metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m296-m297

catena-Poly[bis­­[cis-di­pyrimidine-trans-di­thio­cyanato­iron(II)]-di-μ-pyrimidine-[trans-di­thio­cyanato­iron(II)]-di-μ-pyrimidine]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: mwriedt@ac.uni-kiel.de

(Received 11 February 2009; accepted 16 February 2009; online 21 February 2009)

In the crystal structure of the title compound, [Fe3(NCS)6(C4H4N2)8]n, each iron(II) cation is coordinated by four N-bonded pyrimidine ligands and two N-bonded thio­cyanate anions in a distorted octa­hedral environment. The asymmetric unit consists of one iron cation located on a crystallographic center of inversion, as well as one iron cation, three thio­cyanate anions and four pyrimidine ligands occupying general positions. The structure consists of square secondary building units (SBUs) with an Fe atom at each corner, which are μ-N1:N3-bridged by the pyrimidine ligands. The SBUs are linked into infinite chains running in the c-axis direction via common opposite corners.

Related literature

For related pyrimidine structures, see: Lloret et al. (1998[Lloret, F., Munno, G. D., Julve, M., Cano, J., Ruiz, R. & Caneschi, A. (1998). Angew. Chem. Int. Ed. Engl. 37, 135-138.]); Näther et al. (2007[Näther, C., Bhosekar, G. & Jess, I. (2007). Eur. J. Inorg. Chem. pp. 5353-5359.]); Näther & Jess (2004[Näther, C. & Jess, I. (2004). Eur. J. Inorg. Chem. pp. 2868-2876.]). For general background, see: Näther & Greve (2003[Näther, C. & Greve, J. (2003). J. Solid State Chem. 176, 259-265.]); Näther, Wriedt & Jess (2003[Näther, C., Wriedt, M. & Jess, I. (2003). Inorg. Chem. 42, 2391-2397.]); Wriedt et al. (2008[Wriedt, M., Jess, I. & Näther, C. (2008). Eur. J. Inorg. Chem. pp. 363-372.], 2009[Wriedt, M., Jess, I. & Näther, C. (2009). Eur. J. Inorg. Chem. In the press. ]).

[Scheme 1]

Experimental

Crystal data
  • [Fe3(NCS)6(C4H4N2)8]

  • Mr = 1156.77

  • Monoclinic, P 21 /c

  • a = 18.256 (1) Å

  • b = 16.2855 (9) Å

  • c = 8.2765 (4) Å

  • β = 100.042 (7)°

  • V = 2423.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 170 K

  • 0.12 × 0.10 × 0.07 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.859, Tmax = 0.912

  • 20463 measured reflections

  • 4615 independent reflections

  • 3795 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.124

  • S = 1.13

  • 4615 reflections

  • 314 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—N41 2.075 (3)
Fe1—N51 2.089 (3)
Fe1—N1 2.252 (3)
Fe1—N31 2.254 (3)
Fe1—N21 2.262 (3)
Fe1—N11 2.304 (3)
Fe2—N61 2.075 (3)
Fe2—N61i 2.075 (3)
Fe2—N2 2.252 (3)
Fe2—N2i 2.252 (3)
Fe2—N32ii 2.291 (3)
Fe2—N32iii 2.291 (3)
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x, -y+1, -z+1; (iii) x, y, z+1.

Data collection: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XCIF in SHELXTL.

Supporting information


Comment top

In our ongoing investigation on the syntheses, structures and properties of new coordination polymers based on paramagnetic metal pseudohalides and N-donor ligands, we have demonstrated that new ligand deficient coordination polymers with interesting magnetic interactions can be conveniently prepared by thermal decomposition of suitable ligand rich precursor compounds (Näther & Greve, 2003 and Wriedt et al., 2009). In further investigations we have reacted iron(II) sulfate heptahydrate and potassium thiocyanate with pyrimidine leading to the formation of single crystals of the title compound.

The 3:8 title compound [(Fe(SCN)2)3(µ-pyrimidine)8(pyrimidine)2]n structurally (Fig. 1) represents a chain-like coordination polymer consisting of square SBU's with shared opposite corners as the characteristic motif. Each square SBU contains four iron(II) cations in its corners that are µ-1,3-(N,N') bridged by pyrimidine ligands. The commonly used corner iron cations are located on crystallographic centers of inversion and are each octahedrally coordinated by four bridging pyrimidine ligands and two symmetry related terminal N-bonded thiocyanate anions. The iron cations in general positions are each octahedrally coordinated by two bridging pyrimidine ligands as well as two terminal N-bonded pyrimidine ligands and two terminal N-bonded thiocyanate anions (Fig 2). The Fe—NCS distances amount to 2.075 (3) and 2.089 (3) Å and the Fe—Npyrimidine distances range from 2.252 (3) to 2.304 (3) Å. The angles around the iron cations range from 86.9 (1) to 180.0°. The shortest intra- and interchain Fe···Fe distances measure to 6.2508 (6) and 8.7620 (8)Å, respectively.

Related literature top

For related pyrimidine structures, see: Lloret et al. (1998); Näther et al. (2007); Näther & Jeß (2004). For general background, see: Näther & Greve (2003); Näther, Wriedt & Jeß (2003); Wriedt et al. (2008, 2009).

Experimental top

FeSO4.7H2O and pyrimidine were obtained from Alfa Aesar, KSCN was obtained from Fluka. 0.25 mmol (69.5 mg) FeSO4 × 7 H2O, 0.5 mmol (48.6 mg) KSCN and 9 mmol (720.8 mg) pyrimidine were transfered into a test-tube. In a solvent-free reaction at room temperature without stirring red block-shaped single crystals of the title compound were obtained after 2 weeks.

Refinement top

All H atoms were located from difference map but were positioned with idealized geometry and were refined isotropic with Ueq(H) = 1.2 Ueq(C) of the parent atom using a riding model with C—H = 0.95 Å.

Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the repeating unit of the title compound showing the labelling scheme. Displacement ellipsoids drawn at the 50% probability level. Symmetry codes: i = -x, -y + 1, -z + 2; ii = x, y, z + 1; iii = -x, -y + 1, -z + 1.
[Figure 2] Fig. 2. : Crystal structure of the title compound viewed along the b-axis.
catena-Poly[bis[cis-dipyrimidine-trans- dithiocyanatoiron(II)]-di-µ-pyrimidine-[trans-dithiocyanatoiron(II)]- di-µ-pyrimidine] top
Crystal data top
[Fe3(NCS)6(C4H4N2)8]F(000) = 1176
Mr = 1156.77Dx = 1.586 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8000 reflections
a = 18.256 (1) Åθ = 8.3–27.2°
b = 16.2855 (9) ŵ = 1.20 mm1
c = 8.2765 (4) ÅT = 170 K
β = 100.042 (7)°Block, red
V = 2423.0 (2) Å30.12 × 0.10 × 0.07 mm
Z = 2
Data collection top
Stoe IPDS-1
diffractometer
4615 independent reflections
Radiation source: fine-focus sealed tube3795 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ scansθmax = 26.0°, θmin = 2.6°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
h = 2222
Tmin = 0.859, Tmax = 0.912k = 2020
20463 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0419P)2 + 8.0294P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
4615 reflectionsΔρmax = 0.95 e Å3
314 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (5)
Crystal data top
[Fe3(NCS)6(C4H4N2)8]V = 2423.0 (2) Å3
Mr = 1156.77Z = 2
Monoclinic, P21/cMo Kα radiation
a = 18.256 (1) ŵ = 1.20 mm1
b = 16.2855 (9) ÅT = 170 K
c = 8.2765 (4) Å0.12 × 0.10 × 0.07 mm
β = 100.042 (7)°
Data collection top
Stoe IPDS-1
diffractometer
4615 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
3795 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.912Rint = 0.064
20463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.13Δρmax = 0.95 e Å3
4615 reflectionsΔρmin = 0.41 e Å3
314 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.26416 (3)0.48712 (3)0.61108 (6)0.01115 (16)
Fe20.00000.50001.00000.01002 (18)
N410.26059 (19)0.5829 (2)0.7749 (4)0.0202 (7)
C410.2859 (2)0.6276 (2)0.8790 (5)0.0182 (8)
S410.32547 (8)0.68848 (8)1.02316 (17)0.0418 (4)
N510.26521 (18)0.3912 (2)0.4439 (4)0.0184 (7)
C510.26229 (19)0.3726 (2)0.3063 (5)0.0127 (7)
S510.25824 (6)0.35068 (7)0.11413 (12)0.0241 (3)
N610.00127 (18)0.5933 (2)0.8299 (4)0.0167 (7)
C610.0140 (2)0.6208 (2)0.7072 (5)0.0146 (8)
S610.03129 (7)0.65765 (7)0.53635 (14)0.0292 (3)
N10.17147 (16)0.42202 (19)0.7062 (4)0.0131 (6)
N20.07898 (17)0.42630 (19)0.8767 (4)0.0131 (6)
C10.12769 (19)0.4614 (2)0.7952 (4)0.0130 (7)
H10.13170.51950.80080.016*
C20.0754 (2)0.3440 (2)0.8720 (5)0.0165 (8)
H20.04320.31660.93300.020*
C30.1170 (2)0.2978 (2)0.7813 (5)0.0179 (8)
H30.11330.23970.77680.021*
C40.1643 (2)0.3399 (2)0.6977 (5)0.0164 (8)
H40.19270.30990.63200.020*
N110.36347 (17)0.5483 (2)0.5208 (4)0.0157 (7)
N120.4695 (2)0.6360 (2)0.5800 (5)0.0264 (8)
C110.4082 (2)0.6011 (3)0.6157 (5)0.0212 (9)
H110.39490.61490.71830.025*
C120.4872 (2)0.6144 (3)0.4348 (6)0.0275 (10)
H120.53090.63690.40480.033*
C130.4452 (3)0.5618 (3)0.3286 (6)0.0289 (10)
H130.45840.54820.22580.035*
C140.3827 (2)0.5293 (3)0.3769 (5)0.0231 (9)
H140.35250.49230.30560.028*
N210.34829 (17)0.4171 (2)0.7928 (4)0.0150 (7)
N220.4465 (2)0.4159 (2)1.0257 (5)0.0285 (9)
C210.3925 (2)0.4525 (3)0.9200 (5)0.0216 (9)
H210.38470.50930.93700.026*
C220.4557 (2)0.3357 (3)1.0026 (5)0.0249 (9)
H220.49360.30741.07460.030*
C230.4125 (2)0.2927 (3)0.8790 (5)0.0219 (9)
H230.41910.23540.86580.026*
C240.3587 (2)0.3362 (2)0.7736 (5)0.0150 (8)
H240.32840.30800.68590.018*
N310.19048 (17)0.5567 (2)0.4101 (4)0.0155 (7)
N320.09789 (17)0.56059 (19)0.1687 (4)0.0143 (7)
C310.1369 (2)0.5230 (2)0.2998 (5)0.0151 (8)
H310.12530.46700.31590.018*
C320.1156 (2)0.6395 (2)0.1491 (5)0.0184 (8)
H320.09060.66840.05580.022*
C330.1689 (2)0.6805 (3)0.2591 (6)0.0244 (9)
H330.17990.73680.24480.029*
C340.2051 (2)0.6362 (2)0.3899 (5)0.0203 (9)
H340.24170.66270.46840.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0097 (3)0.0137 (3)0.0102 (3)0.00061 (19)0.0022 (2)0.0013 (2)
Fe20.0084 (3)0.0124 (4)0.0098 (4)0.0004 (3)0.0029 (3)0.0014 (3)
N410.0200 (17)0.0208 (18)0.0212 (18)0.0004 (14)0.0073 (15)0.0038 (14)
C410.0174 (18)0.0167 (19)0.020 (2)0.0057 (15)0.0032 (16)0.0026 (16)
S410.0447 (7)0.0309 (7)0.0414 (7)0.0109 (5)0.0158 (6)0.0206 (6)
N510.0190 (17)0.0198 (17)0.0169 (17)0.0001 (13)0.0047 (14)0.0014 (14)
C510.0103 (16)0.0106 (17)0.0170 (19)0.0005 (13)0.0015 (14)0.0018 (14)
S510.0343 (6)0.0272 (5)0.0112 (5)0.0026 (4)0.0052 (4)0.0027 (4)
N610.0162 (16)0.0181 (17)0.0161 (17)0.0015 (12)0.0035 (13)0.0033 (13)
C610.0127 (17)0.0131 (17)0.0178 (19)0.0037 (14)0.0022 (15)0.0002 (15)
S610.0441 (7)0.0281 (6)0.0189 (5)0.0067 (5)0.0147 (5)0.0085 (4)
N10.0085 (14)0.0158 (16)0.0155 (15)0.0002 (11)0.0034 (12)0.0004 (12)
N20.0114 (14)0.0153 (15)0.0132 (15)0.0004 (12)0.0039 (12)0.0001 (12)
C10.0110 (16)0.0159 (18)0.0126 (17)0.0012 (14)0.0035 (14)0.0007 (14)
C20.0151 (18)0.0142 (18)0.022 (2)0.0018 (14)0.0075 (16)0.0016 (15)
C30.0166 (18)0.0114 (17)0.026 (2)0.0026 (14)0.0042 (16)0.0024 (15)
C40.0124 (17)0.0175 (19)0.020 (2)0.0009 (14)0.0039 (15)0.0038 (15)
N110.0107 (14)0.0210 (17)0.0153 (16)0.0021 (12)0.0015 (13)0.0017 (13)
N120.0231 (18)0.032 (2)0.027 (2)0.0136 (15)0.0106 (16)0.0069 (16)
C110.0184 (19)0.026 (2)0.021 (2)0.0072 (16)0.0072 (17)0.0056 (16)
C120.024 (2)0.038 (3)0.024 (2)0.0139 (19)0.0140 (18)0.0027 (19)
C130.028 (2)0.040 (3)0.021 (2)0.012 (2)0.0124 (19)0.0024 (19)
C140.024 (2)0.031 (2)0.015 (2)0.0097 (17)0.0052 (17)0.0062 (17)
N210.0131 (15)0.0181 (16)0.0139 (15)0.0007 (12)0.0026 (13)0.0022 (13)
N220.0267 (19)0.026 (2)0.0274 (19)0.0014 (15)0.0108 (16)0.0036 (16)
C210.025 (2)0.021 (2)0.0167 (19)0.0001 (16)0.0026 (17)0.0009 (16)
C220.021 (2)0.027 (2)0.026 (2)0.0033 (17)0.0006 (18)0.0084 (18)
C230.022 (2)0.022 (2)0.021 (2)0.0063 (16)0.0013 (17)0.0055 (16)
C240.0157 (18)0.0183 (19)0.0114 (18)0.0018 (14)0.0036 (15)0.0022 (14)
N310.0115 (15)0.0181 (16)0.0163 (16)0.0014 (12)0.0011 (13)0.0007 (13)
N320.0116 (15)0.0154 (16)0.0156 (16)0.0005 (12)0.0012 (13)0.0015 (12)
C310.0112 (17)0.0169 (18)0.0165 (18)0.0004 (14)0.0010 (15)0.0004 (15)
C320.0155 (18)0.0185 (19)0.020 (2)0.0003 (15)0.0008 (16)0.0061 (15)
C330.023 (2)0.017 (2)0.031 (2)0.0046 (16)0.0027 (18)0.0032 (17)
C340.0185 (19)0.020 (2)0.020 (2)0.0045 (15)0.0032 (16)0.0030 (16)
Geometric parameters (Å, º) top
Fe1—N412.075 (3)N12—C111.334 (5)
Fe1—N512.089 (3)N12—C121.344 (6)
Fe1—N12.252 (3)C11—H110.9500
Fe1—N312.254 (3)C12—C131.364 (6)
Fe1—N212.262 (3)C12—H120.9500
Fe1—N112.304 (3)C13—C141.378 (6)
Fe2—N612.075 (3)C13—H130.9500
Fe2—N61i2.075 (3)C14—H140.9500
Fe2—N22.252 (3)N21—C211.340 (5)
Fe2—N2i2.252 (3)N21—C241.345 (5)
Fe2—N32ii2.291 (3)N22—C221.334 (6)
Fe2—N32iii2.291 (3)N22—C211.339 (5)
N41—C411.161 (5)C21—H210.9500
C41—S411.621 (4)C22—C231.371 (6)
N51—C511.171 (5)C22—H220.9500
C51—S511.619 (4)C23—C241.388 (5)
N61—C611.169 (5)C23—H230.9500
C61—S611.618 (4)C24—H240.9500
N1—C11.341 (5)N31—C311.335 (5)
N1—C41.344 (5)N31—C341.338 (5)
N2—C11.335 (5)N32—C311.338 (5)
N2—C21.343 (5)N32—C321.343 (5)
C1—H10.9500N32—Fe2iv2.291 (3)
C2—C31.380 (6)C31—H310.9500
C2—H20.9500C32—C331.382 (6)
C3—C41.379 (6)C32—H320.9500
C3—H30.9500C33—C341.372 (6)
C4—H40.9500C33—H330.9500
N11—C141.336 (5)C34—H340.9500
N11—C111.342 (5)
N41—Fe1—N51178.69 (13)N1—C4—H4118.9
N41—Fe1—N190.82 (13)C3—C4—H4118.9
N51—Fe1—N188.50 (12)C14—N11—C11116.2 (3)
N41—Fe1—N3191.24 (13)C14—N11—Fe1122.3 (3)
N51—Fe1—N3187.72 (12)C11—N11—Fe1121.4 (3)
N1—Fe1—N3196.10 (11)C11—N12—C12115.4 (4)
N41—Fe1—N2192.26 (13)N12—C11—N11126.3 (4)
N51—Fe1—N2188.85 (12)N12—C11—H11116.8
N1—Fe1—N2189.70 (11)N11—C11—H11116.8
N31—Fe1—N21173.18 (12)N12—C12—C13123.0 (4)
N41—Fe1—N1190.18 (13)N12—C12—H12118.5
N51—Fe1—N1190.56 (13)C13—C12—H12118.5
N1—Fe1—N11176.83 (11)C12—C13—C14117.1 (4)
N31—Fe1—N1186.88 (11)C12—C13—H13121.5
N21—Fe1—N1187.25 (11)C14—C13—H13121.5
N61—Fe2—N61i180.000 (1)N11—C14—C13122.0 (4)
N61—Fe2—N289.96 (12)N11—C14—H14119.0
N61i—Fe2—N290.04 (12)C13—C14—H14119.0
N61—Fe2—N2i90.04 (12)C21—N21—C24115.9 (3)
N61i—Fe2—N2i89.96 (12)C21—N21—Fe1123.5 (3)
N2—Fe2—N2i180.000 (1)C24—N21—Fe1120.6 (2)
N61—Fe2—N32ii90.10 (12)C22—N22—C21116.0 (4)
N61i—Fe2—N32ii89.90 (12)N22—C21—N21126.6 (4)
N2—Fe2—N32ii89.27 (11)N22—C21—H21116.7
N2i—Fe2—N32ii90.73 (11)N21—C21—H21116.7
N61—Fe2—N32iii89.90 (12)N22—C22—C23122.4 (4)
N61i—Fe2—N32iii90.10 (12)N22—C22—H22118.8
N2—Fe2—N32iii90.73 (11)C23—C22—H22118.8
N2i—Fe2—N32iii89.27 (11)C22—C23—C24117.4 (4)
N32ii—Fe2—N32iii180.000 (1)C22—C23—H23121.3
C41—N41—Fe1154.5 (3)C24—C23—H23121.3
N41—C41—S41177.0 (4)N21—C24—C23121.6 (4)
C51—N51—Fe1146.5 (3)N21—C24—H24119.2
N51—C51—S51177.7 (3)C23—C24—H24119.2
C61—N61—Fe2153.7 (3)C31—N31—C34116.8 (3)
N61—C61—S61179.3 (4)C31—N31—Fe1124.8 (3)
C1—N1—C4116.2 (3)C34—N31—Fe1118.2 (2)
C1—N1—Fe1121.5 (2)C31—N32—C32115.6 (3)
C4—N1—Fe1121.5 (3)C31—N32—Fe2iv123.0 (3)
C1—N2—C2116.5 (3)C32—N32—Fe2iv121.2 (2)
C1—N2—Fe2122.4 (2)N31—C31—N32126.1 (4)
C2—N2—Fe2120.9 (3)N31—C31—H31117.0
N2—C1—N1125.9 (3)N32—C31—H31117.0
N2—C1—H1117.1N32—C32—C33122.7 (4)
N1—C1—H1117.1N32—C32—H32118.7
N2—C2—C3122.1 (4)C33—C32—H32118.7
N2—C2—H2119.0C34—C33—C32116.9 (4)
C3—C2—H2119.0C34—C33—H33121.6
C4—C3—C2117.0 (4)C32—C33—H33121.6
C4—C3—H3121.5N31—C34—C33121.9 (4)
C2—C3—H3121.5N31—C34—H34119.0
N1—C4—C3122.2 (4)C33—C34—H34119.0
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formula[Fe3(NCS)6(C4H4N2)8]
Mr1156.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)170
a, b, c (Å)18.256 (1), 16.2855 (9), 8.2765 (4)
β (°) 100.042 (7)
V3)2423.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.12 × 0.10 × 0.07
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe, 2008)
Tmin, Tmax0.859, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
20463, 4615, 3795
Rint0.064
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.124, 1.13
No. of reflections4615
No. of parameters314
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.41

Computer programs: X-AREA (Stoe, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), XCIF in SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Fe1—N412.075 (3)Fe2—N612.075 (3)
Fe1—N512.089 (3)Fe2—N61i2.075 (3)
Fe1—N12.252 (3)Fe2—N22.252 (3)
Fe1—N312.254 (3)Fe2—N2i2.252 (3)
Fe1—N212.262 (3)Fe2—N32ii2.291 (3)
Fe1—N112.304 (3)Fe2—N32iii2.291 (3)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1, z+1; (iii) x, y, z+1.
 

Acknowledgements

MW thanks the Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie and the Studienstiftung des deutschen Volkes" for a PhD scholarship. Moreover, we gratefully acknowledge financial support by the State of Schleswig-Holstein and we thank Professor Dr. Wolfgang Bensch for the opportunity to use his experimental facility.

References

First citationLloret, F., Munno, G. D., Julve, M., Cano, J., Ruiz, R. & Caneschi, A. (1998). Angew. Chem. Int. Ed. Engl. 37, 135–138.  CrossRef CAS Google Scholar
First citationNäther, C., Bhosekar, G. & Jess, I. (2007). Eur. J. Inorg. Chem. pp. 5353–5359.  Google Scholar
First citationNäther, C. & Greve, J. (2003). J. Solid State Chem. 176, 259–265.  Google Scholar
First citationNäther, C. & Jess, I. (2004). Eur. J. Inorg. Chem. pp. 2868–2876.  Google Scholar
First citationNäther, C., Wriedt, M. & Jess, I. (2003). Inorg. Chem. 42, 2391–2397.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWriedt, M., Jess, I. & Näther, C. (2008). Eur. J. Inorg. Chem. pp. 363–372.  Google Scholar
First citationWriedt, M., Jess, I. & Näther, C. (2009). Eur. J. Inorg. Chem. In the press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m296-m297
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds