organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(SP,SP)-(–)-(E)-1,2-Bis(methyl­phenyl­phosphino­yl)ethene

aInstitut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany, and bDepartment of Organic Chemistry, Maria Curie-Sklodowska-University Lublin, ul. Gliniana 33, Lublin, PL-20-614, Poland
*Correspondence e-mail: holger.butenschoen@mbox.oci.uni-hannover.de

(Received 16 December 2008; accepted 9 February 2009; online 13 February 2009)

The title compound, C16H18O2P2, possesses two stereogenic P atoms and shows a distorted scis conformation of each O=P—C=C moiety. This has been suggested on the basis of the stereochemical result of 1,3-dipolar cyclo­additions with nitro­nes and is now confirmed by the present crystal structure analysis. There are two crystallographically independent molecules in the asymmetric unit.

Related literature

For optically active P-stereogenic 1,2-diphosphinoethanes and diphosphane dioxides, see: Crepy & Imamoto (2003a[Crepy, K. V. L. & Imamoto, T. (2003a). Top. Curr. Chem. 229, 1-40.],b[Crepy, K. V. L. & Imamoto, T. (2003b). Adv. Synth. Catal. 345, 79-101.]); Glueck (2008[Glueck, D. S. (2008). Chem. Eur. J. 14, 7108-7117.]); Knowles (1983[Knowles, W. S. (1983). Acc. Chem. Res. 16, 106-112.], 2002[Knowles, W. S. (2002). Angew. Chem. Int. Ed. 41, 1998-2007.]); Pietrusiewicz & Zablocka (1988[Pietrusiewicz, K. M. & Zablocka, M. (1988). Tetrahedron Lett. 29, 1987-1990.]); Demchuk et al. (2003[Demchuk, O. M., Pietrusiewicz, K. M., Michrowska, A. & Grela, K. (2003). Org. Lett. 5, 3217-3220.]); Vinokurov et al. (2006[Vinokurov, N., Michrowska, A., Szmigielska, A., Drzazga, Z., Wojciuk, G., Demchuk, O. M., Grela, K., Pietrusiewicz, K. M. & Butenschön, H. (2006). Adv. Synth. Catal. 348, 931-938.]); Vinokurov, Garabatos-Perera et al. (2008[Vinokurov, N., Garabatos-Perera, J. R., Zhao-Karger, Z., Wiebcke, M. & Butenschön, H. (2008). Organometallics, 27, 1878-1886.]) and Vinokurov, Pietrusiewicz et al. (2008[Vinokurov, N., Pietrusiewicz, K. M., Frynas, S., Wiebcke, M. & Butenschön, H. (2008). Chem. Commun. pp. 5408-5410.]). For the structures of (–)-(SP)-methyl­phenyl­phosphine oxide and (+)-(RP)-(tert-butyl­vinyl­phosphino­yl)benzene, see: Pietrusiewicz et al. (1991[Pietrusiewicz, K. M., Zablocka, M., Wieczorek, W. & Brandi, A. (1991). Tetrahedron Asymmetry, 2, 419-428.]); Szmigielska et al. (2006[Szmigielska, A., Pietrusiewicz, K. M., Ricken, S., Schürmann, M., Preut, H. & Eilbracht, P. (2006). Acta Cryst. E62, o2953-o2954.]). For the determination of the absolute configuration of the stereogenic centers for the title compound, see: Pietrusiewicz et al. (1984[Pietrusiewicz, K. M., Zablocka, M. & Monkiewicz, J. (1984). J. Org. Chem. 49, 1522-1526.], 1991[Pietrusiewicz, K. M., Zablocka, M., Wieczorek, W. & Brandi, A. (1991). Tetrahedron Asymmetry, 2, 419-428.]) and Vinokurov, Pietrusiewicz et al. (2008[Vinokurov, N., Pietrusiewicz, K. M., Frynas, S., Wiebcke, M. & Butenschön, H. (2008). Chem. Commun. pp. 5408-5410.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18O2P2

  • Mr = 304.24

  • Monoclinic, P 21

  • a = 11.686 (5) Å

  • b = 5.5291 (15) Å

  • c = 24.132 (10) Å

  • β = 96.36 (5)°

  • V = 1549.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 297 K

  • 0.35 × 0.29 × 0.18 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.927, Tmax = 0.953

  • 20851 measured reflections

  • 6041 independent reflections

  • 4640 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.097

  • S = 0.99

  • 6041 reflections

  • 361 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2656 Friedel pairs

  • Flack parameter: 0.01 (9)

Data collection: IPDS (Stoe & Cie, 1999[Stoe & Cie (1999). IPDS. Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Optically active P-stereogenic 1,2-diphosphinoethanes constitute an important class of chiral bidentate ligands of great practical utility in the field of asymmetric catalysis (Crepy & Imamoto, 2003, Glueck, 2008, Knowles, 1983, 2002). The corresponding P-stereogenic diphosphane dioxides, which are the most direct precursors to such ligands, have recently been shown to be easily accessible through a simple conjugate addition of secondary phosphine oxides to the homochiral (–)-(SP)-methylphenylphosphine oxide oxide (Pietrusiewicz & Zablocka, 1988). Recently, we reported on the synthesis of (SP,SP)-(–)-(E)-ethene-1,2-diylbis[methyl(phenyl)phosphine] dioxide (1) by the homo cross-metathesis reaction of (S)-methylphenylvinylphosphine oxide (Demchuk et al., 2003, Vinokurov et al., 2008, Vinokurov et al., 2006) and then studied the reactivity of 1 in 1,3-dipolar cycloadditions with acyclic nitrones to achieve new bidentate P-stereogenic phosphane ligands after stereospecific reduction (Vinokurov et al., 2008).

Although we have recently postulated the di-s-cis conformation of 1 as the reactive conformation in the thermal 1,3-dipolar cycloaddition, no experimental evidence with regard to the conformation of 1 has yet been reported. However, the structure of the related (–)-(SP)-methylphenylphosphine oxide (Pietrusiewicz et al., 1991) and (+)-(RP)-(tert-butylvinylphosphinoyl)benzene have recently been reported (Szmigielska et al., 2006). Herein, we describe the solid state structure of (SP,SP)-(–)-(E)-ethene-1,2-diylbis[methyl(phenyl)phosphine] dioxide (1), which has been obtained by a single-crystal X-ray structure analysis.

The molecular structure of 1 is displayed in Fig. 1. The absolute configuration of the stereogenic centers has not been determined crystallographically but is evident from that of the starting material (Pietrusiewicz et al., 1984, Pietrusiewicz et al., 1991) as well as from the crystal structure analysis of a cycloaddition product (Vinokurov et al., 2008). The largest substituents of each phosphorus atom are placed in the most distant zigzag positions, and the P1=O1 and P2=O2 dipoles are oriented in opposite directions relative to one another. The deviation from planarity of the O=P—C=C—P=O is reflected by the torsional angles given in Table 1.

As typical for compounds of type R3P=O deformations of the tetrahedral environment of the P atoms cause an increase of the O—P—C and the simultaneous decrease of the C—P—C valency angles. The values observed fall in the range of 110.28 (15) - 115.80 (17)° and 101.69 (17) - 107.26 (15)° for P1 and, 110.87 (15)° - 114.73 (15)° and 102.42 (17) - 107.94 (14)° for P2, respectively.

DFT calculations show the observed conformation to be more stable than the corresponding di-s-trans conformation by 16.54 kJ/mol (TURBOMOLE 5.7 Method BP86/SV(P).

Related literature top

For optically active P-stereogenic 1,2-diphosphinoethanes and diphosphane dioxides see: Crepy & Imamoto (2003a,b), Glueck (2008), Knowles (1983, 2002), Pietrusiewicz & Zablocka (1988), Demchuk et al. (2003), Vinokurov et al. (2006), Vinokurov, Garabatos-Perera et al. (2008), Vinokurov, Pietrusiewicz et al. (2008). For the structures of (–)-(SP)-methylphenylphosphine oxide and (+)-(RP)-(tert-butylvinylphosphinoyl)benzene see: Pietrusiewicz et al. (1991) and Szmigielska et al. (2006). For the determination of the absolute configuration of the stereogenic centers for 1 see Pietrusiewicz et al. (1984, 1991) and Vinokurov, Pietrusiewicz et al. (2008).

Experimental top

For the preparation of (SP,SP)-(-)-(E)-1,2-bis(methylphenylphosphinoyl)ethene (1) see Vinokurov et al. (2006).

Refinement top

Note: The asymmetric unit contains two crystallographically independent molecules, one of which is presented here. H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) × Ueq(C).

Computing details top

Data collection: IPDS (Stoe & Cie, 1999); cell refinement: IPDS (Stoe & Cie, 1999); data reduction: IPDS (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen, 2004) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Structure of (1) in the crystal with atom labels and 50% probability displacement ellipsoids for non-H atoms.
(SP,SP)-(-)-(E)-1,2-Bis(methylphenylphosphinoyl)ethene top
Crystal data top
C16H18O2P2F(000) = 640
Mr = 304.24Dx = 1.304 Mg m3
Monoclinic, P21Melting point: 511 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 11.686 (5) ÅCell parameters from 8000 reflections
b = 5.5291 (15) Åθ = 2.3–25.4°
c = 24.132 (10) ŵ = 0.28 mm1
β = 96.36 (5)°T = 297 K
V = 1549.7 (10) Å3Plate, white
Z = 40.35 × 0.29 × 0.18 mm
Data collection top
Stoe IPDS
diffractometer
6041 independent reflections
Radiation source: fine-focus sealed tube4640 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
psi scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1414
Tmin = 0.927, Tmax = 0.953k = 66
20851 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0482P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.002
6041 reflectionsΔρmax = 0.37 e Å3
361 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983), 2656 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (9)
Crystal data top
C16H18O2P2V = 1549.7 (10) Å3
Mr = 304.24Z = 4
Monoclinic, P21Mo Kα radiation
a = 11.686 (5) ŵ = 0.28 mm1
b = 5.5291 (15) ÅT = 297 K
c = 24.132 (10) Å0.35 × 0.29 × 0.18 mm
β = 96.36 (5)°
Data collection top
Stoe IPDS
diffractometer
6041 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4640 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.953Rint = 0.067
20851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.37 e Å3
S = 0.99Δρmin = 0.19 e Å3
6041 reflectionsAbsolute structure: Flack (1983), 2656 Friedel pairs
361 parametersAbsolute structure parameter: 0.01 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.30457 (7)0.21685 (14)0.97574 (3)0.0353 (2)
P20.39031 (6)0.02618 (15)1.14954 (3)0.0346 (2)
O10.3363 (2)0.4760 (5)0.98268 (10)0.0538 (6)
O20.3896 (2)0.2919 (4)1.14004 (10)0.0470 (6)
C1A0.3199 (3)0.0452 (6)1.03959 (12)0.0390 (7)
H1A0.30890.12131.03820.047*
C2A0.3466 (3)0.1518 (6)1.08850 (12)0.0377 (7)
H2A0.34270.31931.09130.045*
C3A0.2989 (3)0.0536 (6)1.20236 (11)0.0379 (7)
C4A0.2921 (4)0.1114 (7)1.24450 (15)0.0600 (10)
H4A0.33400.25451.24460.072*
C5A0.2234 (5)0.0671 (11)1.28698 (17)0.0792 (14)
H5A0.21880.18081.31500.095*
C6A0.1639 (4)0.1403 (10)1.28732 (19)0.0741 (13)
H6A0.11850.17011.31590.089*
C7A0.1693 (4)0.3089 (9)1.2460 (2)0.0704 (12)
H7A0.12710.45121.24640.085*
C8A0.2380 (3)0.2673 (8)1.20324 (15)0.0531 (8)
H8A0.24270.38271.17550.064*
C9A0.5286 (3)0.0957 (8)1.17267 (15)0.0557 (10)
H9A10.56060.01181.20560.083*
H9A20.52120.26451.18090.083*
H9A30.57840.07651.14390.083*
C10A0.1564 (3)0.1880 (6)0.94567 (12)0.0355 (7)
C11A0.1106 (3)0.3729 (7)0.91121 (15)0.0525 (9)
H11A0.15670.50320.90360.063*
C12A0.0027 (4)0.3649 (8)0.88820 (19)0.0639 (11)
H12A0.03190.48750.86430.077*
C13A0.0721 (3)0.1788 (9)0.90020 (18)0.0625 (11)
H13A0.14920.17820.88560.075*
C14A0.0288 (3)0.0100 (9)0.93402 (17)0.0644 (11)
H14A0.07600.13820.94170.077*
C15A0.0867 (3)0.0058 (7)0.95651 (13)0.0490 (8)
H15A0.11690.13290.97880.059*
C16A0.3893 (3)0.0436 (8)0.93298 (14)0.0508 (9)
H16A0.38790.11900.89710.076*
H16B0.35830.11700.92860.076*
H16C0.46720.03550.95030.076*
P30.69714 (6)0.45422 (16)0.52266 (3)0.03485 (19)
P40.61341 (7)0.25487 (16)0.34535 (3)0.0377 (2)
O30.6815 (2)0.7189 (5)0.51686 (10)0.0521 (6)
O40.6118 (2)0.0103 (5)0.35230 (10)0.0528 (6)
C1B0.6767 (2)0.2977 (6)0.45711 (12)0.0363 (7)
H1B0.68130.12980.45700.044*
C2B0.6553 (2)0.4128 (6)0.40913 (11)0.0361 (7)
H2B0.66210.58030.40850.043*
C3B0.7090 (3)0.3418 (6)0.29501 (12)0.0395 (7)
C4B0.7920 (3)0.1795 (7)0.28267 (15)0.0518 (9)
H4B0.80210.03650.30290.062*
C5B0.8607 (3)0.2254 (9)0.24069 (18)0.0677 (11)
H5B0.91510.11220.23240.081*
C6B0.8484 (4)0.4391 (9)0.21121 (17)0.0662 (11)
H6B0.89530.47180.18340.079*
C7B0.7671 (4)0.6022 (8)0.22304 (18)0.0679 (12)
H7B0.75760.74510.20270.082*
C8B0.6986 (4)0.5562 (7)0.26523 (16)0.0584 (10)
H8B0.64490.67090.27360.070*
C9B0.4772 (3)0.3870 (7)0.32300 (15)0.0547 (10)
H9B10.44600.31490.28840.082*
H9B20.48640.55780.31790.082*
H9B30.42560.35950.35070.082*
C10B0.8407 (3)0.3773 (6)0.55361 (12)0.0345 (7)
C11B0.9281 (3)0.5428 (8)0.54766 (15)0.0542 (9)
H11B0.91130.68540.52800.065*
C12B1.0393 (3)0.4980 (9)0.57053 (19)0.0678 (12)
H12B1.09710.60920.56580.081*
C13B1.0648 (3)0.2913 (9)0.60005 (18)0.0650 (12)
H13B1.13970.26320.61600.078*
C14B0.9795 (3)0.1226 (9)0.60642 (17)0.0634 (11)
H14B0.99710.01870.62650.076*
C15B0.8674 (3)0.1661 (7)0.58256 (16)0.0508 (9)
H15B0.81030.05200.58620.061*
C16B0.5972 (3)0.3059 (8)0.56197 (14)0.0520 (9)
H16D0.60100.37670.59840.078*
H16E0.61610.13710.56530.078*
H16F0.52070.32390.54330.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0399 (4)0.0320 (5)0.0331 (4)0.0040 (3)0.0008 (3)0.0008 (3)
P20.0375 (4)0.0341 (5)0.0315 (4)0.0016 (4)0.0000 (3)0.0002 (3)
O10.0653 (15)0.0310 (14)0.0615 (14)0.0135 (12)0.0088 (12)0.0025 (12)
O20.0612 (14)0.0282 (13)0.0521 (12)0.0006 (11)0.0089 (11)0.0009 (10)
C1A0.0425 (17)0.0376 (17)0.0362 (15)0.0016 (14)0.0015 (13)0.0010 (13)
C2A0.0434 (17)0.0346 (17)0.0349 (15)0.0013 (13)0.0036 (13)0.0025 (12)
C3A0.0377 (16)0.0416 (17)0.0331 (14)0.0029 (14)0.0024 (12)0.0020 (13)
C4A0.080 (3)0.054 (3)0.0479 (19)0.0009 (19)0.0144 (19)0.0109 (16)
C5A0.112 (4)0.083 (4)0.048 (2)0.004 (3)0.032 (2)0.006 (2)
C6A0.074 (3)0.086 (3)0.068 (3)0.015 (3)0.034 (2)0.016 (2)
C7A0.056 (2)0.067 (3)0.092 (3)0.002 (2)0.024 (2)0.014 (2)
C8A0.052 (2)0.046 (2)0.062 (2)0.0021 (17)0.0120 (16)0.0027 (17)
C9A0.045 (2)0.070 (3)0.0511 (19)0.0026 (18)0.0025 (16)0.0010 (19)
C10A0.0431 (16)0.0322 (18)0.0312 (13)0.0015 (13)0.0032 (12)0.0009 (12)
C11A0.054 (2)0.046 (2)0.057 (2)0.0032 (16)0.0003 (17)0.0054 (16)
C12A0.058 (2)0.059 (3)0.070 (3)0.014 (2)0.014 (2)0.002 (2)
C13A0.043 (2)0.070 (3)0.071 (2)0.0076 (19)0.0055 (18)0.024 (2)
C14A0.051 (2)0.077 (3)0.066 (2)0.015 (2)0.0072 (18)0.007 (2)
C15A0.0511 (18)0.045 (2)0.0483 (17)0.0064 (16)0.0042 (14)0.0050 (16)
C16A0.0446 (19)0.059 (2)0.0503 (18)0.0003 (16)0.0116 (15)0.0019 (17)
P30.0352 (4)0.0359 (5)0.0330 (4)0.0013 (4)0.0018 (3)0.0026 (4)
P40.0410 (4)0.0376 (5)0.0345 (4)0.0042 (4)0.0039 (3)0.0058 (4)
O30.0566 (15)0.0390 (15)0.0578 (14)0.0047 (12)0.0064 (11)0.0032 (12)
O40.0715 (16)0.0363 (15)0.0538 (13)0.0085 (12)0.0205 (12)0.0051 (11)
C1B0.0320 (15)0.0399 (19)0.0369 (15)0.0027 (13)0.0025 (12)0.0022 (13)
C2B0.0339 (15)0.0399 (19)0.0346 (14)0.0015 (13)0.0040 (12)0.0015 (13)
C3B0.0430 (17)0.0439 (18)0.0303 (14)0.0042 (14)0.0020 (13)0.0005 (13)
C4B0.0444 (18)0.052 (2)0.059 (2)0.0056 (16)0.0084 (16)0.0110 (17)
C5B0.053 (2)0.077 (3)0.077 (3)0.008 (2)0.024 (2)0.000 (3)
C6B0.072 (3)0.072 (3)0.059 (2)0.017 (3)0.027 (2)0.002 (2)
C7B0.095 (3)0.054 (3)0.058 (2)0.002 (2)0.022 (2)0.012 (2)
C8B0.079 (3)0.042 (2)0.058 (2)0.0048 (19)0.0219 (19)0.0017 (18)
C9B0.0432 (18)0.065 (3)0.0533 (19)0.0008 (17)0.0058 (15)0.0185 (18)
C10B0.0341 (15)0.0381 (18)0.0310 (14)0.0000 (12)0.0027 (12)0.0041 (12)
C11B0.0449 (19)0.056 (2)0.062 (2)0.0049 (16)0.0059 (16)0.0030 (18)
C12B0.0373 (19)0.078 (3)0.087 (3)0.013 (2)0.0034 (18)0.011 (3)
C13B0.041 (2)0.079 (3)0.071 (2)0.015 (2)0.0086 (17)0.025 (2)
C14B0.057 (2)0.067 (3)0.062 (2)0.018 (2)0.0108 (18)0.002 (2)
C15B0.0440 (19)0.047 (2)0.060 (2)0.0004 (15)0.0014 (16)0.0042 (17)
C16B0.0427 (18)0.067 (3)0.0485 (19)0.0010 (17)0.0128 (15)0.0009 (17)
Geometric parameters (Å, º) top
P1—O11.485 (3)P3—O31.480 (3)
P1—C16A1.786 (4)P3—C16B1.784 (3)
P1—C1A1.801 (3)P3—C1B1.796 (3)
P1—C10A1.809 (3)P3—C10B1.810 (3)
P2—O21.487 (3)P4—O41.476 (3)
P2—C9A1.782 (4)P4—C9B1.780 (4)
P2—C2A1.798 (3)P4—C2B1.790 (3)
P2—C3A1.806 (3)P4—C3B1.804 (3)
C1A—C2A1.325 (4)C1B—C2B1.321 (4)
C1A—H1A0.9300C1B—H1B0.9300
C2A—H2A0.9300C2B—H2B0.9300
C3A—C4A1.375 (5)C3B—C4B1.378 (5)
C3A—C8A1.381 (5)C3B—C8B1.385 (5)
C4A—C5A1.392 (6)C4B—C5B1.384 (5)
C4A—H4A0.9300C4B—H4B0.9300
C5A—C6A1.341 (7)C5B—C6B1.378 (7)
C5A—H5A0.9300C5B—H5B0.9300
C6A—C7A1.372 (7)C6B—C7B1.363 (6)
C6A—H6A0.9300C6B—H6B0.9300
C7A—C8A1.394 (5)C7B—C8B1.387 (5)
C7A—H7A0.9300C7B—H7B0.9300
C8A—H8A0.9300C8B—H8B0.9300
C9A—H9A10.9600C9B—H9B10.9600
C9A—H9A20.9600C9B—H9B20.9600
C9A—H9A30.9600C9B—H9B30.9600
C10A—C11A1.387 (5)C10B—C15B1.379 (5)
C10A—C15A1.388 (5)C10B—C11B1.391 (5)
C11A—C12A1.378 (6)C11B—C12B1.377 (5)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.361 (6)C12B—C13B1.362 (7)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.386 (6)C13B—C14B1.386 (6)
C13A—H13A0.9300C13B—H13B0.9300
C14A—C15A1.397 (5)C14B—C15B1.392 (5)
C14A—H14A0.9300C14B—H14B0.9300
C15A—H15A0.9300C15B—H15B0.9300
C16A—H16A0.9600C16B—H16D0.9600
C16A—H16B0.9600C16B—H16E0.9600
C16A—H16C0.9600C16B—H16F0.9600
O1—P1—C16A115.80 (17)O3—P3—C16B115.05 (17)
O1—P1—C1A114.32 (15)O3—P3—C1B112.97 (15)
C16A—P1—C1A101.69 (17)C16B—P3—C1B102.46 (17)
O1—P1—C10A110.28 (15)O3—P3—C10B111.77 (15)
C16A—P1—C10A106.75 (16)C16B—P3—C10B107.71 (16)
C1A—P1—C10A107.26 (15)C1B—P3—C10B106.10 (14)
O2—P2—C9A114.30 (18)O4—P4—C9B114.84 (18)
O2—P2—C2A114.73 (15)O4—P4—C2B113.11 (15)
C9A—P2—C2A102.42 (17)C9B—P4—C2B102.15 (16)
O2—P2—C3A110.87 (15)O4—P4—C3B110.94 (15)
C9A—P2—C3A105.85 (17)C9B—P4—C3B106.63 (18)
C2A—P2—C3A107.94 (14)C2B—P4—C3B108.58 (15)
C2A—C1A—P1121.3 (3)C2B—C1B—P3122.3 (3)
C2A—C1A—H1A119.4C2B—C1B—H1B118.9
P1—C1A—H1A119.4P3—C1B—H1B118.9
C1A—C2A—P2120.2 (3)C1B—C2B—P4121.8 (3)
C1A—C2A—H2A119.9C1B—C2B—H2B119.1
P2—C2A—H2A119.9P4—C2B—H2B119.1
C4A—C3A—C8A118.9 (3)C4B—C3B—C8B117.9 (3)
C4A—C3A—P2116.6 (3)C4B—C3B—P4118.4 (3)
C8A—C3A—P2124.5 (2)C8B—C3B—P4123.5 (3)
C3A—C4A—C5A120.9 (4)C3B—C4B—C5B121.2 (4)
C3A—C4A—H4A119.6C3B—C4B—H4B119.4
C5A—C4A—H4A119.6C5B—C4B—H4B119.4
C6A—C5A—C4A119.8 (4)C6B—C5B—C4B120.0 (4)
C6A—C5A—H5A120.1C6B—C5B—H5B120.0
C4A—C5A—H5A120.1C4B—C5B—H5B120.0
C5A—C6A—C7A120.7 (4)C7B—C6B—C5B119.6 (3)
C5A—C6A—H6A119.7C7B—C6B—H6B120.2
C7A—C6A—H6A119.7C5B—C6B—H6B120.2
C6A—C7A—C8A120.2 (4)C6B—C7B—C8B120.3 (4)
C6A—C7A—H7A119.9C6B—C7B—H7B119.8
C8A—C7A—H7A119.9C8B—C7B—H7B119.8
C3A—C8A—C7A119.5 (4)C3B—C8B—C7B120.9 (4)
C3A—C8A—H8A120.3C3B—C8B—H8B119.5
C7A—C8A—H8A120.3C7B—C8B—H8B119.5
P2—C9A—H9A1109.5P4—C9B—H9B1109.5
P2—C9A—H9A2109.5P4—C9B—H9B2109.5
H9A1—C9A—H9A2109.5H9B1—C9B—H9B2109.5
P2—C9A—H9A3109.5P4—C9B—H9B3109.5
H9A1—C9A—H9A3109.5H9B1—C9B—H9B3109.5
H9A2—C9A—H9A3109.5H9B2—C9B—H9B3109.5
C11A—C10A—C15A119.1 (3)C15B—C10B—C11B118.8 (3)
C11A—C10A—P1117.6 (3)C15B—C10B—P3123.8 (3)
C15A—C10A—P1123.2 (2)C11B—C10B—P3117.4 (3)
C12A—C11A—C10A120.5 (4)C12B—C11B—C10B120.8 (4)
C12A—C11A—H11A119.8C12B—C11B—H11B119.6
C10A—C11A—H11A119.8C10B—C11B—H11B119.6
C13A—C12A—C11A120.5 (4)C13B—C12B—C11B120.2 (4)
C13A—C12A—H12A119.8C13B—C12B—H12B119.9
C11A—C12A—H12A119.8C11B—C12B—H12B119.9
C12A—C13A—C14A120.5 (4)C12B—C13B—C14B120.3 (4)
C12A—C13A—H13A119.8C12B—C13B—H13B119.8
C14A—C13A—H13A119.8C14B—C13B—H13B119.8
C13A—C14A—C15A119.4 (4)C13B—C14B—C15B119.5 (4)
C13A—C14A—H14A120.3C13B—C14B—H14B120.2
C15A—C14A—H14A120.3C15B—C14B—H14B120.2
C10A—C15A—C14A120.0 (4)C10B—C15B—C14B120.4 (4)
C10A—C15A—H15A120.0C10B—C15B—H15B119.8
C14A—C15A—H15A120.0C14B—C15B—H15B119.8
P1—C16A—H16A109.5P3—C16B—H16D109.5
P1—C16A—H16B109.5P3—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
P1—C16A—H16C109.5P3—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5
C3A—P2—C2A—C1A125.9 (7)O1—P1—C1A—C2A6.2 (4)
P1—C1A—C2A—P2167.1 (5)O2—P2—C2A—C1A1.8 (4)
C16A—P1—C1A—C2A131.7 (2)P1—C1A—C2A—P2167.2 (2)

Experimental details

Crystal data
Chemical formulaC16H18O2P2
Mr304.24
Crystal system, space groupMonoclinic, P21
Temperature (K)297
a, b, c (Å)11.686 (5), 5.5291 (15), 24.132 (10)
β (°) 96.36 (5)
V3)1549.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.35 × 0.29 × 0.18
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.927, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
20851, 6041, 4640
Rint0.067
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.097, 0.99
No. of reflections6041
No. of parameters361
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.19
Absolute structureFlack (1983), 2656 Friedel pairs
Absolute structure parameter0.01 (9)

Computer programs: IPDS (Stoe & Cie, 1999), SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), enCIFer (Allen, 2004) and publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
P1—O11.485 (3)P2—C2A1.798 (3)
P1—C1A1.801 (3)C1A—C2A1.325 (4)
P2—O21.487 (3)
O1—P1—C16A115.80 (17)O2—P2—C2A114.73 (15)
O1—P1—C1A114.32 (15)C2A—C1A—P1121.3 (3)
O2—P2—C9A114.30 (18)C1A—C2A—P2120.2 (3)
C3A—P2—C2A—C1A125.9 (7)O1—P1—C1A—C2A6.2 (4)
P1—C1A—C2A—P2167.1 (5)O2—P2—C2A—C1A1.8 (4)
C16A—P1—C1A—C2A131.7 (2)P1—C1A—C2A—P2167.2 (2)
 

Acknowledgements

This research was kindly supported by the Gottlieb Daimler and Karl Benz Foundation (doctoral fellowship to NV) and by the Deutsche Forschungsgemeinschaft.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCrepy, K. V. L. & Imamoto, T. (2003a). Top. Curr. Chem. 229, 1–40.  CAS Google Scholar
First citationCrepy, K. V. L. & Imamoto, T. (2003b). Adv. Synth. Catal. 345, 79–101.  Web of Science CrossRef CAS Google Scholar
First citationDemchuk, O. M., Pietrusiewicz, K. M., Michrowska, A. & Grela, K. (2003). Org. Lett. 5, 3217–3220.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGlueck, D. S. (2008). Chem. Eur. J. 14, 7108–7117.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKnowles, W. S. (1983). Acc. Chem. Res. 16, 106–112.  CrossRef CAS Web of Science Google Scholar
First citationKnowles, W. S. (2002). Angew. Chem. Int. Ed. 41, 1998–2007.  CrossRef CAS Google Scholar
First citationPietrusiewicz, K. M. & Zablocka, M. (1988). Tetrahedron Lett. 29, 1987–1990.  CrossRef CAS Web of Science Google Scholar
First citationPietrusiewicz, K. M., Zablocka, M. & Monkiewicz, J. (1984). J. Org. Chem. 49, 1522–1526.  CrossRef CAS Web of Science Google Scholar
First citationPietrusiewicz, K. M., Zablocka, M., Wieczorek, W. & Brandi, A. (1991). Tetrahedron Asymmetry, 2, 419–428.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). IPDS. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSzmigielska, A., Pietrusiewicz, K. M., Ricken, S., Schürmann, M., Preut, H. & Eilbracht, P. (2006). Acta Cryst. E62, o2953–o2954.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVinokurov, N., Garabatos-Perera, J. R., Zhao-Karger, Z., Wiebcke, M. & Butenschön, H. (2008). Organometallics, 27, 1878–1886.  Web of Science CSD CrossRef CAS Google Scholar
First citationVinokurov, N., Michrowska, A., Szmigielska, A., Drzazga, Z., Wojciuk, G., Demchuk, O. M., Grela, K., Pietrusiewicz, K. M. & Butenschön, H. (2006). Adv. Synth. Catal. 348, 931–938.  Web of Science CrossRef CAS Google Scholar
First citationVinokurov, N., Pietrusiewicz, K. M., Frynas, S., Wiebcke, M. & Butenschön, H. (2008). Chem. Commun. pp. 5408–5410.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds