organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o501-o502

4-(9-Anthr­yl)-1-phenylspiro­[azetidine-3,9′-xanthen]-2-one

aDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 4 February 2009; accepted 5 February 2009; online 11 February 2009)

The β-lactam ring of the title compound, C35H23NO2, is nearly planar with a maximum deviation of 0.003 (3) Å from the mean plane. It makes dihedral angles of 17.4 (2), 85.22 (17) and 65.39 (16)°, respectively, with the phenyl, xanthene and anthracene ring systems. In the crystal structure, there are intra­molecular C—H⋯O and C—H⋯N contacts and mol­ecules are also linked by C—H⋯π inter­actions.

Related literature

For general background on β-lactam anti­biotics, see: Banik et al. (2003[Banik, I., Becker, F. F. & Banik, B. K. (2003). J. Med. Chem. 46, 12-15.]); Jarrahpour & Khalili (2007[Jarrahpour, A. & Khalili, D. (2007). Tetrahedron Lett. 48, 7140-7143.]); Miller (2000[Miller, M. J. (2000). Tetrahedron, 56, 5553-5742.]); Palomo et al. (2004[Palomo, C., Aizpurua, J. M., Ganboa, I. & Oiarbide, M. (2004). Curr. Med. Chem. 11, 1837-1872.]). For the crystal structures of related compounds, see: Akkurt, Jarrahpour et al. (2008[Akkurt, M., Jarrahpour, A., Ebrahimi, E., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2466-o2467.]); Akkurt, Karaca et al. (2008[Akkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008). Acta Cryst. E64, o902-o903.]); Pınar et al. (2006[Pınar, S., Akkurt, M., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o804-o806.]). For geometric analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C35H23NO2

  • Mr = 489.54

  • Monoclinic, P 21 /c

  • a = 13.6906 (8) Å

  • b = 13.3085 (7) Å

  • c = 17.3527 (10) Å

  • β = 127.548 (4)°

  • V = 2506.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 (2) K

  • 0.24 × 0.18 × 0.14 mm

Data collection
  • STOE IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.981, Tmax = 0.989

  • 19631 measured reflections

  • 5191 independent reflections

  • 2442 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.110

  • S = 0.90

  • 5191 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1 0.93 2.28 2.964 (4) 130
C31—H31⋯O2 0.93 2.48 3.092 (3) 124
C3—H3⋯Cg1i 0.93 2.86 3.601 (3) 138
C11—H11⋯Cg2ii 0.93 2.63 3.543 (3) 166
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1. Cg1 and Cg2 are the centroids of the benzene ring (C8–C13) and phenyl ring (C30–C35), respectively.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The stereo selective synthesis of β-lactams has received considerable attention over recent years because of their wide variety of biological activities (Miller, 2000), in particular, asymmetric synthesis by means of a Staudinger ketene–imine reaction has been extensively studied (Palomo et al., 2004). Several syntheses of spiro-β-lactams are available in the literature (Jarrahpour & Khalili, 2007; Pınar et al., 2006; Akkurt, Jarrahpour et al., 2008; Akkurt, Karaca et al., 2008). The synthesis of polycyclic aromatic β-lactams from polyaromatic imines have been reported in literature (Banik et al., 2003).

The β-lactam unit in (I) (Fig. 1) is essentially planar, with a maximum deviation of 0.003 (3) Å from the mean plane. The β-lactam ring makes a dihedral angle of 17.4 (2)° with the phenyl ring C30—C35. In the xanthene ring system, attached at C16, the benzene rings (C17–C22) and (C23–C28) are almost planar, the dihedral angle between them 17.20 (14)°. Its central ring, C16/C17/C22/O1/C23/C28, is not planar, with puckering parameters: QT = 0.247 (3) Å, θ = 98.9 (7)° and ϕ = 355.1 (7)° (Cremer & Pople, 1975). The mean plane of the xanthene ring system forms the dihedral angles of 85.22 (17) and 85.62 (13)°, with the β-lactam ring and the phenyl ring, respectively. The anthracene ring system, attached at C15, is almost planar, with maximum deviations of 0.041 (2) Å for C1, -0.049 (3) Å for C4 and, -0.067 (2) Å for C13, makes dihedral angle of 65.39 (16), 80.60 (13) and 56.63 (8)°, with the β-lactam, the phenyl and the mean plane of the xanthene ring system, respectively.

In the crystal structure, there are intramolecular C—H···O and C—H···N contacts and molecules are linked to each other by C—H···π interactions between the adjacent molecules (Table 1 and Fig. 2) [Cg1 and Cg2 are the centroids of the benzene ring (C8–C13) and phenyl ring (C30–C35), respectively].

Related literature top

For general background on β-lactam antibiotics, see: Banik et al. (2003); Jarrahpour & Khalili (2007); Miller (2000); Palomo et al. (2004). For the crystal structures of related compounds, see: Akkurt, Jarrahpour et al. (2008); Akkurt, Karaca et al. (2008); Pınar et al. (2006). For geometric analysis, see: Cremer & Pople (1975). Cg1 and Cg2 are the centroids of the benzene ring (C8–C13) and phenyl ring (C30–C35), respectively

Experimental top

A mixture of (E)—N-(antheracen-9-ylmethylene)aniline (0.30 g, 1.07 mmol) and triethylamine (0.73 g, 7.21 mmol), 9H-xanthen-9-carboxylic acid (0.49 g, 2.17 mmol) and tosyl chloride (0.42 g, 2.20 mmol) in CH2Cl2 (15 ml) was stirred at room temperature for 24 h. Then it was washed with HCl 1 N (20 ml) and saturated sodiumbicarbonate solution (20 ml), brine (20 ml), dried (Na2SO4) and the solvent was evaporated to give the crude product as a light yellow crystal which was then purified by recrystallization from ethyl acetate (Yield 63%). dec: 511–513 K. IR (KBr, cm-1): 1758 (CO β-lactam). 1H-NMR δ (p.p.m.): 6.34 (s, 1H, 4), 6.51–8.83 (m, ArH, 22H).13C-NMR δ (p.p.m.): 65.6 (C-3), 75.4 (C-4), 115.9–152.0 (aromatic carbon), 167.5 (CO β-lactam). Analysis calculated for C35H23NO2: C 85.87, H 4.74, N 2.86%. Found: C 85.87, H 4.74, N 2.86%.

Refinement top

The H atoms were positioned geometrically and refined a riding model, with the C—H = 0.93 and 0.98 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecular structure, with the atom-numbering scheme and 30% probability displacement ellipsoids
[Figure 2] Fig. 2. A view down the b axis of the packing of (I).
4-(9-Anthryl)-1-phenylspiro[azetidine-3,9'-xanthen]-2-one top
Crystal data top
C35H23NO2F(000) = 1024
Mr = 489.54Dx = 1.297 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12888 reflections
a = 13.6906 (8) Åθ = 1.5–28.1°
b = 13.3085 (7) ŵ = 0.08 mm1
c = 17.3527 (10) ÅT = 295 K
β = 127.548 (4)°Block, colourless
V = 2506.7 (3) Å30.24 × 0.18 × 0.14 mm
Z = 4
Data collection top
STOE IPDS 2
diffractometer
5191 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2442 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.067
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.9°
ω scansh = 1717
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1616
Tmin = 0.981, Tmax = 0.989l = 2121
19631 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0406P)2]
where P = (Fo2 + 2Fc2)/3
5191 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C35H23NO2V = 2506.7 (3) Å3
Mr = 489.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.6906 (8) ŵ = 0.08 mm1
b = 13.3085 (7) ÅT = 295 K
c = 17.3527 (10) Å0.24 × 0.18 × 0.14 mm
β = 127.548 (4)°
Data collection top
STOE IPDS 2
diffractometer
5191 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2442 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.989Rint = 0.067
19631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 0.90Δρmax = 0.23 e Å3
5191 reflectionsΔρmin = 0.13 e Å3
343 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26666 (17)0.35613 (13)0.18443 (13)0.0741 (7)
O20.23966 (18)0.72931 (13)0.19798 (13)0.0792 (7)
N10.26629 (17)0.67174 (14)0.33789 (13)0.0537 (7)
C10.0819 (2)0.54484 (18)0.34789 (15)0.0537 (8)
C20.0287 (2)0.6401 (2)0.30421 (17)0.0654 (9)
C30.0826 (3)0.6684 (2)0.27919 (19)0.0782 (11)
C40.1483 (3)0.6065 (3)0.2989 (2)0.0925 (13)
C50.1006 (3)0.5181 (3)0.3433 (2)0.0852 (11)
C60.0134 (2)0.4829 (2)0.36802 (18)0.0630 (9)
C70.0576 (2)0.3892 (2)0.40911 (19)0.0727 (11)
C80.1641 (2)0.34938 (19)0.42885 (16)0.0587 (9)
C90.2069 (3)0.2516 (2)0.46931 (19)0.0748 (11)
C100.3073 (3)0.2113 (2)0.4844 (2)0.0771 (11)
C110.3703 (2)0.2655 (2)0.45823 (18)0.0697 (10)
C120.3355 (2)0.35957 (19)0.42191 (16)0.0577 (9)
C130.23202 (19)0.40766 (18)0.40696 (15)0.0509 (8)
C140.19341 (19)0.50727 (18)0.37026 (14)0.0495 (8)
C150.2778 (2)0.56287 (16)0.35636 (15)0.0500 (8)
C160.2588 (2)0.54946 (17)0.25569 (15)0.0521 (8)
C170.1450 (2)0.49372 (19)0.17648 (15)0.0547 (8)
C180.0275 (2)0.5320 (2)0.13170 (17)0.0684 (10)
C190.0758 (2)0.4769 (3)0.06386 (19)0.0788 (13)
C200.0634 (3)0.3830 (3)0.03877 (19)0.0809 (13)
C210.0515 (3)0.3438 (2)0.08025 (18)0.0739 (11)
C220.1546 (2)0.3999 (2)0.14835 (17)0.0590 (9)
C230.3694 (2)0.4171 (2)0.23285 (17)0.0615 (9)
C240.4717 (3)0.3782 (2)0.24527 (19)0.0751 (11)
C250.5788 (3)0.4324 (3)0.2946 (2)0.0833 (13)
C260.5831 (3)0.5262 (3)0.3300 (2)0.0841 (13)
C270.4806 (2)0.5649 (2)0.31657 (18)0.0710 (10)
C280.3711 (2)0.51099 (19)0.26791 (16)0.0556 (9)
C290.2507 (2)0.66467 (19)0.25206 (17)0.0577 (9)
C300.3017 (2)0.75205 (18)0.40329 (16)0.0544 (8)
C310.3090 (2)0.8482 (2)0.3781 (2)0.0703 (10)
C320.3526 (3)0.9250 (2)0.4456 (2)0.0847 (11)
C330.3860 (2)0.9052 (2)0.5366 (2)0.0820 (11)
C340.3757 (2)0.8104 (2)0.56045 (19)0.0736 (10)
C350.3336 (2)0.7321 (2)0.49401 (17)0.0630 (9)
H20.071300.683800.292600.0780*
H30.116000.729900.248500.0940*
H40.224500.626900.281200.1110*
H50.143000.478700.358400.1020*
H70.014200.351300.424100.0870*
H90.164300.214700.485700.0900*
H100.334500.147800.512000.0920*
H110.437500.236400.466000.0840*
H120.380300.394000.406200.0690*
H150.363400.547100.410600.0600*
H180.018400.596100.147900.0820*
H190.153800.503500.035100.0950*
H200.133200.345500.006600.0970*
H210.059900.280200.062700.0890*
H240.467900.315200.220200.0900*
H250.648300.406100.304200.1000*
H260.655500.563500.363100.1010*
H270.484600.628500.340600.0850*
H310.284800.861600.316000.0840*
H320.359300.989900.429400.1020*
H330.415700.956700.582000.0980*
H340.397000.797800.621700.0880*
H350.327100.667400.510500.0760*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0753 (12)0.0664 (12)0.0832 (12)0.0113 (10)0.0496 (10)0.0175 (10)
O20.1112 (14)0.0678 (12)0.0720 (11)0.0093 (11)0.0628 (11)0.0030 (10)
N10.0632 (12)0.0525 (13)0.0528 (11)0.0055 (10)0.0392 (10)0.0030 (9)
C10.0527 (13)0.0623 (16)0.0490 (13)0.0030 (12)0.0325 (11)0.0062 (11)
C20.0601 (15)0.0730 (19)0.0648 (15)0.0042 (14)0.0390 (13)0.0026 (14)
C30.0683 (18)0.091 (2)0.0712 (17)0.0159 (16)0.0404 (15)0.0006 (15)
C40.0645 (18)0.115 (3)0.109 (2)0.009 (2)0.0585 (19)0.008 (2)
C50.0673 (18)0.097 (2)0.114 (2)0.0050 (17)0.0669 (18)0.009 (2)
C60.0554 (14)0.0742 (19)0.0702 (15)0.0046 (13)0.0438 (13)0.0050 (14)
C70.0760 (18)0.080 (2)0.0831 (18)0.0110 (16)0.0593 (16)0.0021 (16)
C80.0619 (15)0.0625 (17)0.0603 (15)0.0054 (13)0.0417 (13)0.0004 (12)
C90.090 (2)0.0675 (19)0.0786 (18)0.0088 (16)0.0574 (17)0.0034 (15)
C100.0818 (19)0.0644 (18)0.0797 (19)0.0027 (16)0.0465 (17)0.0099 (14)
C110.0612 (16)0.0695 (19)0.0721 (17)0.0044 (14)0.0373 (14)0.0034 (15)
C120.0494 (13)0.0633 (17)0.0566 (14)0.0037 (12)0.0303 (12)0.0012 (12)
C130.0504 (13)0.0579 (15)0.0438 (12)0.0076 (11)0.0284 (11)0.0050 (10)
C140.0453 (12)0.0620 (16)0.0435 (11)0.0075 (11)0.0283 (10)0.0055 (11)
C150.0499 (12)0.0560 (15)0.0490 (12)0.0044 (11)0.0326 (11)0.0024 (11)
C160.0563 (14)0.0564 (15)0.0499 (12)0.0076 (12)0.0356 (11)0.0034 (11)
C170.0561 (14)0.0660 (17)0.0474 (12)0.0059 (12)0.0343 (12)0.0012 (12)
C180.0636 (17)0.0830 (19)0.0585 (15)0.0028 (15)0.0371 (14)0.0002 (14)
C190.0594 (17)0.108 (3)0.0619 (16)0.0105 (17)0.0333 (14)0.0050 (16)
C200.0683 (19)0.111 (3)0.0595 (16)0.0346 (19)0.0369 (15)0.0147 (17)
C210.087 (2)0.079 (2)0.0657 (17)0.0253 (17)0.0517 (16)0.0161 (14)
C220.0625 (15)0.0657 (18)0.0586 (14)0.0086 (14)0.0420 (13)0.0053 (13)
C230.0639 (16)0.0690 (18)0.0574 (14)0.0034 (14)0.0400 (13)0.0035 (13)
C240.0736 (18)0.089 (2)0.0699 (17)0.0089 (17)0.0474 (16)0.0057 (15)
C250.0657 (18)0.121 (3)0.0718 (18)0.0061 (18)0.0463 (16)0.0052 (18)
C260.0598 (17)0.125 (3)0.0759 (18)0.0160 (18)0.0457 (15)0.0142 (18)
C270.0675 (17)0.089 (2)0.0688 (16)0.0162 (15)0.0479 (14)0.0145 (14)
C280.0586 (15)0.0649 (17)0.0520 (13)0.0072 (13)0.0382 (12)0.0052 (12)
C290.0640 (15)0.0623 (17)0.0534 (14)0.0100 (13)0.0392 (12)0.0027 (12)
C300.0539 (14)0.0546 (16)0.0584 (14)0.0032 (12)0.0361 (12)0.0080 (12)
C310.0794 (18)0.0630 (18)0.0679 (16)0.0004 (14)0.0446 (15)0.0034 (14)
C320.093 (2)0.0632 (19)0.095 (2)0.0005 (16)0.0558 (18)0.0113 (17)
C330.0748 (19)0.075 (2)0.081 (2)0.0019 (16)0.0397 (17)0.0241 (17)
C340.0698 (17)0.081 (2)0.0609 (16)0.0058 (16)0.0352 (14)0.0108 (15)
C350.0648 (15)0.0661 (17)0.0597 (15)0.0032 (13)0.0387 (13)0.0061 (13)
Geometric parameters (Å, º) top
O1—C221.384 (4)C23—C281.384 (4)
O1—C231.379 (4)C24—C251.369 (5)
O2—C291.213 (3)C25—C261.377 (6)
N1—C151.472 (3)C26—C271.375 (6)
N1—C291.373 (3)C27—C281.390 (4)
N1—C301.412 (3)C30—C311.375 (4)
C1—C21.428 (4)C30—C351.379 (3)
C1—C61.442 (4)C31—C321.386 (4)
C1—C141.417 (4)C32—C331.376 (4)
C2—C31.359 (5)C33—C341.362 (4)
C3—C41.407 (6)C34—C351.392 (4)
C4—C51.338 (5)C2—H20.9300
C5—C61.422 (6)C3—H30.9300
C6—C71.380 (4)C4—H40.9300
C7—C81.384 (5)C5—H50.9300
C8—C91.424 (4)C7—H70.9300
C8—C131.429 (4)C9—H90.9300
C9—C101.344 (6)C10—H100.9300
C10—C111.396 (5)C11—H110.9300
C11—C121.351 (4)C12—H120.9300
C12—C131.427 (4)C15—H150.9800
C13—C141.426 (3)C18—H180.9300
C14—C151.510 (4)C19—H190.9300
C15—C161.612 (3)C20—H200.9300
C16—C171.502 (3)C21—H210.9300
C16—C281.508 (4)C24—H240.9300
C16—C291.536 (3)C25—H250.9300
C17—C181.388 (4)C26—H260.9300
C17—C221.376 (4)C27—H270.9300
C18—C191.376 (4)C31—H310.9300
C19—C201.368 (6)C32—H320.9300
C20—C211.373 (6)C33—H330.9300
C21—C221.383 (4)C34—H340.9300
C23—C241.381 (5)C35—H350.9300
O2···C273.410 (4)C29···H312.7700
O2···C313.092 (3)C29···H22.9500
O2···H312.4800C30···H22.6600
O2···H25i2.8200C30···H11iv2.8400
O2···H20ii2.8700C31···H11iv3.0300
N1···C22.964 (4)C33···H19iii2.9200
N1···H22.2800C33···H11iv3.0900
C1···C183.354 (3)C34···H20iii2.8900
C2···C303.363 (4)C34···H11iv2.9300
C2···N12.964 (4)C35···H153.0100
C2···C183.312 (4)C35···H11iv2.8000
C3···C21iii3.212 (4)H2···N12.2800
C4···C21iii3.569 (5)H2···C152.8300
C11···C30iv3.584 (4)H2···C292.9500
C12···C163.481 (3)H2···C302.6600
C13···C173.594 (3)H2···H182.4400
C14···C353.496 (3)H3···C21iii2.9500
C14···C183.308 (3)H5···H72.4100
C16···C123.481 (3)H5···H25vii2.5900
C17···C20ii3.579 (4)H7···H52.4100
C17···C133.594 (3)H7···H92.4500
C18···C20ii3.470 (5)H9···H72.4500
C18···C23.312 (4)H9···C21viii2.9600
C18···C13.354 (3)H9···H21viii2.4800
C18···C21ii3.547 (4)H11···C30iv2.8400
C18···C143.308 (3)H11···C31iv3.0300
C19···C22ii3.546 (4)H11···C33iv3.0900
C20···C17ii3.579 (4)H11···C34iv2.9300
C20···C18ii3.470 (5)H11···C35iv2.8000
C21···C18ii3.547 (4)H12···C152.5100
C21···C3v3.212 (4)H12···C162.9300
C21···C4v3.569 (5)H12···C232.9400
C22···C19ii3.546 (4)H12···C282.8000
C27···O23.410 (4)H12···H152.0600
C30···C23.363 (4)H15···C122.5500
C30···C11iv3.584 (4)H15···C272.9100
C31···O23.092 (3)H15···C353.0100
C35···C143.496 (3)H15···H122.0600
C1···H183.1000H18···C13.1000
C2···H182.6900H18···C22.6900
C3···H21iii2.9700H18···C292.6800
C4···H21iii3.0100H18···H22.4400
C12···H152.5500H19···C33v2.9200
C14···H352.9000H20···C34v2.8900
C15···H122.5100H20···O2ii2.8700
C15···H22.8300H21···C3v2.9700
C15···H352.7100H21···C4v3.0100
C16···H122.9300H21···H9vi2.4800
C21···H3v2.9500H25···H5ix2.5900
C21···H9vi2.9600H25···O2x2.8200
C23···H122.9400H27···C292.6200
C24···H34iv3.0000H31···O22.4800
C25···H35iv3.0900H31···C292.7700
C27···H152.9100H34···C24iv3.0000
C28···H122.8000H35···C142.9000
C29···H272.6200H35···C152.7100
C29···H182.6800H35···C25iv3.0900
C22—O1—C23117.8 (2)O2—C29—C16135.4 (2)
C15—N1—C2995.39 (18)N1—C29—C1693.69 (19)
C15—N1—C30129.15 (18)N1—C30—C31120.3 (2)
C29—N1—C30132.4 (2)N1—C30—C35119.1 (2)
C2—C1—C6116.1 (3)C31—C30—C35120.5 (2)
C2—C1—C14125.1 (3)C30—C31—C32119.7 (3)
C6—C1—C14118.9 (2)C31—C32—C33120.0 (3)
C1—C2—C3121.7 (3)C32—C33—C34120.2 (3)
C2—C3—C4121.2 (3)C33—C34—C35120.6 (3)
C3—C4—C5119.7 (4)C30—C35—C34119.0 (2)
C4—C5—C6121.6 (4)C1—C2—H2119.00
C1—C6—C5119.6 (3)C3—C2—H2119.00
C1—C6—C7119.8 (3)C2—C3—H3119.00
C5—C6—C7120.6 (3)C4—C3—H3119.00
C6—C7—C8122.6 (3)C3—C4—H4120.00
C7—C8—C9121.8 (3)C5—C4—H4120.00
C7—C8—C13119.0 (2)C4—C5—H5119.00
C9—C8—C13119.2 (3)C6—C5—H5119.00
C8—C9—C10121.7 (3)C6—C7—H7119.00
C9—C10—C11119.5 (3)C8—C7—H7119.00
C10—C11—C12121.2 (3)C8—C9—H9119.00
C11—C12—C13122.0 (3)C10—C9—H9119.00
C8—C13—C12116.3 (2)C9—C10—H10120.00
C8—C13—C14120.0 (3)C11—C10—H10120.00
C12—C13—C14123.7 (3)C10—C11—H11119.00
C1—C14—C13119.7 (3)C12—C11—H11119.00
C1—C14—C15125.8 (2)C11—C12—H12119.00
C13—C14—C15114.6 (2)C13—C12—H12119.00
N1—C15—C14121.8 (2)N1—C15—H15109.00
N1—C15—C1687.01 (16)C14—C15—H15109.00
C14—C15—C16119.02 (19)C16—C15—H15109.00
C15—C16—C17116.0 (2)C17—C18—H18119.00
C15—C16—C28114.08 (19)C19—C18—H18119.00
C15—C16—C2983.91 (17)C18—C19—H19120.00
C17—C16—C28111.2 (2)C20—C19—H19120.00
C17—C16—C29116.5 (2)C19—C20—H20120.00
C28—C16—C29112.8 (2)C21—C20—H20120.00
C16—C17—C18122.2 (2)C20—C21—H21120.00
C16—C17—C22120.2 (3)C22—C21—H21120.00
C18—C17—C22117.6 (2)C23—C24—H24120.00
C17—C18—C19121.3 (3)C25—C24—H24120.00
C18—C19—C20119.8 (3)C24—C25—H25120.00
C19—C20—C21120.4 (3)C26—C25—H25120.00
C20—C21—C22119.3 (3)C25—C26—H26120.00
O1—C22—C17122.8 (2)C27—C26—H26120.00
O1—C22—C21115.6 (3)C26—C27—H27119.00
C17—C22—C21121.6 (3)C28—C27—H27119.00
O1—C23—C24115.8 (2)C30—C31—H31120.00
O1—C23—C28122.5 (3)C32—C31—H31120.00
C24—C23—C28121.7 (3)C31—C32—H32120.00
C23—C24—C25119.9 (3)C33—C32—H32120.00
C24—C25—C26119.7 (4)C32—C33—H33120.00
C25—C26—C27120.2 (4)C34—C33—H33120.00
C26—C27—C28121.4 (3)C33—C34—H34120.00
C16—C28—C23120.2 (3)C35—C34—H34120.00
C16—C28—C27122.7 (2)C30—C35—H35120.00
C23—C28—C27117.1 (3)C34—C35—H35121.00
O2—C29—N1130.9 (2)
C23—O1—C22—C21164.1 (2)N1—C15—C16—C290.4 (2)
C22—O1—C23—C24163.8 (2)C14—C15—C16—C178.8 (3)
C22—O1—C23—C2816.9 (3)N1—C15—C16—C17116.2 (2)
C23—O1—C22—C1714.8 (4)N1—C15—C16—C28112.6 (2)
C29—N1—C30—C3110.4 (5)C14—C15—C16—C29125.4 (2)
C29—N1—C30—C35167.0 (3)C14—C15—C16—C28122.3 (2)
C29—N1—C15—C160.5 (2)C29—C16—C28—C2729.6 (3)
C15—N1—C30—C3512.0 (5)C29—C16—C28—C23152.6 (2)
C30—N1—C15—C1475.2 (4)C15—C16—C28—C2763.9 (3)
C15—N1—C29—C160.5 (2)C15—C16—C29—O2177.0 (4)
C30—N1—C15—C16162.2 (3)C15—C16—C28—C23113.9 (2)
C29—N1—C15—C14123.1 (2)C28—C16—C17—C18160.8 (2)
C30—N1—C29—C16161.3 (3)C28—C16—C17—C2221.6 (3)
C15—N1—C30—C31165.4 (3)C29—C16—C17—C1829.7 (4)
C15—N1—C29—O2177.1 (4)C29—C16—C17—C22152.7 (3)
C30—N1—C29—O216.3 (6)C15—C16—C17—C1866.7 (3)
C2—C1—C14—C13175.2 (2)C17—C16—C28—C2319.6 (3)
C2—C1—C6—C7179.2 (2)C17—C16—C28—C27162.6 (2)
C6—C1—C14—C15178.4 (2)C15—C16—C29—N10.4 (2)
C14—C1—C6—C5178.1 (2)C15—C16—C17—C22110.9 (3)
C2—C1—C6—C50.6 (3)C28—C16—C29—N1114.0 (2)
C14—C1—C6—C70.5 (3)C28—C16—C29—O263.4 (4)
C14—C1—C2—C3175.7 (2)C17—C16—C29—O266.9 (5)
C6—C1—C14—C133.4 (3)C17—C16—C29—N1115.7 (3)
C6—C1—C2—C32.9 (3)C16—C17—C22—C21175.7 (3)
C2—C1—C14—C153.1 (3)C22—C17—C18—C192.0 (4)
C1—C2—C3—C42.6 (4)C18—C17—C22—O1176.8 (2)
C2—C3—C4—C50.2 (4)C16—C17—C18—C19175.6 (3)
C3—C4—C5—C62.5 (5)C18—C17—C22—C212.0 (4)
C4—C5—C6—C12.0 (4)C16—C17—C22—O15.5 (4)
C4—C5—C6—C7176.6 (3)C17—C18—C19—C200.8 (5)
C1—C6—C7—C82.6 (4)C18—C19—C20—C210.6 (5)
C5—C6—C7—C8176.0 (3)C19—C20—C21—C220.6 (5)
C6—C7—C8—C130.7 (4)C20—C21—C22—C170.8 (5)
C6—C7—C8—C9178.6 (2)C20—C21—C22—O1178.2 (3)
C7—C8—C13—C143.3 (3)O1—C23—C24—C25178.4 (3)
C7—C8—C9—C10177.0 (3)C28—C23—C24—C251.0 (4)
C13—C8—C9—C102.3 (4)O1—C23—C28—C161.3 (4)
C9—C8—C13—C124.0 (3)C24—C23—C28—C16178.1 (2)
C7—C8—C13—C12175.3 (2)C24—C23—C28—C270.1 (4)
C9—C8—C13—C14177.4 (2)O1—C23—C28—C27179.2 (2)
C8—C9—C10—C111.2 (4)C23—C24—C25—C261.2 (5)
C9—C10—C11—C122.9 (4)C24—C25—C26—C270.5 (5)
C10—C11—C12—C131.0 (4)C25—C26—C27—C280.3 (4)
C11—C12—C13—C82.4 (3)C26—C27—C28—C16177.4 (2)
C11—C12—C13—C14179.0 (2)C26—C27—C28—C230.6 (4)
C12—C13—C14—C155.3 (3)N1—C30—C31—C32175.2 (3)
C8—C13—C14—C15176.22 (19)C35—C30—C31—C322.1 (5)
C12—C13—C14—C1173.2 (2)N1—C30—C35—C34176.1 (3)
C8—C13—C14—C15.4 (3)C31—C30—C35—C341.3 (5)
C1—C14—C15—N114.0 (3)C30—C31—C32—C331.3 (6)
C1—C14—C15—C1691.9 (3)C31—C32—C33—C340.4 (6)
C13—C14—C15—C1686.4 (2)C32—C33—C34—C351.2 (5)
C13—C14—C15—N1167.69 (18)C33—C34—C35—C300.4 (5)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x, y1/2, z+1/2; (vi) x, y+1/2, z1/2; (vii) x1, y, z; (viii) x, y+1/2, z+1/2; (ix) x+1, y, z; (x) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N10.932.282.964 (4)130
C31—H31···O20.932.483.092 (3)124
C3—H3···Cg1iii0.932.863.601 (3)138
C11—H11···Cg2iv0.932.633.543 (3)166
Symmetry codes: (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC35H23NO2
Mr489.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)13.6906 (8), 13.3085 (7), 17.3527 (10)
β (°) 127.548 (4)
V3)2506.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.18 × 0.14
Data collection
DiffractometerSTOE IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.981, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
19631, 5191, 2442
Rint0.067
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.110, 0.90
No. of reflections5191
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.13

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N10.932.282.964 (4)130
C31—H31···O20.932.483.092 (3)124
C3—H3···Cg1i0.932.863.601 (3)138
C11—H11···Cg2ii0.932.633.543 (3)166
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAkkurt, M., Jarrahpour, A., Ebrahimi, E., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2466–o2467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008). Acta Cryst. E64, o902–o903.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBanik, I., Becker, F. F. & Banik, B. K. (2003). J. Med. Chem. 46, 12–15.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJarrahpour, A. & Khalili, D. (2007). Tetrahedron Lett. 48, 7140–7143.  Web of Science CrossRef CAS Google Scholar
First citationMiller, M. J. (2000). Tetrahedron, 56, 5553–5742.  Web of Science CrossRef Google Scholar
First citationPalomo, C., Aizpurua, J. M., Ganboa, I. & Oiarbide, M. (2004). Curr. Med. Chem. 11, 1837–1872.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPınar, S., Akkurt, M., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o804–o806.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o501-o502
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds