organic compounds
(SP,SP)-(–)-(E)-1,2-Bis(methylphenylphosphinoyl)ethene
aInstitut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany, and bDepartment of Organic Chemistry, Maria Curie-Sklodowska-University Lublin, ul. Gliniana 33, Lublin, PL-20-614, Poland
*Correspondence e-mail: holger.butenschoen@mbox.oci.uni-hannover.de
The title compound, C16H18O2P2, possesses two stereogenic P atoms and shows a distorted s–cis conformation of each O=P—C=C moiety. This has been suggested on the basis of the stereochemical result of 1,3-dipolar cycloadditions with nitrones and is now confirmed by the present analysis. There are two crystallographically independent molecules in the asymmetric unit.
Related literature
For optically active P-stereogenic 1,2-diphosphinoethanes and diphosphane dioxides, see: Crepy & Imamoto (2003a,b); Glueck (2008); Knowles (1983, 2002); Pietrusiewicz & Zablocka (1988); Demchuk et al. (2003); Vinokurov et al. (2006); Vinokurov, Garabatos-Perera et al. (2008) and Vinokurov, Pietrusiewicz et al. (2008). For the structures of (–)-(SP)-methylphenylphosphine oxide and (+)-(RP)-(tert-butylvinylphosphinoyl)benzene, see: Pietrusiewicz et al. (1991); Szmigielska et al. (2006). For the determination of the of the stereogenic centers for the title compound, see: Pietrusiewicz et al. (1984, 1991) and Vinokurov, Pietrusiewicz et al. (2008).
Experimental
Crystal data
|
Data collection: IPDS (Stoe & Cie, 1999); cell IPDS; data reduction: IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809004632/jh2072sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809004632/jh2072Isup2.hkl
For the preparation of (SP,SP)-(-)-(E)-1,2-bis(methylphenylphosphinoyl)ethene (1) see Vinokurov et al. (2006).
Note: The
contains two crystallographically independent molecules, one of which is presented here. H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) × Ueq(C).Data collection: IPDS (Stoe & Cie, 1999); cell
IPDS (Stoe & Cie, 1999); data reduction: IPDS (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen, 2004) and publCIF (Westrip, 2009).Fig. 1. Structure of (1) in the crystal with atom labels and 50% probability displacement ellipsoids for non-H atoms. |
C16H18O2P2 | F(000) = 640 |
Mr = 304.24 | Dx = 1.304 Mg m−3 |
Monoclinic, P21 | Melting point: 511 K |
Hall symbol: P 2yb | Mo Kα radiation, λ = 0.71073 Å |
a = 11.686 (5) Å | Cell parameters from 8000 reflections |
b = 5.5291 (15) Å | θ = 2.3–25.4° |
c = 24.132 (10) Å | µ = 0.28 mm−1 |
β = 96.36 (5)° | T = 297 K |
V = 1549.7 (10) Å3 | Plate, white |
Z = 4 | 0.35 × 0.29 × 0.18 mm |
Stoe IPDS diffractometer | 6041 independent reflections |
Radiation source: fine-focus sealed tube | 4640 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.067 |
psi scans | θmax = 26.0°, θmin = 2.3° |
Absorption correction: multi-scan (Blessing, 1995) | h = −14→14 |
Tmin = 0.927, Tmax = 0.953 | k = −6→6 |
20851 measured reflections | l = −29→29 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0482P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max = 0.002 |
6041 reflections | Δρmax = 0.37 e Å−3 |
361 parameters | Δρmin = −0.19 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 2656 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (9) |
C16H18O2P2 | V = 1549.7 (10) Å3 |
Mr = 304.24 | Z = 4 |
Monoclinic, P21 | Mo Kα radiation |
a = 11.686 (5) Å | µ = 0.28 mm−1 |
b = 5.5291 (15) Å | T = 297 K |
c = 24.132 (10) Å | 0.35 × 0.29 × 0.18 mm |
β = 96.36 (5)° |
Stoe IPDS diffractometer | 6041 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 4640 reflections with I > 2σ(I) |
Tmin = 0.927, Tmax = 0.953 | Rint = 0.067 |
20851 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.097 | Δρmax = 0.37 e Å−3 |
S = 0.99 | Δρmin = −0.19 e Å−3 |
6041 reflections | Absolute structure: Flack (1983), 2656 Friedel pairs |
361 parameters | Absolute structure parameter: 0.01 (9) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.30457 (7) | 0.21685 (14) | 0.97574 (3) | 0.0353 (2) | |
P2 | 0.39031 (6) | −0.02618 (15) | 1.14954 (3) | 0.0346 (2) | |
O1 | 0.3363 (2) | 0.4760 (5) | 0.98268 (10) | 0.0538 (6) | |
O2 | 0.3896 (2) | −0.2919 (4) | 1.14004 (10) | 0.0470 (6) | |
C1A | 0.3199 (3) | 0.0452 (6) | 1.03959 (12) | 0.0390 (7) | |
H1A | 0.3089 | −0.1213 | 1.0382 | 0.047* | |
C2A | 0.3466 (3) | 0.1518 (6) | 1.08850 (12) | 0.0377 (7) | |
H2A | 0.3427 | 0.3193 | 1.0913 | 0.045* | |
C3A | 0.2989 (3) | 0.0536 (6) | 1.20236 (11) | 0.0379 (7) | |
C4A | 0.2921 (4) | −0.1114 (7) | 1.24450 (15) | 0.0600 (10) | |
H4A | 0.3340 | −0.2545 | 1.2446 | 0.072* | |
C5A | 0.2234 (5) | −0.0671 (11) | 1.28698 (17) | 0.0792 (14) | |
H5A | 0.2188 | −0.1808 | 1.3150 | 0.095* | |
C6A | 0.1639 (4) | 0.1403 (10) | 1.28732 (19) | 0.0741 (13) | |
H6A | 0.1185 | 0.1701 | 1.3159 | 0.089* | |
C7A | 0.1693 (4) | 0.3089 (9) | 1.2460 (2) | 0.0704 (12) | |
H7A | 0.1271 | 0.4512 | 1.2464 | 0.085* | |
C8A | 0.2380 (3) | 0.2673 (8) | 1.20324 (15) | 0.0531 (8) | |
H8A | 0.2427 | 0.3827 | 1.1755 | 0.064* | |
C9A | 0.5286 (3) | 0.0957 (8) | 1.17267 (15) | 0.0557 (10) | |
H9A1 | 0.5606 | 0.0118 | 1.2056 | 0.083* | |
H9A2 | 0.5212 | 0.2645 | 1.1809 | 0.083* | |
H9A3 | 0.5784 | 0.0765 | 1.1439 | 0.083* | |
C10A | 0.1564 (3) | 0.1880 (6) | 0.94567 (12) | 0.0355 (7) | |
C11A | 0.1106 (3) | 0.3729 (7) | 0.91121 (15) | 0.0525 (9) | |
H11A | 0.1567 | 0.5032 | 0.9036 | 0.063* | |
C12A | −0.0027 (4) | 0.3649 (8) | 0.88820 (19) | 0.0639 (11) | |
H12A | −0.0319 | 0.4875 | 0.8643 | 0.077* | |
C13A | −0.0721 (3) | 0.1788 (9) | 0.90020 (18) | 0.0625 (11) | |
H13A | −0.1492 | 0.1782 | 0.8856 | 0.075* | |
C14A | −0.0288 (3) | −0.0100 (9) | 0.93402 (17) | 0.0644 (11) | |
H14A | −0.0760 | −0.1382 | 0.9417 | 0.077* | |
C15A | 0.0867 (3) | −0.0058 (7) | 0.95651 (13) | 0.0490 (8) | |
H15A | 0.1169 | −0.1329 | 0.9788 | 0.059* | |
C16A | 0.3893 (3) | 0.0436 (8) | 0.93298 (14) | 0.0508 (9) | |
H16A | 0.3879 | 0.1190 | 0.8971 | 0.076* | |
H16B | 0.3583 | −0.1170 | 0.9286 | 0.076* | |
H16C | 0.4672 | 0.0355 | 0.9503 | 0.076* | |
P3 | 0.69714 (6) | 0.45422 (16) | 0.52266 (3) | 0.03485 (19) | |
P4 | 0.61341 (7) | 0.25487 (16) | 0.34535 (3) | 0.0377 (2) | |
O3 | 0.6815 (2) | 0.7189 (5) | 0.51686 (10) | 0.0521 (6) | |
O4 | 0.6118 (2) | −0.0103 (5) | 0.35230 (10) | 0.0528 (6) | |
C1B | 0.6767 (2) | 0.2977 (6) | 0.45711 (12) | 0.0363 (7) | |
H1B | 0.6813 | 0.1298 | 0.4570 | 0.044* | |
C2B | 0.6553 (2) | 0.4128 (6) | 0.40913 (11) | 0.0361 (7) | |
H2B | 0.6621 | 0.5803 | 0.4085 | 0.043* | |
C3B | 0.7090 (3) | 0.3418 (6) | 0.29501 (12) | 0.0395 (7) | |
C4B | 0.7920 (3) | 0.1795 (7) | 0.28267 (15) | 0.0518 (9) | |
H4B | 0.8021 | 0.0365 | 0.3029 | 0.062* | |
C5B | 0.8607 (3) | 0.2254 (9) | 0.24069 (18) | 0.0677 (11) | |
H5B | 0.9151 | 0.1122 | 0.2324 | 0.081* | |
C6B | 0.8484 (4) | 0.4391 (9) | 0.21121 (17) | 0.0662 (11) | |
H6B | 0.8953 | 0.4718 | 0.1834 | 0.079* | |
C7B | 0.7671 (4) | 0.6022 (8) | 0.22304 (18) | 0.0679 (12) | |
H7B | 0.7576 | 0.7451 | 0.2027 | 0.082* | |
C8B | 0.6986 (4) | 0.5562 (7) | 0.26523 (16) | 0.0584 (10) | |
H8B | 0.6449 | 0.6709 | 0.2736 | 0.070* | |
C9B | 0.4772 (3) | 0.3870 (7) | 0.32300 (15) | 0.0547 (10) | |
H9B1 | 0.4460 | 0.3149 | 0.2884 | 0.082* | |
H9B2 | 0.4864 | 0.5578 | 0.3179 | 0.082* | |
H9B3 | 0.4256 | 0.3595 | 0.3507 | 0.082* | |
C10B | 0.8407 (3) | 0.3773 (6) | 0.55361 (12) | 0.0345 (7) | |
C11B | 0.9281 (3) | 0.5428 (8) | 0.54766 (15) | 0.0542 (9) | |
H11B | 0.9113 | 0.6854 | 0.5280 | 0.065* | |
C12B | 1.0393 (3) | 0.4980 (9) | 0.57053 (19) | 0.0678 (12) | |
H12B | 1.0971 | 0.6092 | 0.5658 | 0.081* | |
C13B | 1.0648 (3) | 0.2913 (9) | 0.60005 (18) | 0.0650 (12) | |
H13B | 1.1397 | 0.2632 | 0.6160 | 0.078* | |
C14B | 0.9795 (3) | 0.1226 (9) | 0.60642 (17) | 0.0634 (11) | |
H14B | 0.9971 | −0.0187 | 0.6265 | 0.076* | |
C15B | 0.8674 (3) | 0.1661 (7) | 0.58256 (16) | 0.0508 (9) | |
H15B | 0.8103 | 0.0520 | 0.5862 | 0.061* | |
C16B | 0.5972 (3) | 0.3059 (8) | 0.56197 (14) | 0.0520 (9) | |
H16D | 0.6010 | 0.3767 | 0.5984 | 0.078* | |
H16E | 0.6161 | 0.1371 | 0.5653 | 0.078* | |
H16F | 0.5207 | 0.3239 | 0.5433 | 0.078* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0399 (4) | 0.0320 (5) | 0.0331 (4) | −0.0040 (3) | 0.0008 (3) | 0.0008 (3) |
P2 | 0.0375 (4) | 0.0341 (5) | 0.0315 (4) | −0.0016 (4) | 0.0000 (3) | 0.0002 (3) |
O1 | 0.0653 (15) | 0.0310 (14) | 0.0615 (14) | −0.0135 (12) | −0.0088 (12) | 0.0025 (12) |
O2 | 0.0612 (14) | 0.0282 (13) | 0.0521 (12) | 0.0006 (11) | 0.0089 (11) | −0.0009 (10) |
C1A | 0.0425 (17) | 0.0376 (17) | 0.0362 (15) | −0.0016 (14) | 0.0015 (13) | 0.0010 (13) |
C2A | 0.0434 (17) | 0.0346 (17) | 0.0349 (15) | 0.0013 (13) | 0.0036 (13) | 0.0025 (12) |
C3A | 0.0377 (16) | 0.0416 (17) | 0.0331 (14) | −0.0029 (14) | −0.0024 (12) | −0.0020 (13) |
C4A | 0.080 (3) | 0.054 (3) | 0.0479 (19) | 0.0009 (19) | 0.0144 (19) | 0.0109 (16) |
C5A | 0.112 (4) | 0.083 (4) | 0.048 (2) | −0.004 (3) | 0.032 (2) | 0.006 (2) |
C6A | 0.074 (3) | 0.086 (3) | 0.068 (3) | −0.015 (3) | 0.034 (2) | −0.016 (2) |
C7A | 0.056 (2) | 0.067 (3) | 0.092 (3) | 0.002 (2) | 0.024 (2) | −0.014 (2) |
C8A | 0.052 (2) | 0.046 (2) | 0.062 (2) | 0.0021 (17) | 0.0120 (16) | 0.0027 (17) |
C9A | 0.045 (2) | 0.070 (3) | 0.0511 (19) | −0.0026 (18) | −0.0025 (16) | 0.0010 (19) |
C10A | 0.0431 (16) | 0.0322 (18) | 0.0312 (13) | 0.0015 (13) | 0.0032 (12) | −0.0009 (12) |
C11A | 0.054 (2) | 0.046 (2) | 0.057 (2) | 0.0032 (16) | −0.0003 (17) | 0.0054 (16) |
C12A | 0.058 (2) | 0.059 (3) | 0.070 (3) | 0.014 (2) | −0.014 (2) | 0.002 (2) |
C13A | 0.043 (2) | 0.070 (3) | 0.071 (2) | 0.0076 (19) | −0.0055 (18) | −0.024 (2) |
C14A | 0.051 (2) | 0.077 (3) | 0.066 (2) | −0.015 (2) | 0.0072 (18) | −0.007 (2) |
C15A | 0.0511 (18) | 0.045 (2) | 0.0483 (17) | −0.0064 (16) | −0.0042 (14) | 0.0050 (16) |
C16A | 0.0446 (19) | 0.059 (2) | 0.0503 (18) | −0.0003 (16) | 0.0116 (15) | 0.0019 (17) |
P3 | 0.0352 (4) | 0.0359 (5) | 0.0330 (4) | 0.0013 (4) | 0.0018 (3) | −0.0026 (4) |
P4 | 0.0410 (4) | 0.0376 (5) | 0.0345 (4) | −0.0042 (4) | 0.0039 (3) | −0.0058 (4) |
O3 | 0.0566 (15) | 0.0390 (15) | 0.0578 (14) | 0.0047 (12) | −0.0064 (11) | −0.0032 (12) |
O4 | 0.0715 (16) | 0.0363 (15) | 0.0538 (13) | −0.0085 (12) | 0.0205 (12) | −0.0051 (11) |
C1B | 0.0320 (15) | 0.0399 (19) | 0.0369 (15) | −0.0027 (13) | 0.0025 (12) | −0.0022 (13) |
C2B | 0.0339 (15) | 0.0399 (19) | 0.0346 (14) | 0.0015 (13) | 0.0040 (12) | −0.0015 (13) |
C3B | 0.0430 (17) | 0.0439 (18) | 0.0303 (14) | −0.0042 (14) | −0.0020 (13) | −0.0005 (13) |
C4B | 0.0444 (18) | 0.052 (2) | 0.059 (2) | 0.0056 (16) | 0.0084 (16) | 0.0110 (17) |
C5B | 0.053 (2) | 0.077 (3) | 0.077 (3) | 0.008 (2) | 0.024 (2) | 0.000 (3) |
C6B | 0.072 (3) | 0.072 (3) | 0.059 (2) | −0.017 (3) | 0.027 (2) | 0.002 (2) |
C7B | 0.095 (3) | 0.054 (3) | 0.058 (2) | −0.002 (2) | 0.022 (2) | 0.012 (2) |
C8B | 0.079 (3) | 0.042 (2) | 0.058 (2) | 0.0048 (19) | 0.0219 (19) | 0.0017 (18) |
C9B | 0.0432 (18) | 0.065 (3) | 0.0533 (19) | 0.0008 (17) | −0.0058 (15) | −0.0185 (18) |
C10B | 0.0341 (15) | 0.0381 (18) | 0.0310 (14) | 0.0000 (12) | 0.0027 (12) | −0.0041 (12) |
C11B | 0.0449 (19) | 0.056 (2) | 0.062 (2) | −0.0049 (16) | 0.0059 (16) | 0.0030 (18) |
C12B | 0.0373 (19) | 0.078 (3) | 0.087 (3) | −0.013 (2) | 0.0034 (18) | −0.011 (3) |
C13B | 0.041 (2) | 0.079 (3) | 0.071 (2) | 0.015 (2) | −0.0086 (17) | −0.025 (2) |
C14B | 0.057 (2) | 0.067 (3) | 0.062 (2) | 0.018 (2) | −0.0108 (18) | −0.002 (2) |
C15B | 0.0440 (19) | 0.047 (2) | 0.060 (2) | 0.0004 (15) | 0.0014 (16) | 0.0042 (17) |
C16B | 0.0427 (18) | 0.067 (3) | 0.0485 (19) | −0.0010 (17) | 0.0128 (15) | 0.0009 (17) |
P1—O1 | 1.485 (3) | P3—O3 | 1.480 (3) |
P1—C16A | 1.786 (4) | P3—C16B | 1.784 (3) |
P1—C1A | 1.801 (3) | P3—C1B | 1.796 (3) |
P1—C10A | 1.809 (3) | P3—C10B | 1.810 (3) |
P2—O2 | 1.487 (3) | P4—O4 | 1.476 (3) |
P2—C9A | 1.782 (4) | P4—C9B | 1.780 (4) |
P2—C2A | 1.798 (3) | P4—C2B | 1.790 (3) |
P2—C3A | 1.806 (3) | P4—C3B | 1.804 (3) |
C1A—C2A | 1.325 (4) | C1B—C2B | 1.321 (4) |
C1A—H1A | 0.9300 | C1B—H1B | 0.9300 |
C2A—H2A | 0.9300 | C2B—H2B | 0.9300 |
C3A—C4A | 1.375 (5) | C3B—C4B | 1.378 (5) |
C3A—C8A | 1.381 (5) | C3B—C8B | 1.385 (5) |
C4A—C5A | 1.392 (6) | C4B—C5B | 1.384 (5) |
C4A—H4A | 0.9300 | C4B—H4B | 0.9300 |
C5A—C6A | 1.341 (7) | C5B—C6B | 1.378 (7) |
C5A—H5A | 0.9300 | C5B—H5B | 0.9300 |
C6A—C7A | 1.372 (7) | C6B—C7B | 1.363 (6) |
C6A—H6A | 0.9300 | C6B—H6B | 0.9300 |
C7A—C8A | 1.394 (5) | C7B—C8B | 1.387 (5) |
C7A—H7A | 0.9300 | C7B—H7B | 0.9300 |
C8A—H8A | 0.9300 | C8B—H8B | 0.9300 |
C9A—H9A1 | 0.9600 | C9B—H9B1 | 0.9600 |
C9A—H9A2 | 0.9600 | C9B—H9B2 | 0.9600 |
C9A—H9A3 | 0.9600 | C9B—H9B3 | 0.9600 |
C10A—C11A | 1.387 (5) | C10B—C15B | 1.379 (5) |
C10A—C15A | 1.388 (5) | C10B—C11B | 1.391 (5) |
C11A—C12A | 1.378 (6) | C11B—C12B | 1.377 (5) |
C11A—H11A | 0.9300 | C11B—H11B | 0.9300 |
C12A—C13A | 1.361 (6) | C12B—C13B | 1.362 (7) |
C12A—H12A | 0.9300 | C12B—H12B | 0.9300 |
C13A—C14A | 1.386 (6) | C13B—C14B | 1.386 (6) |
C13A—H13A | 0.9300 | C13B—H13B | 0.9300 |
C14A—C15A | 1.397 (5) | C14B—C15B | 1.392 (5) |
C14A—H14A | 0.9300 | C14B—H14B | 0.9300 |
C15A—H15A | 0.9300 | C15B—H15B | 0.9300 |
C16A—H16A | 0.9600 | C16B—H16D | 0.9600 |
C16A—H16B | 0.9600 | C16B—H16E | 0.9600 |
C16A—H16C | 0.9600 | C16B—H16F | 0.9600 |
O1—P1—C16A | 115.80 (17) | O3—P3—C16B | 115.05 (17) |
O1—P1—C1A | 114.32 (15) | O3—P3—C1B | 112.97 (15) |
C16A—P1—C1A | 101.69 (17) | C16B—P3—C1B | 102.46 (17) |
O1—P1—C10A | 110.28 (15) | O3—P3—C10B | 111.77 (15) |
C16A—P1—C10A | 106.75 (16) | C16B—P3—C10B | 107.71 (16) |
C1A—P1—C10A | 107.26 (15) | C1B—P3—C10B | 106.10 (14) |
O2—P2—C9A | 114.30 (18) | O4—P4—C9B | 114.84 (18) |
O2—P2—C2A | 114.73 (15) | O4—P4—C2B | 113.11 (15) |
C9A—P2—C2A | 102.42 (17) | C9B—P4—C2B | 102.15 (16) |
O2—P2—C3A | 110.87 (15) | O4—P4—C3B | 110.94 (15) |
C9A—P2—C3A | 105.85 (17) | C9B—P4—C3B | 106.63 (18) |
C2A—P2—C3A | 107.94 (14) | C2B—P4—C3B | 108.58 (15) |
C2A—C1A—P1 | 121.3 (3) | C2B—C1B—P3 | 122.3 (3) |
C2A—C1A—H1A | 119.4 | C2B—C1B—H1B | 118.9 |
P1—C1A—H1A | 119.4 | P3—C1B—H1B | 118.9 |
C1A—C2A—P2 | 120.2 (3) | C1B—C2B—P4 | 121.8 (3) |
C1A—C2A—H2A | 119.9 | C1B—C2B—H2B | 119.1 |
P2—C2A—H2A | 119.9 | P4—C2B—H2B | 119.1 |
C4A—C3A—C8A | 118.9 (3) | C4B—C3B—C8B | 117.9 (3) |
C4A—C3A—P2 | 116.6 (3) | C4B—C3B—P4 | 118.4 (3) |
C8A—C3A—P2 | 124.5 (2) | C8B—C3B—P4 | 123.5 (3) |
C3A—C4A—C5A | 120.9 (4) | C3B—C4B—C5B | 121.2 (4) |
C3A—C4A—H4A | 119.6 | C3B—C4B—H4B | 119.4 |
C5A—C4A—H4A | 119.6 | C5B—C4B—H4B | 119.4 |
C6A—C5A—C4A | 119.8 (4) | C6B—C5B—C4B | 120.0 (4) |
C6A—C5A—H5A | 120.1 | C6B—C5B—H5B | 120.0 |
C4A—C5A—H5A | 120.1 | C4B—C5B—H5B | 120.0 |
C5A—C6A—C7A | 120.7 (4) | C7B—C6B—C5B | 119.6 (3) |
C5A—C6A—H6A | 119.7 | C7B—C6B—H6B | 120.2 |
C7A—C6A—H6A | 119.7 | C5B—C6B—H6B | 120.2 |
C6A—C7A—C8A | 120.2 (4) | C6B—C7B—C8B | 120.3 (4) |
C6A—C7A—H7A | 119.9 | C6B—C7B—H7B | 119.8 |
C8A—C7A—H7A | 119.9 | C8B—C7B—H7B | 119.8 |
C3A—C8A—C7A | 119.5 (4) | C3B—C8B—C7B | 120.9 (4) |
C3A—C8A—H8A | 120.3 | C3B—C8B—H8B | 119.5 |
C7A—C8A—H8A | 120.3 | C7B—C8B—H8B | 119.5 |
P2—C9A—H9A1 | 109.5 | P4—C9B—H9B1 | 109.5 |
P2—C9A—H9A2 | 109.5 | P4—C9B—H9B2 | 109.5 |
H9A1—C9A—H9A2 | 109.5 | H9B1—C9B—H9B2 | 109.5 |
P2—C9A—H9A3 | 109.5 | P4—C9B—H9B3 | 109.5 |
H9A1—C9A—H9A3 | 109.5 | H9B1—C9B—H9B3 | 109.5 |
H9A2—C9A—H9A3 | 109.5 | H9B2—C9B—H9B3 | 109.5 |
C11A—C10A—C15A | 119.1 (3) | C15B—C10B—C11B | 118.8 (3) |
C11A—C10A—P1 | 117.6 (3) | C15B—C10B—P3 | 123.8 (3) |
C15A—C10A—P1 | 123.2 (2) | C11B—C10B—P3 | 117.4 (3) |
C12A—C11A—C10A | 120.5 (4) | C12B—C11B—C10B | 120.8 (4) |
C12A—C11A—H11A | 119.8 | C12B—C11B—H11B | 119.6 |
C10A—C11A—H11A | 119.8 | C10B—C11B—H11B | 119.6 |
C13A—C12A—C11A | 120.5 (4) | C13B—C12B—C11B | 120.2 (4) |
C13A—C12A—H12A | 119.8 | C13B—C12B—H12B | 119.9 |
C11A—C12A—H12A | 119.8 | C11B—C12B—H12B | 119.9 |
C12A—C13A—C14A | 120.5 (4) | C12B—C13B—C14B | 120.3 (4) |
C12A—C13A—H13A | 119.8 | C12B—C13B—H13B | 119.8 |
C14A—C13A—H13A | 119.8 | C14B—C13B—H13B | 119.8 |
C13A—C14A—C15A | 119.4 (4) | C13B—C14B—C15B | 119.5 (4) |
C13A—C14A—H14A | 120.3 | C13B—C14B—H14B | 120.2 |
C15A—C14A—H14A | 120.3 | C15B—C14B—H14B | 120.2 |
C10A—C15A—C14A | 120.0 (4) | C10B—C15B—C14B | 120.4 (4) |
C10A—C15A—H15A | 120.0 | C10B—C15B—H15B | 119.8 |
C14A—C15A—H15A | 120.0 | C14B—C15B—H15B | 119.8 |
P1—C16A—H16A | 109.5 | P3—C16B—H16D | 109.5 |
P1—C16A—H16B | 109.5 | P3—C16B—H16E | 109.5 |
H16A—C16A—H16B | 109.5 | H16D—C16B—H16E | 109.5 |
P1—C16A—H16C | 109.5 | P3—C16B—H16F | 109.5 |
H16A—C16A—H16C | 109.5 | H16D—C16B—H16F | 109.5 |
H16B—C16A—H16C | 109.5 | H16E—C16B—H16F | 109.5 |
C3A—P2—C2A—C1A | −125.9 (7) | O1—P1—C1A—C2A | 6.2 (4) |
P1—C1A—C2A—P2 | −167.1 (5) | O2—P2—C2A—C1A | −1.8 (4) |
C16A—P1—C1A—C2A | 131.7 (2) | P1—C1A—C2A—P2 | −167.2 (2) |
Experimental details
Crystal data | |
Chemical formula | C16H18O2P2 |
Mr | 304.24 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 297 |
a, b, c (Å) | 11.686 (5), 5.5291 (15), 24.132 (10) |
β (°) | 96.36 (5) |
V (Å3) | 1549.7 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.35 × 0.29 × 0.18 |
Data collection | |
Diffractometer | Stoe IPDS diffractometer |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.927, 0.953 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20851, 6041, 4640 |
Rint | 0.067 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.097, 0.99 |
No. of reflections | 6041 |
No. of parameters | 361 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.19 |
Absolute structure | Flack (1983), 2656 Friedel pairs |
Absolute structure parameter | 0.01 (9) |
Computer programs: IPDS (Stoe & Cie, 1999), SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), enCIFer (Allen, 2004) and publCIF (Westrip, 2009).
P1—O1 | 1.485 (3) | P2—C2A | 1.798 (3) |
P1—C1A | 1.801 (3) | C1A—C2A | 1.325 (4) |
P2—O2 | 1.487 (3) | ||
O1—P1—C16A | 115.80 (17) | O2—P2—C2A | 114.73 (15) |
O1—P1—C1A | 114.32 (15) | C2A—C1A—P1 | 121.3 (3) |
O2—P2—C9A | 114.30 (18) | C1A—C2A—P2 | 120.2 (3) |
C3A—P2—C2A—C1A | −125.9 (7) | O1—P1—C1A—C2A | 6.2 (4) |
P1—C1A—C2A—P2 | −167.1 (5) | O2—P2—C2A—C1A | −1.8 (4) |
C16A—P1—C1A—C2A | 131.7 (2) | P1—C1A—C2A—P2 | −167.2 (2) |
Acknowledgements
This research was kindly supported by the Gottlieb Daimler and Karl Benz Foundation (doctoral fellowship to NV) and by the Deutsche Forschungsgemeinschaft.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Crepy, K. V. L. & Imamoto, T. (2003a). Top. Curr. Chem. 229, 1–40. CAS Google Scholar
Crepy, K. V. L. & Imamoto, T. (2003b). Adv. Synth. Catal. 345, 79–101. Web of Science CrossRef CAS Google Scholar
Demchuk, O. M., Pietrusiewicz, K. M., Michrowska, A. & Grela, K. (2003). Org. Lett. 5, 3217–3220. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Glueck, D. S. (2008). Chem. Eur. J. 14, 7108–7117. Web of Science CrossRef PubMed CAS Google Scholar
Knowles, W. S. (1983). Acc. Chem. Res. 16, 106–112. CrossRef CAS Web of Science Google Scholar
Knowles, W. S. (2002). Angew. Chem. Int. Ed. 41, 1998–2007. CrossRef CAS Google Scholar
Pietrusiewicz, K. M. & Zablocka, M. (1988). Tetrahedron Lett. 29, 1987–1990. CrossRef CAS Web of Science Google Scholar
Pietrusiewicz, K. M., Zablocka, M. & Monkiewicz, J. (1984). J. Org. Chem. 49, 1522–1526. CrossRef CAS Web of Science Google Scholar
Pietrusiewicz, K. M., Zablocka, M., Wieczorek, W. & Brandi, A. (1991). Tetrahedron Asymmetry, 2, 419–428. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1999). IPDS. Stoe & Cie, Darmstadt, Germany. Google Scholar
Szmigielska, A., Pietrusiewicz, K. M., Ricken, S., Schürmann, M., Preut, H. & Eilbracht, P. (2006). Acta Cryst. E62, o2953–o2954. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vinokurov, N., Garabatos-Perera, J. R., Zhao-Karger, Z., Wiebcke, M. & Butenschön, H. (2008). Organometallics, 27, 1878–1886. Web of Science CSD CrossRef CAS Google Scholar
Vinokurov, N., Michrowska, A., Szmigielska, A., Drzazga, Z., Wojciuk, G., Demchuk, O. M., Grela, K., Pietrusiewicz, K. M. & Butenschön, H. (2006). Adv. Synth. Catal. 348, 931–938. Web of Science CrossRef CAS Google Scholar
Vinokurov, N., Pietrusiewicz, K. M., Frynas, S., Wiebcke, M. & Butenschön, H. (2008). Chem. Commun. pp. 5408–5410. Web of Science CSD CrossRef Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Optically active P-stereogenic 1,2-diphosphinoethanes constitute an important class of chiral bidentate ligands of great practical utility in the field of asymmetric catalysis (Crepy & Imamoto, 2003, Glueck, 2008, Knowles, 1983, 2002). The corresponding P-stereogenic diphosphane dioxides, which are the most direct precursors to such ligands, have recently been shown to be easily accessible through a simple conjugate addition of secondary phosphine oxides to the homochiral (–)-(SP)-methylphenylphosphine oxide oxide (Pietrusiewicz & Zablocka, 1988). Recently, we reported on the synthesis of (SP,SP)-(–)-(E)-ethene-1,2-diylbis[methyl(phenyl)phosphine] dioxide (1) by the homo cross-metathesis reaction of (S)-methylphenylvinylphosphine oxide (Demchuk et al., 2003, Vinokurov et al., 2008, Vinokurov et al., 2006) and then studied the reactivity of 1 in 1,3-dipolar cycloadditions with acyclic nitrones to achieve new bidentate P-stereogenic phosphane ligands after stereospecific reduction (Vinokurov et al., 2008).
Although we have recently postulated the di-s-cis conformation of 1 as the reactive conformation in the thermal 1,3-dipolar cycloaddition, no experimental evidence with regard to the conformation of 1 has yet been reported. However, the structure of the related (–)-(SP)-methylphenylphosphine oxide (Pietrusiewicz et al., 1991) and (+)-(RP)-(tert-butylvinylphosphinoyl)benzene have recently been reported (Szmigielska et al., 2006). Herein, we describe the solid state structure of (SP,SP)-(–)-(E)-ethene-1,2-diylbis[methyl(phenyl)phosphine] dioxide (1), which has been obtained by a single-crystal X-ray structure analysis.
The molecular structure of 1 is displayed in Fig. 1. The absolute configuration of the stereogenic centers has not been determined crystallographically but is evident from that of the starting material (Pietrusiewicz et al., 1984, Pietrusiewicz et al., 1991) as well as from the crystal structure analysis of a cycloaddition product (Vinokurov et al., 2008). The largest substituents of each phosphorus atom are placed in the most distant zigzag positions, and the P1=O1 and P2=O2 dipoles are oriented in opposite directions relative to one another. The deviation from planarity of the O=P—C=C—P=O is reflected by the torsional angles given in Table 1.
As typical for compounds of type R3P=O deformations of the tetrahedral environment of the P atoms cause an increase of the O—P—C and the simultaneous decrease of the C—P—C valency angles. The values observed fall in the range of 110.28 (15) - 115.80 (17)° and 101.69 (17) - 107.26 (15)° for P1 and, 110.87 (15)° - 114.73 (15)° and 102.42 (17) - 107.94 (14)° for P2, respectively.
DFT calculations show the observed conformation to be more stable than the corresponding di-s-trans conformation by 16.54 kJ/mol (TURBOMOLE 5.7 Method BP86/SV(P).