 (18)0.0095 (16)0.0090 (16)0.0049 (15)
C80.0316 (17)0.0367 (17)0.0404 (17)0.0035 (13)0.0023 (14)0.0021 (13)
C90.0348 (18)0.054 (2)0.066 (2)0.0085 (16)0.0027 (17)0.0087 (18)
C100.054 (2)0.069 (3)0.046 (2)0.0209 (18)0.0041 (17)0.0133 (18)
C110.080 (3)0.070 (3)0.057 (2)0.036 (2)0.006 (2)0.010 (2)
Geometric parameters (Å, º) top
C1—C61.385 (4)O2—C81.267 (3)
C1—C21.389 (4)C3—O31.360 (3)
C1—C71.513 (4)C3—C41.380 (4)
N1—C91.315 (4)O3—H30.8200
N1—C101.340 (4)C4—C51.378 (4)
Ni1—N12.004 (2)C4—H40.9300
Ni1—N1i2.004 (2)C5—C61.376 (4)
Ni1—O2i2.1128 (19)C5—H50.9300
Ni1—O22.1128 (19)C6—H60.9300
Ni1—O1i2.1404 (18)C7—C81.505 (4)
Ni1—O12.1404 (18)C7—H7A0.9700
O1—C81.250 (3)C7—H7B0.9700
C2—C31.381 (4)C9—H90.9300
C2—H20.9300C10—C111.356 (4)
N2—C91.313 (4)C10—H100.9300
N2—C111.343 (4)C11—H110.9300
N2—H2A0.8600
C6—C1—C2118.5 (3)C11—N2—H2A126.5
C6—C1—C7121.0 (3)C8—O2—Ni190.11 (16)
C2—C1—C7120.5 (3)O3—C3—C2123.0 (3)
C9—N1—C10105.1 (3)O3—C3—C4117.2 (3)
C9—N1—Ni1125.3 (2)C2—C3—C4119.8 (3)
C10—N1—Ni1129.4 (2)C3—O3—H3109.5
N1—Ni1—N1i94.31 (13)C5—C4—C3119.3 (3)
N1—Ni1—O2i100.22 (9)C5—C4—H4120.4
N1i—Ni1—O2i97.65 (9)C3—C4—H4120.4
N1—Ni1—O297.65 (9)C6—C5—C4121.1 (3)
N1i—Ni1—O2100.22 (9)C6—C5—H5119.4
O2i—Ni1—O2153.60 (11)C4—C5—H5119.4
N1—Ni1—O1i93.78 (8)C5—C6—C1120.2 (3)
N1i—Ni1—O1i158.58 (9)C5—C6—H6119.9
O2i—Ni1—O1i61.36 (7)C1—C6—H6119.9
O2—Ni1—O1i98.31 (8)C8—C7—C1110.3 (2)
N1—Ni1—O1158.58 (9)C8—C7—H7A109.6
N1i—Ni1—O193.78 (8)C1—C7—H7A109.6
O2i—Ni1—O198.31 (8)C8—C7—H7B109.6
O2—Ni1—O161.36 (7)C1—C7—H7B109.6
O1i—Ni1—O185.73 (10)H7A—C7—H7B108.1
N1—Ni1—C8i98.66 (9)O1—C8—O2119.2 (3)
N1i—Ni1—C8i128.39 (10)O1—C8—C7120.5 (3)
O2i—Ni1—C8i30.92 (8)O2—C8—C7120.2 (3)
O2—Ni1—C8i126.79 (9)N2—C9—N1112.0 (3)
O1i—Ni1—C8i30.45 (8)N2—C9—H9124.0
O1—Ni1—C8i91.74 (8)N1—C9—H9124.0
C8—O1—Ni189.31 (17)N1—C10—C11109.5 (3)
C3—C2—C1121.2 (3)N1—C10—H10125.2
C3—C2—H2119.4C11—C10—H10125.2
C1—C2—H2119.4N2—C11—C10106.2 (3)
C9—N2—C11107.1 (3)N2—C11—H11126.9
C9—N2—H2A126.5C10—C11—H11126.9
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1ii0.861.882.734 (3)171
O3—H3···O2iii0.821.962.763 (3)168
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C8H7O3)2(C3H4N2)2]
Mr497.15
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)12.8481 (14), 10.6829 (12), 16.3051 (19)
β (°) 101.410 (1)
V3)2193.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.32 × 0.27 × 0.24
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.762, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
5522, 1960, 1509
Rint0.045
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.01
No. of reflections1960
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N12.004 (2)Ni1—O12.1404 (18)
Ni1—O22.1128 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.861.882.734 (3)171
O3—H3···O2ii0.821.962.763 (3)168
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge Bijie University for kindly supporting this work (20072016).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJames, S. L. (2003). Chem. Soc. Rev. 32, 276–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSerre, C., Millange, F., Thouvenot, C., Gardant, N., Pelle, F. & Ferey, G. (2004). J. Mater. Chem. 14, 1540–1543.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Li, H. L., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds