organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

2-Hydr­­oxy-N′-(4-iso­propyl­cyclo­hexyl­carbon­yl)-3-methyl­benzohydrazide

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: leikeweipublic@hotmail.com

(Received 23 December 2008; accepted 17 February 2009; online 21 February 2009)

The crystal structure of the title compound, C18H26N2O3, is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds. One of the methyl groups is disordered with occupancies of 0.51 (3):0.49 (3).

Related literature

For the properties of metallocrowns, see: Alexiou et al. (2002[Alexiou, M., Dendrinou-Samara, C., Raptopoulou, C. P., Terzis, A. & Kessissoglou, D. P. (2002). Inorg. Chem. 41, 4732-4738.]); Gaynor et al. (2002[Gaynor, D., Starikova, Z. A., Ostrovsky, S., Haase, W. & Nolan, K. B. (2002). Chem. Commun. pp. 506-507.]); Lah & Pecoraro (1989[Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258-7259.]); Lehaire et al. (2002[Lehaire, M. L., Scopelliti, R., Piotrowski, H. & Severin, K. (2002). Angew. Chem. Int. Ed. 41, 1419-1421.]); Liu et al. (2001[Liu, S. X., Lin, S., Lin, B. Z., Lin, C. C. & Huang, J. Q. (2001). Angew. Chem. Int. Ed. 40, 1084-1087.], 2008[Liu, W., Lee, K., Park, M., John, R. P., Moon, D., Zou, Y., Liu, X., Ri, H.-C., Kim, G. H. & Lah, M. S. (2008). Inorg. Chem. 47, 8807-8812.]); Saalfrank et al. (2001[Saalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J. 7, 2765-2768.]).

[Scheme 1]

Experimental

Crystal data
  • C18H26N2O3

  • Mr = 318.41

  • Monoclinic, P 21 /c

  • a = 16.193 (5) Å

  • b = 16.194 (5) Å

  • c = 6.856 (2) Å

  • β = 97.892 (4)°

  • V = 1780.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.43 × 0.26 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none Tmin = 0.970, Tmax = 0.983

  • 8728 measured reflections

  • 6453 independent reflections

  • 3925 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.211

  • S = 1.05

  • 6453 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.05 2.821 (4) 149
O1—H1B⋯O3 0.82 1.92 2.636 (4) 145
N2—H2A⋯O3ii 0.86 2.10 2.898 (4) 154
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metallacrowns are important compounds. Because of their potentially unique properties (Alexiou et al., 2002; Gaynor et al., 2002; Lah & Pecoraro, 1989; Lehaire et al., 2002; Liu et al., 2001; Saalfrank et al., 2001), they have gained increasing attention over the past decade. These compounds can be readily assembled using a trianionic pentadentate ligand,N-acylsalicylhydrazide,having a trivalent octahedral metal ion. The size of the metallacrown can be controlled by modifying the close-contact interaction between the N-acyl residues of the ligands (Liu et al., 2008). We now report structure of a designed pentadentate ligand, N-4-isoPropylcyclohexyl-3-methyl-salicylhydrazide.

A view of the title structure is illustrated in Fig.1. Because of C1 splited into C1 and C1', It made the Ueq of neighbor atoms lower or larger than usual Ueq. The molecular conformation is characterized by N—H···O hydrogen bonds and the crystal packing is stabilized by N—H···O and O—H···O hydrogen bonds(Fig.2).

Related literature top

For the properties of metallocrowns, see: Alexiou et al. (2002); Gaynor et al. (2002); Lah & Pecoraro (1989); Lehaire et al. (2002); Liu et al. (2001, 2008); Saalfrank et al. (2001).

Experimental top

Trimethylaceto chloride (6.025 g, 50.0 mmol) was added to 50 ml chloroform solution of 4-isoPropylcyclohexyl acid with an external ice-water bath and triethylamine(5.200 g, 50.0 mmol). stirred for about 30 min slowly warmed to ambient temperature. To the above solution, 3-methyl-salicylhydrazide (7.636 g, 46.0 mmol)was added and stirred for 30 min. A white suspension began to appear after a while.the resulting white precipitate was filtered and rinsed with chloroform and diethyl ether. The title compound was recrystallized from methanol solution.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93%A; N—H = 0.86 Å; O—H = 0.82 Å) and Uiso(H) values weren taken to be equal to 1.2 Ueq(C, N) and 1.5Ueq(O). The C1 atom is disordered. Due to C12 is bonded to C3, which is not disordered. It has a smaller Ueq than other atoms, and thus has less freedom of movement. The larger than normal range of thermal motion is mostly due to the difference between the disordered group and the other atoms which are not disordered. The splited atom was dealed in the .ins file. the C1 atom is splited into C1 and C1', each of which has a half share. Then refinement, anisotropic refinement to convergence use the least-squares method.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. [symmetry code: (i) –X, 0.5+Y, 0.5-Z].
[Figure 2] Fig. 2. Packing diagram of (I). hydrogen bonds are shown as dashed lines.
2-Hydroxy-N'-(4-isopropylcyclohexylcarbonyl)-3-methylbenzohydrazide top
Crystal data top
C18H26N2O3F(000) = 688
Mr = 318.41Dx = 1.188 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5099 reflections
a = 16.193 (5) Åθ = 2.5–26.2°
b = 16.194 (5) ŵ = 0.08 mm1
c = 6.856 (2) ÅT = 296 K
β = 97.892 (4)°Block, colourless
V = 1780.8 (9) Å30.43 × 0.26 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3925 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 32.5°, θmin = 1.8°
ϕ and ω scansh = 1624
8728 measured reflectionsk = 1724
6453 independent reflectionsl = 710
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.211 w = 1/[σ2(Fo2) + (0.0912P)2 + 2.6628P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6453 reflectionsΔρmax = 0.40 e Å3
217 parametersΔρmin = 0.60 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (5)
Crystal data top
C18H26N2O3V = 1780.8 (9) Å3
Mr = 318.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.193 (5) ŵ = 0.08 mm1
b = 16.194 (5) ÅT = 296 K
c = 6.856 (2) Å0.43 × 0.26 × 0.22 mm
β = 97.892 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3925 reflections with I > 2σ(I)
8728 measured reflectionsRint = 0.025
6453 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 1.05Δρmax = 0.40 e Å3
6453 reflectionsΔρmin = 0.60 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.26649 (17)0.4109 (2)0.1034 (4)0.0739 (9)
H1B0.22570.42900.14810.111*
O20.02604 (18)0.29519 (17)0.2523 (4)0.0721 (9)
O30.10747 (16)0.44725 (15)0.0967 (4)0.0527 (7)
N10.01874 (18)0.36122 (18)0.0854 (5)0.0512 (9)
H1A0.01170.32270.17240.061*
N20.04755 (18)0.38761 (18)0.0058 (5)0.0513 (8)
H2A0.07820.42740.04620.062*
C10.458 (2)0.3768 (18)0.388 (6)0.056 (4)0.49 (3)
H1C0.48680.41940.30900.084*0.49 (3)
H1D0.49210.35640.48040.084*0.49 (3)
H1E0.44440.33250.30430.084*0.49 (3)
C1'0.454 (2)0.3490 (17)0.412 (6)0.056 (4)0.51 (3)
H1'A0.50580.36930.44710.084*0.51 (3)
H1'B0.44310.29500.46690.084*0.51 (3)
H1'C0.45800.34600.27090.084*0.51 (3)
C20.3959 (3)0.3661 (4)0.0978 (10)0.106 (2)
H2B0.43170.34830.19040.159*
H2C0.40510.33190.01760.159*
H2D0.40820.42250.06180.159*
C30.3787 (3)0.4114 (4)0.4969 (7)0.0834 (15)
H3A0.37900.46990.46000.100*
C40.2983 (3)0.3734 (3)0.2158 (6)0.0757 (14)
H4A0.30730.42870.16260.091*
H4B0.34480.33940.15910.091*
C50.3791 (4)0.4114 (5)0.7111 (8)0.119 (2)
H5A0.43010.43550.74070.179*
H5B0.33260.44300.77330.179*
H5C0.37480.35560.75910.179*
C60.2185 (2)0.3391 (3)0.1563 (6)0.0697 (12)
H6A0.22240.33940.01380.084*
H6B0.21160.28240.20050.084*
C70.2006 (3)0.3240 (3)0.4629 (6)0.0659 (12)
H7A0.18720.30610.59230.079*
C80.2827 (3)0.3312 (3)0.3797 (7)0.0722 (13)
H8A0.32420.31680.45460.087*
C90.2194 (3)0.4244 (3)0.5271 (6)0.0668 (12)
H9A0.22610.48200.48850.080*
H9B0.21550.42190.66940.080*
C100.3056 (3)0.3589 (3)0.1909 (7)0.0667 (12)
C110.1385 (2)0.3919 (3)0.4654 (6)0.0639 (11)
H11A0.09270.42720.52020.077*
H11B0.12780.33680.51820.077*
C120.2964 (2)0.3765 (3)0.4368 (6)0.0594 (11)
H12A0.29030.31970.48580.071*
C130.1385 (3)0.3435 (2)0.3521 (5)0.0519 (10)
H13A0.08290.33750.40570.062*
C140.0656 (2)0.3531 (2)0.1735 (5)0.0489 (9)
C150.2426 (2)0.3815 (2)0.0817 (6)0.0525 (10)
C160.1424 (2)0.3893 (2)0.2434 (5)0.0491 (9)
H16A0.14940.44590.19340.059*
C170.1590 (2)0.3722 (2)0.1597 (5)0.0438 (9)
C180.0941 (2)0.3959 (2)0.0379 (5)0.0432 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0567 (17)0.097 (2)0.0653 (19)0.0119 (16)0.0002 (14)0.0117 (16)
O20.078 (2)0.0557 (17)0.084 (2)0.0235 (15)0.0142 (16)0.0192 (15)
O30.0640 (16)0.0435 (14)0.0507 (15)0.0001 (12)0.0089 (12)0.0073 (12)
N10.0474 (18)0.0430 (17)0.065 (2)0.0004 (14)0.0150 (15)0.0112 (14)
N20.0483 (18)0.0446 (17)0.063 (2)0.0103 (14)0.0156 (15)0.0052 (15)
C10.052 (4)0.062 (15)0.054 (8)0.001 (11)0.007 (5)0.002 (10)
C1'0.052 (4)0.062 (15)0.054 (8)0.001 (11)0.007 (5)0.002 (10)
C20.049 (3)0.133 (5)0.137 (5)0.003 (3)0.021 (3)0.000 (4)
C30.066 (3)0.111 (4)0.078 (3)0.003 (3)0.026 (2)0.003 (3)
C40.052 (2)0.114 (4)0.060 (3)0.003 (2)0.005 (2)0.012 (2)
C50.089 (4)0.182 (7)0.091 (4)0.019 (4)0.029 (3)0.020 (4)
C60.055 (2)0.094 (3)0.060 (2)0.002 (2)0.0059 (19)0.022 (2)
C70.091 (3)0.052 (2)0.060 (2)0.007 (2)0.028 (2)0.0087 (19)
C80.077 (3)0.061 (3)0.087 (3)0.001 (2)0.041 (3)0.007 (2)
C90.066 (3)0.080 (3)0.056 (2)0.004 (2)0.013 (2)0.015 (2)
C100.052 (2)0.064 (3)0.087 (3)0.0014 (19)0.021 (2)0.004 (2)
C110.055 (2)0.079 (3)0.057 (2)0.007 (2)0.0021 (19)0.006 (2)
C120.059 (2)0.062 (2)0.058 (2)0.0005 (19)0.0116 (19)0.0021 (19)
C130.062 (2)0.042 (2)0.052 (2)0.0038 (17)0.0107 (18)0.0033 (16)
C140.050 (2)0.039 (2)0.058 (2)0.0026 (17)0.0056 (17)0.0026 (17)
C150.051 (2)0.049 (2)0.058 (2)0.0037 (17)0.0101 (18)0.0030 (17)
C160.052 (2)0.043 (2)0.053 (2)0.0033 (16)0.0103 (17)0.0060 (16)
C170.049 (2)0.0339 (18)0.050 (2)0.0022 (15)0.0113 (16)0.0022 (15)
C180.052 (2)0.0313 (17)0.046 (2)0.0023 (15)0.0077 (16)0.0037 (16)
Geometric parameters (Å, º) top
O1—C151.360 (5)C4—H4B0.9700
O1—H1B0.8200C5—H5A0.9600
O2—C141.220 (4)C5—H5B0.9600
O3—C181.239 (4)C5—H5C0.9600
N1—C181.342 (5)C6—C161.527 (6)
N1—N21.382 (4)C6—H6A0.9700
N1—H1A0.8600C6—H6B0.9700
N2—C141.346 (5)C7—C131.376 (6)
N2—H2A0.8600C7—C81.378 (7)
C1—C31.50 (4)C7—H7A0.9300
C1—H1C0.9600C8—C101.372 (6)
C1—H1D0.9600C8—H8A0.9300
C1—H1E0.9600C9—C111.525 (6)
C1'—C31.63 (4)C9—C121.526 (6)
C1'—H1'A0.9600C9—H9A0.9700
C1'—H1'B0.9600C9—H9B0.9700
C1'—H1'C0.9600C10—C151.394 (6)
C2—C101.518 (7)C11—C161.515 (5)
C2—H2B0.9600C11—H11A0.9700
C2—H2C0.9600C11—H11B0.9700
C2—H2D0.9600C12—H12A0.9800
C3—C51.469 (7)C13—C171.395 (5)
C3—C121.554 (6)C13—H13A0.9300
C3—H3A0.9800C14—C161.511 (5)
C4—C121.512 (6)C15—C171.395 (5)
C4—C61.514 (6)C16—H16A0.9800
C4—H4A0.9700C17—C181.479 (5)
C15—O1—H1B109.5H6A—C6—H6B107.9
C18—N1—N2119.8 (3)C13—C7—C8119.2 (4)
C18—N1—H1A120.1C13—C7—H7A120.4
N2—N1—H1A120.1C8—C7—H7A120.4
C14—N2—N1122.1 (3)C10—C8—C7122.6 (4)
C14—N2—H2A118.9C10—C8—H8A118.7
N1—N2—H2A118.9C7—C8—H8A118.7
C3—C1—H1C109.5C11—C9—C12113.4 (3)
C3—C1—H1D109.5C11—C9—H9A108.9
C3—C1—H1E109.5C12—C9—H9A108.9
C3—C1'—H1'A109.5C11—C9—H9B108.9
C3—C1'—H1'B109.5C12—C9—H9B108.9
H1'A—C1'—H1'B109.5H9A—C9—H9B107.7
C3—C1'—H1'C109.5C8—C10—C15118.0 (4)
H1'A—C1'—H1'C109.5C8—C10—C2122.8 (4)
H1'B—C1'—H1'C109.5C15—C10—C2119.2 (4)
C10—C2—H2B109.5C16—C11—C9111.7 (3)
C10—C2—H2C109.5C16—C11—H11A109.3
H2B—C2—H2C109.5C9—C11—H11A109.3
C10—C2—H2D109.5C16—C11—H11B109.3
H2B—C2—H2D109.5C9—C11—H11B109.3
H2C—C2—H2D109.5H11A—C11—H11B107.9
C5—C3—C1112.2 (16)C4—C12—C9109.0 (4)
C5—C3—C12112.8 (4)C4—C12—C3112.2 (4)
C1—C3—C12115.8 (16)C9—C12—C3112.9 (4)
C5—C3—C1'104.6 (14)C4—C12—H12A107.5
C1—C3—C1'17.0 (13)C9—C12—H12A107.5
C12—C3—C1'107.9 (14)C3—C12—H12A107.5
C5—C3—H3A104.9C7—C13—C17120.1 (4)
C1—C3—H3A104.9C7—C13—H13A119.9
C12—C3—H3A104.9C17—C13—H13A119.9
C1'—C3—H3A121.9O2—C14—N2122.3 (3)
C12—C4—C6112.4 (4)O2—C14—C16124.3 (3)
C12—C4—H4A109.1N2—C14—C16113.3 (3)
C6—C4—H4A109.1O1—C15—C10117.2 (4)
C12—C4—H4B109.1O1—C15—C17122.1 (3)
C6—C4—H4B109.1C10—C15—C17120.6 (4)
H4A—C4—H4B107.8C14—C16—C11114.0 (3)
C3—C5—H5A109.5C14—C16—C6108.9 (3)
C3—C5—H5B109.5C11—C16—C6109.1 (3)
H5A—C5—H5B109.5C14—C16—H16A108.2
C3—C5—H5C109.5C11—C16—H16A108.2
H5A—C5—H5C109.5C6—C16—H16A108.2
H5B—C5—H5C109.5C15—C17—C13119.4 (3)
C4—C6—C16111.9 (4)C15—C17—C18118.9 (3)
C4—C6—H6A109.2C13—C17—C18121.7 (3)
C16—C6—H6A109.2O3—C18—N1121.5 (3)
C4—C6—H6B109.2O3—C18—C17122.0 (3)
C16—C6—H6B109.2N1—C18—C17116.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.052.821 (4)149
O1—H1B···O30.821.922.636 (4)145
N2—H2A···O3ii0.862.102.898 (4)154
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H26N2O3
Mr318.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.193 (5), 16.194 (5), 6.856 (2)
β (°) 97.892 (4)
V3)1780.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.43 × 0.26 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8728, 6453, 3925
Rint0.025
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.211, 1.05
No. of reflections6453
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.60

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.85982.04892.821 (4)149.02
O1—H1B···O30.81961.92132.636 (4)145.12
N2—H2A···O3ii0.86032.10242.898 (4)153.59
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University and Ningbo Munic­ipal Natural Science Foundation (2008 A610051)

References

First citationAlexiou, M., Dendrinou-Samara, C., Raptopoulou, C. P., Terzis, A. & Kessissoglou, D. P. (2002). Inorg. Chem. 41, 4732–4738.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGaynor, D., Starikova, Z. A., Ostrovsky, S., Haase, W. & Nolan, K. B. (2002). Chem. Commun. pp. 506–507.  Web of Science CSD CrossRef Google Scholar
First citationLah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258–7259.  CSD CrossRef CAS Web of Science Google Scholar
First citationLehaire, M. L., Scopelliti, R., Piotrowski, H. & Severin, K. (2002). Angew. Chem. Int. Ed. 41, 1419–1421.  CrossRef CAS Google Scholar
First citationLiu, W., Lee, K., Park, M., John, R. P., Moon, D., Zou, Y., Liu, X., Ri, H.-C., Kim, G. H. & Lah, M. S. (2008). Inorg. Chem. 47, 8807–8812.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, S. X., Lin, S., Lin, B. Z., Lin, C. C. & Huang, J. Q. (2001). Angew. Chem. Int. Ed. 40, 1084–1087.  CrossRef CAS Google Scholar
First citationSaalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J. 7, 2765–2768.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds