organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[5-(4-Fluoro­phen­yl)-1H-imidazol-4-yl]pyridine

aInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 26 January 2009; accepted 17 February 2009; online 21 February 2009)

In the title compound, C14H10FN3, the imidazole ring makes dihedral angles of 28.2 (1) and 36.60 (9)° with the pyridine ring and the 4-fluoro­phenyl ring, respectively. The pyridine ring forms a dihedral angle of 44.68 (9)° with the 4-fluoro­phenyl ring. Inter­molecular N—H⋯N hydrogen bonds are observed in the crystal structure.

Related literature

For the biological activity of the title compound, see: Liverton et al. (1999[Liverton, N. J., Butcher, J. W., Claiborne, C. F., Claremon, D. A., Libby, B. E., Nguyen, K. T., Pitzenberger, S. M., Selnick, H. G., Smith, G. R., Tebben, A., Vacca, J. P., Varga, S. L., Agarwal, L., Dancheck, K., Forsyth, A. J., Fletcher, D. S., Frantz, B., Hanlon, W. A., Harper, C. F., Hofsess, S. J., Kostura, M., Lin, J., Luell, S., O'Neill, E. A., Orevillo, C. J., Pang, M., Parsons, J., Rolando, A., Sahly, Y., Visco, D. M. & O'Keefe, S. J. (1999). J. Med. Chem. 42, 2180-2190.]). For applications of functionalized 5(4)-(4-fluoro­phen­yl)-4(5)-(pyridin-4-yl)imidazoles, see: Koch et al. (2008[Koch, P., Bäuerlein, C., Jank, H. & Laufer, S. (2008). J. Med. Chem. 51, 5630-5640.]), Peifer et al. (2006[Peifer, C., Wagner, G. & Laufer, S. (2006). Curr. Top. Med. Chem. 6, 113-149.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10FN3

  • Mr = 239.25

  • Orthorhombic, P b c a

  • a = 9.217 (2) Å

  • b = 8.1064 (5) Å

  • c = 30.665 (5) Å

  • V = 2291.1 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 193 K

  • 0.54 × 0.20 × 0.13 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2121 measured reflections

  • 2121 independent reflections

  • 1707 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.201

  • S = 1.09

  • 2121 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N15i 0.89 1.94 2.815 (3) 164
Symmetry code: (i) x-1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

5(4)-(4-Fluorophenyl)-4(5)-(pyridin-4-yl)imidazole derivatives with various substitution patterns have been considered to be potential p38 MAP kinase inhibitors (Liverton et al. 1999, Koch et al. 2008, Peifer et al. 2006).

The molecular structure of compound I is shown in Figure 1. The imidazole ring realises dihedral angles of 28.2 (1)° and 36.60 (9)° with the pyridine ring and the 4-fluorophenyl ring, respectively. The pyridine ring encloses a dihedral angle of 44.68 (9)° with the 4-fluorophenyl ring.

The crystal packing (Figure 2) shows N1—H1 of the imidazole ring to form an intermolecular N–H···N hydrogen bond towards pyridine (N15) resulting in a infinite chain parallel to the a axis. The hydrogen bond measures 1.94 Å.

Related literature top

For biological activity of the title compound, see: Liverton et al. (1999). For applications of functionalized 5(4)-(4-fluorophenyl)-4(5)-(pyridin-4-yl)imidazoles, see: Koch et al. (2008), Peifer et al. (2006).

Experimental top

1-(4-Fluorophenyl)-2-(pyridin-4-yl)ethane-1,2-dione (46 mg, 0.2 mmol), formaldehyde (15 µL, 0.2 mmol, 37% aq. solution), ammonium acetate (154 mg, 2.0 mmol) and 1 ml glacial acetic acid were combined in a reaction vial. The reaction vessel was heated in a CEM microwave reactor for 5 min at 453 K (initial power 200 W), after which a stream of compressed air cooled the reaction vessel. The reaction mixture was added dropwise to a concentrated NH4OH solution at 0 °C. The formed colorless precipitate was collected by filtration, washed with water and dried (yield: 43 mg, 90%). Crystals of compound I suitable for X-ray diffraction were obtained by slow evaporation at 298 K of a solution of n-hexane - diethyl ether (3:2).

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic C-atoms). The position of H1 was determined from the difference Fourier map. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.
[Figure 2] Fig. 2. Part of the crystal packing of compound I. The hydrogen bonds are represented by dashed lines. View along b axis.
4-[5-(4-Fluorophenyl)-1H-imidazol-4-yl]pyridine top
Crystal data top
C14H10FN3Dx = 1.387 Mg m3
Mr = 239.25Melting point: 285.5 K
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 9.217 (2) Åθ = 31–53°
b = 8.1064 (5) ŵ = 0.80 mm1
c = 30.665 (5) ÅT = 193 K
V = 2291.1 (6) Å3Needle, colourless
Z = 80.54 × 0.20 × 0.13 mm
F(000) = 992
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: rotating anodeθmax = 69.6°, θmin = 2.9°
Graphite monochromatorh = 011
ω/2θ scansk = 09
2121 measured reflectionsl = 360
2121 independent reflections3 standard reflections every 60 min
1707 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1422P)2 + 0.0554P]
where P = (Fo2 + 2Fc2)/3
2121 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C14H10FN3V = 2291.1 (6) Å3
Mr = 239.25Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 9.217 (2) ŵ = 0.80 mm1
b = 8.1064 (5) ÅT = 193 K
c = 30.665 (5) Å0.54 × 0.20 × 0.13 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
2121 measured reflections3 standard reflections every 60 min
2121 independent reflections intensity decay: 2%
1707 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.201H-atom parameters constrained
S = 1.09Δρmax = 0.58 e Å3
2121 reflectionsΔρmin = 0.54 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.0873 (2)0.0708 (3)0.21998 (6)0.0596 (6)
N10.0150 (2)0.2988 (2)0.42177 (7)0.0243 (5)
H10.10700.28830.41300.029*
C20.1085 (2)0.2755 (3)0.39720 (8)0.0224 (5)
C30.2212 (3)0.3123 (3)0.42585 (8)0.0227 (5)
N40.1672 (2)0.3595 (3)0.46674 (7)0.0285 (5)
C50.0257 (3)0.3479 (3)0.46279 (9)0.0279 (6)
H50.04080.37080.48570.033*
C60.1015 (2)0.2250 (3)0.35030 (8)0.0228 (5)
C70.1984 (3)0.2872 (3)0.31898 (9)0.0286 (6)
H70.26820.36690.32770.034*
C80.1955 (3)0.2353 (3)0.27519 (9)0.0338 (6)
H80.26390.27640.25470.041*
C90.0907 (3)0.1233 (3)0.26276 (9)0.0365 (7)
C100.0096 (3)0.0625 (3)0.29215 (9)0.0353 (6)
H100.08190.01310.28280.042*
C110.0043 (3)0.1128 (3)0.33599 (8)0.0274 (6)
H110.07310.07050.35620.033*
C120.3785 (3)0.3036 (3)0.41935 (8)0.0216 (5)
C130.4700 (3)0.4057 (3)0.44398 (8)0.0246 (5)
H130.42990.48140.46430.030*
C140.6182 (3)0.3961 (3)0.43855 (8)0.0282 (6)
H140.67830.46500.45590.034*
N150.6824 (2)0.2927 (3)0.40951 (7)0.0287 (5)
C160.5937 (3)0.1937 (3)0.38606 (9)0.0290 (6)
H160.63670.11930.36590.035*
C170.4456 (3)0.1942 (3)0.38966 (8)0.0264 (6)
H170.38850.12180.37240.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0846 (15)0.0588 (13)0.0354 (10)0.0016 (11)0.0071 (9)0.0100 (9)
N10.0210 (10)0.0106 (9)0.0414 (12)0.0012 (7)0.0000 (8)0.0015 (8)
C20.0225 (11)0.0050 (10)0.0398 (14)0.0003 (7)0.0019 (9)0.0031 (9)
C30.0277 (13)0.0048 (10)0.0355 (12)0.0005 (8)0.0005 (9)0.0007 (8)
N40.0293 (11)0.0182 (10)0.0379 (12)0.0021 (8)0.0020 (9)0.0029 (8)
C50.0273 (12)0.0166 (11)0.0399 (14)0.0008 (9)0.0058 (10)0.0027 (10)
C60.0234 (11)0.0078 (10)0.0371 (13)0.0037 (8)0.0022 (9)0.0011 (9)
C70.0308 (12)0.0139 (11)0.0410 (15)0.0016 (9)0.0012 (10)0.0027 (10)
C80.0379 (14)0.0257 (13)0.0377 (15)0.0053 (10)0.0035 (11)0.0069 (11)
C90.0499 (17)0.0278 (14)0.0319 (14)0.0083 (11)0.0085 (12)0.0012 (11)
C100.0383 (14)0.0215 (12)0.0460 (16)0.0033 (11)0.0113 (12)0.0041 (11)
C110.0277 (12)0.0139 (11)0.0407 (14)0.0017 (9)0.0044 (10)0.0020 (9)
C120.0239 (12)0.0070 (10)0.0337 (13)0.0007 (8)0.0014 (9)0.0044 (8)
C130.0282 (12)0.0151 (11)0.0306 (12)0.0020 (9)0.0004 (9)0.0006 (9)
C140.0294 (13)0.0194 (12)0.0357 (13)0.0036 (9)0.0039 (10)0.0016 (10)
N150.0231 (10)0.0223 (11)0.0408 (12)0.0008 (8)0.0016 (9)0.0022 (9)
C160.0286 (13)0.0156 (12)0.0429 (15)0.0050 (9)0.0006 (10)0.0024 (10)
C170.0273 (12)0.0091 (10)0.0427 (15)0.0001 (9)0.0044 (10)0.0017 (9)
Geometric parameters (Å, º) top
F1—C91.380 (3)C8—H80.9500
N1—C51.372 (3)C9—C101.382 (4)
N1—C21.378 (3)C10—C111.406 (4)
N1—H10.8936C10—H100.9500
C2—C31.393 (3)C11—H110.9500
C2—C61.496 (3)C12—C131.402 (3)
C3—N41.402 (3)C12—C171.414 (3)
C3—C121.465 (3)C13—C141.379 (3)
N4—C51.313 (3)C13—H130.9500
C5—H50.9500C14—N151.359 (3)
C6—C111.403 (3)C14—H140.9500
C6—C71.405 (3)N15—C161.353 (3)
C7—C81.407 (4)C16—C171.370 (3)
C7—H70.9500C16—H160.9500
C8—C91.379 (4)C17—H170.9500
C5—N1—C2108.4 (2)F1—C9—C10119.7 (3)
C5—N1—H1124.3C9—C10—C11119.8 (2)
C2—N1—H1127.3C9—C10—H10120.1
N1—C2—C3104.0 (2)C11—C10—H10120.1
N1—C2—C6121.9 (2)C6—C11—C10120.7 (2)
C3—C2—C6134.2 (2)C6—C11—H11119.6
C2—C3—N4111.0 (2)C10—C11—H11119.6
C2—C3—C12129.9 (2)C13—C12—C17117.0 (2)
N4—C3—C12119.0 (2)C13—C12—C3119.6 (2)
C5—N4—C3104.5 (2)C17—C12—C3123.4 (2)
N4—C5—N1112.1 (2)C14—C13—C12119.8 (2)
N4—C5—H5123.9C14—C13—H13120.1
N1—C5—H5123.9C12—C13—H13120.1
C11—C6—C7117.4 (2)N15—C14—C13123.1 (2)
C11—C6—C2120.5 (2)N15—C14—H14118.5
C7—C6—C2122.1 (2)C13—C14—H14118.5
C6—C7—C8122.2 (2)C16—N15—C14116.8 (2)
C6—C7—H7118.9N15—C16—C17123.9 (2)
C8—C7—H7118.9N15—C16—H16118.0
C9—C8—C7118.3 (3)C17—C16—H16118.0
C9—C8—H8120.9C16—C17—C12119.3 (2)
C7—C8—H8120.9C16—C17—H17120.3
C8—C9—F1118.8 (3)C12—C17—H17120.3
C8—C9—C10121.5 (3)
C5—N1—C2—C30.3 (2)C7—C8—C9—C100.0 (4)
C5—N1—C2—C6178.6 (2)C8—C9—C10—C111.1 (4)
N1—C2—C3—N40.9 (2)F1—C9—C10—C11178.5 (2)
C6—C2—C3—N4177.8 (2)C7—C6—C11—C101.6 (3)
N1—C2—C3—C12177.2 (2)C2—C6—C11—C10178.8 (2)
C6—C2—C3—C124.1 (4)C9—C10—C11—C60.2 (4)
C2—C3—N4—C51.2 (2)C2—C3—C12—C13153.7 (2)
C12—C3—N4—C5177.14 (19)N4—C3—C12—C1328.4 (3)
C3—N4—C5—N11.0 (3)C2—C3—C12—C1727.5 (4)
C2—N1—C5—N40.4 (3)N4—C3—C12—C17150.5 (2)
N1—C2—C6—C1137.4 (3)C17—C12—C13—C140.0 (3)
C3—C2—C6—C11144.1 (2)C3—C12—C13—C14178.9 (2)
N1—C2—C6—C7142.3 (2)C12—C13—C14—N151.1 (4)
C3—C2—C6—C736.3 (4)C13—C14—N15—C161.5 (4)
C11—C6—C7—C82.7 (3)C14—N15—C16—C170.9 (4)
C2—C6—C7—C8177.6 (2)N15—C16—C17—C120.1 (4)
C6—C7—C8—C92.0 (4)C13—C12—C17—C160.5 (3)
C7—C8—C9—F1179.6 (2)C3—C12—C17—C16179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N15i0.891.942.815 (3)164
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H10FN3
Mr239.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)193
a, b, c (Å)9.217 (2), 8.1064 (5), 30.665 (5)
V3)2291.1 (6)
Z8
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.54 × 0.20 × 0.13
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2121, 2121, 1707
Rint0.000
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.201, 1.09
No. of reflections2121
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.54

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N15i0.891.942.815 (3)164
Symmetry code: (i) x1, y, z.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationKoch, P., Bäuerlein, C., Jank, H. & Laufer, S. (2008). J. Med. Chem. 51, 5630–5640.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiverton, N. J., Butcher, J. W., Claiborne, C. F., Claremon, D. A., Libby, B. E., Nguyen, K. T., Pitzenberger, S. M., Selnick, H. G., Smith, G. R., Tebben, A., Vacca, J. P., Varga, S. L., Agarwal, L., Dancheck, K., Forsyth, A. J., Fletcher, D. S., Frantz, B., Hanlon, W. A., Harper, C. F., Hofsess, S. J., Kostura, M., Lin, J., Luell, S., O'Neill, E. A., Orevillo, C. J., Pang, M., Parsons, J., Rolando, A., Sahly, Y., Visco, D. M. & O'Keefe, S. J. (1999). J. Med. Chem. 42, 2180–2190.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeifer, C., Wagner, G. & Laufer, S. (2006). Curr. Top. Med. Chem. 6, 113–149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds