organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Ethyl­phenol

aLudwig-Maximilians Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 12 December 2008; accepted 12 February 2009; online 18 February 2009)

The title compound, C8H10O, crystallizes with three mol­ecules in the asymmetric unit. O—H⋯O hydrogen bonds form cooperative chains connecting the mol­ecules along [100]. On the unitary graph level, this pattern is assigned a DDD descriptor. The ternary descriptor is C33(6).

Related literature

For the crystal structure of a co-crystallizate of the title compound and a copper complex, see: Butcher et al. (1995[Butcher, R. J., Diven, G., Erickson, G., Jasinski, J., Mockler, G. M., Pozdniakov, R. Y. & Sinn, E. (1995). Inorg. Chim. Acta, 239, 107-116.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10O

  • Mr = 122.16

  • Orthorhombic, P 21 21 21

  • a = 5.9318 (19) Å

  • b = 16.514 (3) Å

  • c = 22.574 (9) Å

  • V = 2211.2 (12) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 200 K

  • 0.47 × 0.32 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.977, Tmax = 0.987

  • 9193 measured reflections

  • 2594 independent reflections

  • 1457 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 0.91

  • 2594 reflections

  • 250 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.84 1.84 2.662 (2) 166
O2—H2⋯O1ii 0.84 1.81 2.642 (2) 171
O3—H3⋯O2iii 0.84 1.84 2.664 (2) 165
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In a program focused on the influence of bonding to pentavalent central atoms on the geometry of aromatic alcohols, the crystal structure of para-ethylphenol was determined.

There are three molecules in the asymmetric unit which do not show non-crystallographic symmetry (Fig. 1 and Fig. 2). The hydrogen atoms on the hydroxy groups reside in the planes of the respective aromatic moiety whereas the alkyl chains are oriented approximately perpendicular to them. The least-squares planes defined by the aromatic moieties and the atoms of the hydroxy group and their respective aromatic carrier atom enclose angles roughly between 1° and 16°. The least-squares planes defined by the aromatic moieties and the C atoms of the alkyl chain and their respective aromatic carrier atom intersect at angles roughly between 77° and 80°.

The hyxdroxy groups furnish the formation of cooperative chains of hydrogen bonds along [1 0 0] (Fig. 3). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), this pattern can be ascribed a DDD descriptor on the unitary level. The ternary descriptor of these chains is C33(6). The molecules are packed in a pseudo-trigonal mode with the hydrophilic part of the molecules residing in the center of these entities (Fig. 4).

The molecular packing of the title compound is shown in Figure 5.

Related literature top

For the crystal structure of a co-crystallizate of the title compound and a copper-complex, see: Butcher et al. (1995). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

The compound was obtained commercially (Aldrich) and used for diffraction studies as received.

Refinement top

Due to the absence of a strong anomalous scatterer in the molecule the absolute structure parameter, which is 0.7948 with an estimated standard deviation of 1.2829 for the unmerged data set, is meaningless. Thus, Friedel opposites (1849 pairs) have been merged and the absolute configuration has been arbitrarily chosen. The absolute structure parameter has been removed from the cif.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å for aromatic C atoms, C—H 0.99 Å for methylene groups, C—H 0.98 Å for methyl groups and O—H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C) for aromatic C atoms and methylene groups, U(H) set to 1.5Ueq(C) for methyl groups and U(H) set to 1.5Ueq(O) for the hydroxy groups.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of one molecule in the asymmetric unit of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. The asymmetric unit of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 3] Fig. 3. Hydrogen bonds in the crystal structure of the title compound, viewed along [0 1 0]. Symmetry operators: i -x + 3/2, -y + 1, z - 1/2; iix + 1/2, -y + 1/2, -z.
[Figure 4] Fig. 4. The pseudo-trigonal packing of the molecules in the crystal structure, viewed approximately along [1 0 0].
[Figure 5] Fig. 5. The packing of the title compound, viewed along [-1 0 0].
4-Ethylphenol top
Crystal data top
C8H10OF(000) = 792
Mr = 122.16Dx = 1.101 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3039 reflections
a = 5.9318 (19) Åθ = 4.1–26.3°
b = 16.514 (3) ŵ = 0.07 mm1
c = 22.574 (9) ÅT = 200 K
V = 2211.2 (12) Å3Block, colourless
Z = 120.47 × 0.32 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2594 independent reflections
Radiation source: fine-focus sealed tube1457 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 26.3°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2005)
h = 77
Tmin = 0.977, Tmax = 0.987k = 2020
9193 measured reflectionsl = 288
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
2594 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C8H10OV = 2211.2 (12) Å3
Mr = 122.16Z = 12
Orthorhombic, P212121Mo Kα radiation
a = 5.9318 (19) ŵ = 0.07 mm1
b = 16.514 (3) ÅT = 200 K
c = 22.574 (9) Å0.47 × 0.32 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2594 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2005)
1457 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.987Rint = 0.029
9193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 0.91Δρmax = 0.13 e Å3
2594 reflectionsΔρmin = 0.12 e Å3
250 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8108 (3)0.52361 (10)0.08295 (8)0.0654 (5)
H10.70250.54760.06660.098*
C110.7567 (4)0.50737 (12)0.14108 (12)0.0477 (6)
C120.9136 (4)0.46767 (13)0.17501 (12)0.0526 (6)
H121.05280.45130.15800.063*
C130.8699 (4)0.45164 (13)0.23352 (12)0.0564 (7)
H130.98060.42480.25670.068*
C140.6677 (4)0.47378 (13)0.25946 (11)0.0550 (6)
C150.5121 (4)0.51333 (14)0.22438 (12)0.0596 (7)
H150.37220.52930.24120.072*
C160.5542 (4)0.53024 (14)0.16553 (12)0.0561 (6)
H160.44450.55740.14220.067*
C170.6225 (5)0.45737 (16)0.32442 (12)0.0761 (8)
H1710.45860.46180.33200.091*
H1720.66910.40130.33390.091*
C180.7444 (6)0.51441 (17)0.36405 (14)0.0893 (10)
H1810.90690.51040.35670.134*
H1820.71290.50060.40540.134*
H1830.69390.56990.35610.134*
O20.6558 (3)0.03018 (10)0.02023 (8)0.0633 (5)
H20.53700.01510.03720.095*
C210.6100 (4)0.09676 (13)0.01496 (11)0.0475 (6)
C220.4167 (4)0.14128 (13)0.00819 (11)0.0517 (6)
H220.30930.12690.02120.062*
C230.3797 (4)0.20736 (13)0.04461 (11)0.0544 (6)
H230.24570.23820.03980.065*
C240.5336 (5)0.22977 (13)0.08795 (11)0.0559 (6)
C250.7266 (4)0.18400 (16)0.09256 (12)0.0652 (7)
H250.83620.19840.12140.078*
C260.7663 (4)0.11799 (15)0.05676 (11)0.0603 (7)
H260.90100.08740.06110.072*
C270.4897 (6)0.30142 (15)0.12800 (13)0.0811 (9)
H2710.63480.32040.14460.097*
H2720.42530.34610.10410.097*
C280.3328 (5)0.28252 (17)0.17770 (14)0.0902 (10)
H2810.18550.26690.16170.135*
H2820.31550.33040.20290.135*
H2830.39420.23780.20120.135*
O31.0222 (3)0.41786 (9)0.51646 (7)0.0624 (5)
H31.13360.44880.51230.094*
C311.0136 (4)0.36433 (13)0.46965 (10)0.0470 (6)
C321.1787 (4)0.36152 (13)0.42740 (11)0.0540 (6)
H321.30320.39760.42950.065*
C331.1639 (4)0.30624 (14)0.38184 (11)0.0580 (7)
H331.27910.30510.35260.070*
C340.9863 (4)0.25252 (13)0.37750 (11)0.0537 (6)
C350.8229 (4)0.25701 (14)0.42103 (12)0.0593 (7)
H350.69840.22100.41910.071*
C360.8333 (4)0.31177 (13)0.46722 (11)0.0537 (6)
H360.71890.31320.49660.064*
C370.9689 (5)0.19321 (15)0.32700 (13)0.0732 (8)
H3711.12040.18580.30940.088*
H3720.91980.14020.34290.088*
C380.8098 (6)0.21842 (17)0.27951 (14)0.0975 (11)
H3810.65810.22440.29620.146*
H3820.80740.17720.24830.146*
H3830.85890.27030.26280.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0630 (11)0.0822 (12)0.0510 (12)0.0136 (9)0.0028 (10)0.0007 (9)
C110.0533 (14)0.0462 (13)0.0436 (15)0.0010 (11)0.0005 (14)0.0036 (12)
C120.0483 (14)0.0503 (12)0.0592 (17)0.0030 (12)0.0019 (14)0.0025 (13)
C130.0525 (16)0.0599 (14)0.0568 (18)0.0011 (12)0.0090 (14)0.0066 (13)
C140.0585 (16)0.0567 (13)0.0499 (17)0.0093 (14)0.0015 (15)0.0014 (13)
C150.0496 (14)0.0723 (16)0.0570 (18)0.0053 (13)0.0067 (14)0.0043 (14)
C160.0502 (15)0.0632 (14)0.0549 (18)0.0086 (13)0.0040 (14)0.0009 (13)
C170.0816 (19)0.0873 (18)0.0593 (19)0.0029 (16)0.0041 (17)0.0073 (16)
C180.107 (2)0.103 (2)0.0581 (19)0.0122 (19)0.0030 (19)0.0198 (17)
O20.0573 (10)0.0672 (10)0.0655 (12)0.0142 (9)0.0156 (9)0.0082 (9)
C210.0473 (14)0.0467 (12)0.0484 (15)0.0009 (12)0.0050 (13)0.0052 (12)
C220.0460 (14)0.0564 (13)0.0527 (16)0.0001 (12)0.0121 (12)0.0067 (13)
C230.0507 (14)0.0492 (13)0.0634 (17)0.0051 (12)0.0008 (14)0.0063 (13)
C240.0579 (16)0.0531 (13)0.0566 (17)0.0128 (13)0.0007 (15)0.0028 (12)
C250.0577 (16)0.0768 (17)0.0610 (19)0.0112 (14)0.0163 (15)0.0031 (16)
C260.0467 (15)0.0769 (17)0.0574 (17)0.0039 (12)0.0119 (14)0.0031 (15)
C270.093 (2)0.0643 (16)0.086 (2)0.0161 (16)0.004 (2)0.0143 (16)
C280.083 (2)0.095 (2)0.093 (2)0.0042 (17)0.004 (2)0.0303 (19)
O30.0623 (11)0.0705 (11)0.0543 (11)0.0142 (9)0.0107 (10)0.0089 (9)
C310.0506 (13)0.0472 (12)0.0433 (15)0.0024 (12)0.0003 (13)0.0039 (11)
C320.0473 (13)0.0573 (13)0.0576 (17)0.0096 (12)0.0090 (14)0.0003 (14)
C330.0556 (15)0.0645 (15)0.0539 (18)0.0014 (14)0.0101 (13)0.0001 (13)
C340.0566 (14)0.0490 (13)0.0556 (17)0.0033 (13)0.0017 (15)0.0041 (12)
C350.0573 (15)0.0549 (14)0.0657 (19)0.0151 (12)0.0046 (16)0.0063 (14)
C360.0531 (14)0.0563 (14)0.0517 (17)0.0103 (13)0.0086 (13)0.0076 (13)
C370.088 (2)0.0570 (14)0.074 (2)0.0032 (15)0.0042 (18)0.0060 (15)
C380.144 (3)0.0730 (18)0.076 (2)0.001 (2)0.022 (2)0.0089 (16)
Geometric parameters (Å, º) top
O1—C111.377 (3)C25—C261.377 (3)
O1—H10.8400C25—H250.9500
C11—C121.372 (3)C26—H260.9500
C11—C161.375 (3)C27—C281.491 (4)
C12—C131.372 (3)C27—H2710.9900
C12—H120.9500C27—H2720.9900
C13—C141.384 (3)C28—H2810.9800
C13—H130.9500C28—H2820.9800
C14—C151.380 (3)C28—H2830.9800
C14—C171.515 (4)O3—C311.379 (2)
C15—C161.380 (3)O3—H30.8400
C15—H150.9500C31—C321.368 (3)
C16—H160.9500C31—C361.378 (3)
C17—C181.487 (4)C32—C331.378 (3)
C17—H1710.9900C32—H320.9500
C17—H1720.9900C33—C341.381 (3)
C18—H1810.9800C33—H330.9500
C18—H1820.9800C34—C351.382 (3)
C18—H1830.9800C34—C371.506 (3)
O2—C211.383 (3)C35—C361.382 (3)
O2—H20.8400C35—H350.9500
C21—C261.368 (3)C36—H360.9500
C21—C221.371 (3)C37—C381.488 (4)
C22—C231.384 (3)C37—H3710.9900
C22—H220.9500C37—H3720.9900
C23—C241.388 (3)C38—H3810.9800
C23—H230.9500C38—H3820.9800
C24—C251.376 (4)C38—H3830.9800
C24—C271.512 (3)
C11—O1—H1109.5C21—C26—C25119.5 (2)
C12—C11—C16120.0 (2)C21—C26—H26120.3
C12—C11—O1117.8 (2)C25—C26—H26120.3
C16—C11—O1122.2 (2)C28—C27—C24113.2 (2)
C11—C12—C13120.1 (2)C28—C27—H271108.9
C11—C12—H12120.0C24—C27—H271108.9
C13—C12—H12120.0C28—C27—H272108.9
C12—C13—C14121.4 (2)C24—C27—H272108.9
C12—C13—H13119.3H271—C27—H272107.8
C14—C13—H13119.3C27—C28—H281109.5
C15—C14—C13117.5 (2)C27—C28—H282109.5
C15—C14—C17121.4 (2)H281—C28—H282109.5
C13—C14—C17121.0 (2)C27—C28—H283109.5
C14—C15—C16121.8 (2)H281—C28—H283109.5
C14—C15—H15119.1H282—C28—H283109.5
C16—C15—H15119.1C31—O3—H3109.5
C11—C16—C15119.3 (2)C32—C31—O3122.0 (2)
C11—C16—H16120.4C32—C31—C36120.4 (2)
C15—C16—H16120.4O3—C31—C36117.6 (2)
C18—C17—C14112.5 (2)C33—C32—C31119.8 (2)
C18—C17—H171109.1C33—C32—H32120.1
C14—C17—H171109.1C31—C32—H32120.1
C18—C17—H172109.1C32—C33—C34121.8 (2)
C14—C17—H172109.1C32—C33—H33119.1
H171—C17—H172107.8C34—C33—H33119.1
C17—C18—H181109.5C35—C34—C33116.7 (2)
C17—C18—H182109.5C35—C34—C37121.7 (2)
H181—C18—H182109.5C33—C34—C37121.6 (2)
C17—C18—H183109.5C36—C35—C34122.7 (2)
H181—C18—H183109.5C36—C35—H35118.6
H182—C18—H183109.5C34—C35—H35118.6
C21—O2—H2109.5C35—C36—C31118.5 (2)
C26—C21—C22120.4 (2)C35—C36—H36120.8
C26—C21—O2117.8 (2)C31—C36—H36120.8
C22—C21—O2121.8 (2)C38—C37—C34114.0 (2)
C21—C22—C23119.3 (2)C38—C37—H371108.8
C21—C22—H22120.3C34—C37—H371108.8
C23—C22—H22120.3C38—C37—H372108.8
C22—C23—C24121.6 (2)C34—C37—H372108.8
C22—C23—H23119.2H371—C37—H372107.6
C24—C23—H23119.2C37—C38—H381109.5
C25—C24—C23117.0 (2)C37—C38—H382109.5
C25—C24—C27121.9 (3)H381—C38—H382109.5
C23—C24—C27121.1 (2)C37—C38—H383109.5
C24—C25—C26122.2 (2)H381—C38—H383109.5
C24—C25—H25118.9H382—C38—H383109.5
C26—C25—H25118.9
C16—C11—C12—C130.8 (3)C27—C24—C25—C26179.1 (2)
O1—C11—C12—C13178.6 (2)C22—C21—C26—C250.8 (4)
C11—C12—C13—C140.9 (3)O2—C21—C26—C25179.9 (2)
C12—C13—C14—C150.6 (3)C24—C25—C26—C210.2 (4)
C12—C13—C14—C17178.8 (2)C25—C24—C27—C28100.3 (3)
C13—C14—C15—C160.2 (3)C23—C24—C27—C2879.8 (3)
C17—C14—C15—C16178.4 (2)O3—C31—C32—C33179.2 (2)
C12—C11—C16—C150.5 (3)C36—C31—C32—C330.5 (3)
O1—C11—C16—C15178.9 (2)C31—C32—C33—C340.4 (3)
C14—C15—C16—C110.2 (3)C32—C33—C34—C350.2 (3)
C15—C14—C17—C18102.5 (3)C32—C33—C34—C37178.9 (2)
C13—C14—C17—C1875.6 (3)C33—C34—C35—C360.3 (3)
C26—C21—C22—C230.9 (3)C37—C34—C35—C36178.9 (2)
O2—C21—C22—C23179.9 (2)C34—C35—C36—C310.4 (3)
C21—C22—C23—C240.0 (3)C32—C31—C36—C350.5 (3)
C22—C23—C24—C250.9 (3)O3—C31—C36—C35179.27 (19)
C22—C23—C24—C27179.2 (2)C35—C34—C37—C3878.0 (3)
C23—C24—C25—C261.0 (4)C33—C34—C37—C38100.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.841.842.662 (2)166
O2—H2···O1ii0.841.812.642 (2)171
O3—H3···O2iii0.841.842.664 (2)165
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x1/2, y+1/2, z; (iii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H10O
Mr122.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)5.9318 (19), 16.514 (3), 22.574 (9)
V3)2211.2 (12)
Z12
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.47 × 0.32 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2005)
Tmin, Tmax0.977, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
9193, 2594, 1457
Rint0.029
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 0.91
No. of reflections2594
No. of parameters250
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.12

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.841.842.662 (2)166.2
O2—H2···O1ii0.841.812.642 (2)170.8
O3—H3···O2iii0.841.842.664 (2)164.8
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x1/2, y+1/2, z; (iii) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Professor Klapötke for generous allocation of measurement time on the diffractometer.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationButcher, R. J., Diven, G., Erickson, G., Jasinski, J., Mockler, G. M., Pozdniakov, R. Y. & Sinn, E. (1995). Inorg. Chim. Acta, 239, 107–116.  CSD CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds