metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m250-m251

[1,3-Bis(di­phenyl­phosphino)pentane-κ2P,P′]tetra­carbonyl­chromium(0)

aChemical Sciences Programme, Centre for Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-Ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 7 October 2008; accepted 10 January 2009; online 4 February 2009)

In the title compound, [Cr(C29H30P2)(CO)4], the Cr atom is octa­hedrally coordinated by four carbonyl ligands and one bidentate phosphine ligand, which is bounded as a chelate in a cis position. The average Cr—P and Cr—C bond lengths are 2.377 and 1.865 Å, respectively.

Related literature

For chromium–carbonyl complexes see: Shawkataly et al. (1996[Shawkataly, O. bin, Saminathan, T., Fun, H.-K. & Sivakumar, K. (1996). Acta Cryst. C52, 1352-1355.], 1997[Shawkataly, O. bin, Umathavan, A., Ramalingam, K., Fun, H.-K. & Ibrahim, A. R. (1997). Acta Cryst. C53, 1543-1545.], 2006[Shawkataly, O. bin, Islam, S. D., Fun, H.-K. & Didierjean, C. (2006). Acta Cryst. E62, m1086-m1087.]); for Cr—C bond lengths see: Bennett et al. (1971[Bennett, M. J., Cotton, F. A. & LaPrade, M. D. (1971). Acta Cryst. B27, 1899-1904.]); Ueng & Shih (1992[Ueng, C.-H. & Shih, G.-Y. (1992). Acta Cryst. C48, 988-991.]). For Cr—C and C—O distances see Whitaker & Jeffery (1967[Whitaker, A. & Jeffery, J. W. (1967). Acta Cryst. 23, 977-984.]); Jost et al. (1975[Jost, A., Rees, B. & Yelon, W. B. (1975). Acta Cryst. B31, 2649-2658.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(C29H30P2)(CO)4]

  • Mr = 604.51

  • Orthorhombic, P 21 21 21

  • a = 13.3013 (2) Å

  • b = 14.2333 (2) Å

  • c = 15.6694 (3) Å

  • V = 2966.55 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 293 (2) K

  • 0.48 × 0.42 × 0.28 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.785, Tmax = 0.866

  • 24593 measured reflections

  • 7364 independent reflections

  • 6364 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.072

  • S = 1.03

  • 7364 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3256 Friedel pairs

  • Flack parameter: −0.001 (13)

Table 1
Selected geometric parameters (Å, °)

Cr1—C1 1.851 (2)
Cr1—C2 1.8650 (19)
Cr1—C3 1.872 (2)
Cr1—C4 1.901 (2)
Cr1—P2 2.3736 (5)
Cr1—P3 2.3847 (5)
P2—Cr1—P3 91.389 (18)

Data collection: SMART (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

It is generally believed that the metal (M) to carbon monoxide bond involves both OC—M σ-bonding and M—CO π-bonding. In view of this phenomenon, the bonding characteristics of metal carbonyls with a phosphine ligand in phosphine-substituted metal carbonyls are of interest. A search of the Cambridge Structural Database (Version 5.29; Allen, 2002) revealed only 88 complexes of group VI metal carbonyls with a 3-carbon backbone bidentate phosphine. However, there are only a few examples of chromium carbonyl complexes (Shawkataly et al., 2006). Previously, we reported several crystal structures of phosphine-substituted group VI metal carbonyls (Shawkataly et al., 1996,1997). We present here the crystal structure of the title compound.

The title compound has an expected octahedral geometry (Fig. 1). The Cr—C bond lengths of the cis carbonyl ligands (with respect to the P atom) are slightly longer than those for the trans carbonyl group (Table 1). This trend was also observed in Cr[Ph2P(CH2)2PPh2](CO)4 (Bennett et al., 1971) and Cr[Ph2P(CH2)4PPh2](CO)4 (Ueng & Shih, 1992). The bidentate phosphine bite angle [91.389 (18)°] is intermediate between that observed in Cr[Ph2P(CH2)2PPh2](CO)4 (83.41 (8)°] and that in Cr[Ph2P(CH2)4PPh2](CO)4 (93.29 (5)°]. Comparison of the mean Cr—C and C—O distances in the title compound [1.872 (2) and 1.145 (6) Å, respectively] with those in Cr(CO)6 [1.909 (3) and 1.137 (4) Å, respectively (Whitaker & Jeffery, 1967); and 1.918 (2) and 1.141 (2) Å, respectively (Jost et al., 1975)], indicates stronger bonding owing to the back-bondi ng abilities of the bidentate phosphine. The Cr—P bond lengths, with an average values of 2.3792 (5) Å, are relatively short inspite of the presence of the bulky phosphine ligand.

Related literature top

For chromium–carbonyl complexes see: Shawkataly et al. (1996, 1997, 2006); for Cr—C bond lengths see: Bennett et al. (1971); Ueng & Shih (1992). For Cr—C and C—O distances see Whitaker et al. (1967); Jost et al. (1975). For a descriptopn of the Cambridge Structural Databas, see: Allen (2002).

Experimental top

A mixture of Cr(CO)6 (1.064 mmol) and Ph2P(CH3)CH(CH2)CH(CH3)PPh2 (1.065 mmol) was refluxed in a purified mixture of petroleum ether (60–80 °C, 25 ml) and butanol (20 ml) for ca 12 h under nitrogen atmosphere. The solvent was evaporated and the crude product was dissolved in acetone (5 ml) and filtered. Yellow crystals (75% yield) were obtained by slow evaporation of the acetone solution at room temperature. Analysis calculated for C33H30CrO4P2: C 65.55, H 5.01%; found C 65.54, H 5.00%.

Refinement top

All H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.93–0.98Å, C—H= 0.97 Å (methylene) and C—H= 0.96 Å (methyl) and Uiso(H) = 1.2Ueq(C, aromatic, methylene) and Uiso(H)=1.5Uequ(C methyl). A rotating group model was used for the methyl group. The number of Friedel pairs are 3260.

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound (50% probability displacement ellipsoids).
[2,4-Bis(diphenylphosphino)pentane- κ2P,P']tetracarbonylchromium(0) top
Crystal data top
[Cr(C29H30P2)(CO)4]F(000) = 1256
Mr = 604.51Dx = 1.354 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 427 reflections
a = 13.3013 (2) Åθ = 2–27.5°
b = 14.2333 (2) ŵ = 0.53 mm1
c = 15.6694 (3) ÅT = 293 K
V = 2966.55 (8) Å3Prism, yellow
Z = 40.48 × 0.42 × 0.28 mm
Data collection top
Siemens SMART CCD
diffractometer
7364 independent reflections
Radiation source: fine-focus sealed tube6364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1712
Tmin = 0.785, Tmax = 0.866k = 1818
24593 measured reflectionsl = 1820
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0349P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7364 reflectionsΔρmax = 0.19 e Å3
361 parametersΔρmin = 0.30 e Å3
0 restraintsAbsolute structure: Flack (1983), 3256 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (13)
Crystal data top
[Cr(C29H30P2)(CO)4]V = 2966.55 (8) Å3
Mr = 604.51Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 13.3013 (2) ŵ = 0.53 mm1
b = 14.2333 (2) ÅT = 293 K
c = 15.6694 (3) Å0.48 × 0.42 × 0.28 mm
Data collection top
Siemens SMART CCD
diffractometer
7364 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
6364 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.866Rint = 0.049
24593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.072Δρmax = 0.19 e Å3
S = 1.03Δρmin = 0.30 e Å3
7364 reflectionsAbsolute structure: Flack (1983), 3256 Friedel pairs
361 parametersAbsolute structure parameter: 0.001 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.21688 (2)0.11992 (2)0.931300 (16)0.03170 (7)
P20.33880 (3)0.10714 (3)0.82130 (3)0.03095 (10)
P30.10424 (3)0.01926 (3)0.85607 (3)0.03203 (10)
O10.35830 (13)0.24334 (14)1.02996 (12)0.0745 (5)
O20.07737 (12)0.14004 (13)1.08126 (9)0.0648 (5)
O30.29780 (14)0.05494 (12)1.01576 (10)0.0644 (4)
O40.11867 (14)0.29523 (11)0.85872 (12)0.0696 (5)
C10.30535 (15)0.19547 (15)0.99132 (13)0.0448 (5)
C20.12769 (14)0.13194 (15)1.02249 (12)0.0434 (5)
C30.26815 (15)0.01112 (15)0.98236 (11)0.0417 (4)
C40.15612 (16)0.22871 (15)0.88349 (12)0.0436 (5)
C50.01810 (14)0.06112 (14)0.77239 (11)0.0382 (4)
C60.05328 (15)0.12712 (14)0.71520 (12)0.0425 (4)
H60.11370.15770.72620.051*
C70.00026 (19)0.14868 (16)0.64175 (14)0.0573 (6)
H70.02630.19150.60280.069*
C80.09146 (19)0.10630 (19)0.62657 (14)0.0642 (7)
H80.12760.12100.57760.077*
C90.12896 (18)0.0428 (2)0.68371 (15)0.0625 (7)
H90.19110.01500.67360.075*
C100.07513 (16)0.01932 (17)0.75678 (14)0.0513 (5)
H100.10120.02410.79520.062*
C110.01881 (13)0.03718 (14)0.93242 (12)0.0390 (4)
C120.06244 (15)0.01504 (18)0.96266 (13)0.0523 (5)
H120.07520.07430.94010.063*
C130.12452 (17)0.0206 (2)1.02619 (15)0.0691 (8)
H130.17880.01441.04590.083*
C140.10527 (18)0.1081 (2)1.05985 (14)0.0720 (8)
H140.14700.13221.10220.086*
C150.0251 (2)0.1601 (2)1.03155 (14)0.0639 (7)
H150.01260.21901.05480.077*
C160.03757 (16)0.12478 (16)0.96805 (12)0.0475 (5)
H160.09220.16000.94940.057*
C170.32879 (14)0.20310 (13)0.74299 (11)0.0356 (4)
C180.29810 (16)0.19096 (15)0.65920 (13)0.0486 (5)
H180.28860.13070.63780.058*
C190.2816 (2)0.26759 (18)0.60726 (16)0.0643 (6)
H190.25940.25840.55160.077*
C200.29715 (19)0.35629 (19)0.63617 (18)0.0676 (7)
H200.28560.40740.60060.081*
C210.33051 (18)0.37031 (16)0.71937 (18)0.0620 (6)
H210.34260.43080.73920.074*
C220.34562 (16)0.29421 (14)0.77231 (14)0.0477 (5)
H220.36720.30380.82810.057*
C230.47292 (13)0.11750 (14)0.84941 (12)0.0374 (4)
C240.54190 (15)0.14519 (15)0.78829 (14)0.0488 (5)
H240.51950.16220.73420.059*
C250.64357 (16)0.14802 (18)0.80620 (17)0.0592 (6)
H250.68890.16760.76470.071*
C260.67731 (16)0.12194 (17)0.88523 (16)0.0590 (6)
H260.74580.12300.89710.071*
C270.61055 (17)0.09426 (16)0.94707 (16)0.0577 (6)
H270.63390.07681.00070.069*
C280.50785 (15)0.09223 (15)0.92967 (14)0.0477 (5)
H280.46270.07390.97180.057*
C290.16603 (14)0.07883 (12)0.79726 (11)0.0348 (4)
H290.20550.11510.83850.042*
C300.09214 (18)0.14639 (15)0.75374 (14)0.0520 (5)
H30A0.04630.17100.79540.078*
H30B0.12870.19720.72800.078*
H30C0.05520.11330.71060.078*
C310.23919 (13)0.04033 (13)0.72887 (11)0.0355 (4)
H31A0.25050.08990.68740.043*
H31B0.20540.01050.69930.043*
C320.34278 (14)0.00379 (13)0.75768 (11)0.0356 (4)
H320.38060.01040.70560.043*
C330.40092 (16)0.08103 (14)0.80401 (15)0.0497 (5)
H33A0.46520.05720.82160.074*
H33B0.41040.13340.76630.074*
H33C0.36370.10090.85330.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.02906 (13)0.03611 (14)0.02992 (12)0.00083 (12)0.00075 (11)0.00429 (12)
P20.0271 (2)0.0337 (2)0.0320 (2)0.00001 (19)0.00125 (17)0.00244 (18)
P30.0275 (2)0.0372 (2)0.0314 (2)0.00126 (18)0.00068 (18)0.00108 (19)
O10.0532 (10)0.0809 (12)0.0895 (13)0.0080 (9)0.0075 (9)0.0435 (11)
O20.0598 (9)0.0915 (13)0.0432 (8)0.0009 (9)0.0148 (7)0.0130 (8)
O30.0705 (11)0.0641 (10)0.0585 (9)0.0125 (9)0.0022 (8)0.0236 (8)
O40.0799 (12)0.0527 (10)0.0763 (11)0.0254 (9)0.0090 (10)0.0008 (9)
C10.0381 (10)0.0484 (11)0.0480 (11)0.0004 (9)0.0006 (9)0.0132 (9)
C20.0410 (10)0.0521 (12)0.0370 (10)0.0002 (9)0.0035 (8)0.0068 (9)
C30.0394 (10)0.0519 (11)0.0337 (9)0.0011 (9)0.0015 (8)0.0012 (8)
C40.0415 (11)0.0472 (11)0.0422 (10)0.0042 (10)0.0019 (9)0.0086 (9)
C50.0335 (9)0.0448 (10)0.0362 (9)0.0057 (8)0.0038 (8)0.0019 (8)
C60.0423 (10)0.0425 (11)0.0428 (10)0.0046 (9)0.0039 (8)0.0008 (9)
C70.0696 (15)0.0531 (13)0.0493 (12)0.0118 (12)0.0021 (12)0.0099 (11)
C80.0666 (15)0.0781 (17)0.0478 (12)0.0153 (14)0.0230 (11)0.0005 (12)
C90.0440 (12)0.0866 (18)0.0569 (14)0.0002 (12)0.0165 (11)0.0009 (13)
C100.0398 (11)0.0650 (14)0.0491 (12)0.0049 (10)0.0078 (9)0.0047 (11)
C110.0296 (8)0.0541 (11)0.0333 (9)0.0074 (8)0.0019 (8)0.0020 (9)
C120.0381 (10)0.0736 (15)0.0451 (11)0.0030 (11)0.0015 (9)0.0009 (11)
C130.0354 (11)0.124 (2)0.0482 (12)0.0020 (14)0.0072 (10)0.0005 (15)
C140.0499 (13)0.125 (2)0.0411 (11)0.0204 (16)0.0055 (10)0.0173 (15)
C150.0670 (16)0.0786 (17)0.0461 (12)0.0227 (14)0.0002 (12)0.0155 (12)
C160.0479 (11)0.0541 (12)0.0406 (10)0.0079 (11)0.0025 (9)0.0027 (10)
C170.0290 (9)0.0384 (10)0.0394 (9)0.0028 (8)0.0018 (8)0.0020 (8)
C180.0485 (12)0.0506 (11)0.0465 (11)0.0083 (10)0.0059 (9)0.0091 (9)
C190.0620 (14)0.0724 (16)0.0585 (13)0.0095 (14)0.0087 (12)0.0269 (12)
C200.0587 (14)0.0624 (15)0.0818 (17)0.0047 (12)0.0057 (14)0.0332 (14)
C210.0523 (13)0.0380 (11)0.0958 (19)0.0006 (10)0.0202 (13)0.0070 (12)
C220.0428 (11)0.0426 (11)0.0577 (12)0.0026 (9)0.0070 (10)0.0020 (9)
C230.0286 (8)0.0377 (9)0.0458 (9)0.0011 (8)0.0039 (7)0.0074 (9)
C240.0366 (10)0.0571 (13)0.0528 (12)0.0000 (9)0.0012 (9)0.0013 (10)
C250.0312 (10)0.0642 (15)0.0822 (16)0.0029 (10)0.0048 (11)0.0068 (13)
C260.0320 (10)0.0591 (14)0.0857 (16)0.0036 (10)0.0140 (11)0.0225 (13)
C270.0479 (12)0.0627 (14)0.0624 (14)0.0135 (11)0.0213 (11)0.0126 (11)
C280.0408 (10)0.0550 (12)0.0472 (11)0.0045 (9)0.0063 (9)0.0056 (10)
C290.0337 (9)0.0345 (9)0.0362 (9)0.0024 (8)0.0010 (8)0.0023 (7)
C300.0532 (12)0.0475 (12)0.0553 (12)0.0159 (10)0.0072 (10)0.0128 (10)
C310.0350 (9)0.0388 (10)0.0327 (8)0.0024 (7)0.0014 (7)0.0058 (7)
C320.0302 (8)0.0393 (9)0.0373 (9)0.0003 (8)0.0057 (7)0.0054 (8)
C330.0403 (11)0.0421 (11)0.0665 (14)0.0091 (9)0.0008 (10)0.0081 (10)
Geometric parameters (Å, º) top
Cr1—C11.851 (2)C16—H160.9300
Cr1—C21.8650 (19)C17—C181.386 (3)
Cr1—C31.872 (2)C17—C221.394 (3)
Cr1—C41.901 (2)C18—C191.379 (3)
Cr1—P22.3736 (5)C18—H180.9300
Cr1—P32.3847 (5)C19—C201.357 (4)
P2—C171.8409 (19)C19—H190.9300
P2—C231.8434 (17)C20—C211.391 (4)
P2—C321.8680 (18)C20—H200.9300
P3—C111.8352 (19)C21—C221.379 (3)
P3—C51.8405 (18)C21—H210.9300
P3—C291.8637 (18)C22—H220.9300
O1—C11.152 (2)C23—C241.384 (3)
O2—C21.144 (2)C23—C281.388 (3)
O3—C31.146 (2)C24—C251.382 (3)
O4—C41.138 (2)C24—H240.9300
C5—C61.380 (3)C25—C261.368 (3)
C5—C101.397 (3)C25—H250.9300
C6—C71.384 (3)C26—C271.372 (3)
C6—H60.9300C26—H260.9300
C7—C81.382 (3)C27—C281.393 (3)
C7—H70.9300C27—H270.9300
C8—C91.367 (3)C28—H280.9300
C8—H80.9300C29—C301.535 (3)
C9—C101.391 (3)C29—C311.548 (2)
C9—H90.9300C29—H290.9800
C10—H100.9300C30—H30A0.9600
C11—C161.389 (3)C30—H30B0.9600
C11—C121.395 (3)C30—H30C0.9600
C12—C131.389 (3)C31—C321.540 (2)
C12—H120.9300C31—H31A0.9700
C13—C141.376 (4)C31—H31B0.9700
C13—H130.9300C32—C331.528 (3)
C14—C151.371 (4)C32—H320.9800
C14—H140.9300C33—H33A0.9600
C15—C161.392 (3)C33—H33B0.9600
C15—H150.9300C33—H33C0.9600
C1—Cr1—C287.81 (8)C18—C17—C22118.39 (18)
C1—Cr1—C391.82 (9)C18—C17—P2124.08 (15)
C2—Cr1—C388.86 (9)C22—C17—P2117.33 (15)
C1—Cr1—C489.84 (9)C19—C18—C17120.5 (2)
C2—Cr1—C487.52 (9)C19—C18—H18119.7
C3—Cr1—C4175.96 (9)C17—C18—H18119.7
C1—Cr1—P288.80 (6)C20—C19—C18121.0 (2)
C2—Cr1—P2176.35 (6)C20—C19—H19119.5
C3—Cr1—P289.89 (6)C18—C19—H19119.5
C4—Cr1—P293.83 (6)C19—C20—C21119.7 (2)
C1—Cr1—P3178.55 (7)C19—C20—H20120.2
C2—Cr1—P391.96 (6)C21—C20—H20120.2
C3—Cr1—P386.74 (6)C22—C21—C20119.8 (2)
C4—Cr1—P391.58 (6)C22—C21—H21120.1
P2—Cr1—P391.389 (18)C20—C21—H21120.1
C17—P2—C2399.78 (9)C21—C22—C17120.6 (2)
C17—P2—C32105.87 (8)C21—C22—H22119.7
C23—P2—C3299.66 (8)C17—C22—H22119.7
C17—P2—Cr1112.20 (6)C24—C23—C28118.61 (17)
C23—P2—Cr1118.79 (6)C24—C23—P2119.95 (14)
C32—P2—Cr1118.14 (6)C28—C23—P2121.31 (15)
C11—P3—C5102.74 (9)C25—C24—C23121.1 (2)
C11—P3—C29105.52 (9)C25—C24—H24119.4
C5—P3—C2999.48 (9)C23—C24—H24119.4
C11—P3—Cr1109.25 (6)C26—C25—C24119.8 (2)
C5—P3—Cr1123.28 (7)C26—C25—H25120.1
C29—P3—Cr1114.67 (6)C24—C25—H25120.1
O1—C1—Cr1178.18 (18)C25—C26—C27120.3 (2)
O2—C2—Cr1176.29 (17)C25—C26—H26119.8
O3—C3—Cr1177.93 (18)C27—C26—H26119.8
O4—C4—Cr1176.72 (18)C26—C27—C28120.1 (2)
C6—C5—C10118.50 (18)C26—C27—H27119.9
C6—C5—P3118.16 (14)C28—C27—H27119.9
C10—C5—P3122.65 (16)C23—C28—C27120.0 (2)
C5—C6—C7121.2 (2)C23—C28—H28120.0
C5—C6—H6119.4C27—C28—H28120.0
C7—C6—H6119.4C30—C29—C31108.47 (15)
C8—C7—C6119.8 (2)C30—C29—P3113.99 (14)
C8—C7—H7120.1C31—C29—P3110.76 (13)
C6—C7—H7120.1C30—C29—H29107.8
C9—C8—C7119.9 (2)C31—C29—H29107.8
C9—C8—H8120.1P3—C29—H29107.8
C7—C8—H8120.1C29—C30—H30A109.5
C8—C9—C10120.7 (2)C29—C30—H30B109.5
C8—C9—H9119.7H30A—C30—H30B109.5
C10—C9—H9119.7C29—C30—H30C109.5
C9—C10—C5119.9 (2)H30A—C30—H30C109.5
C9—C10—H10120.0H30B—C30—H30C109.5
C5—C10—H10120.0C32—C31—C29118.62 (15)
C16—C11—C12118.76 (19)C32—C31—H31A107.7
C16—C11—P3122.94 (15)C29—C31—H31A107.7
C12—C11—P3117.91 (16)C32—C31—H31B107.7
C13—C12—C11120.6 (2)C29—C31—H31B107.7
C13—C12—H12119.7H31A—C31—H31B107.1
C11—C12—H12119.7C33—C32—C31110.44 (16)
C14—C13—C12119.6 (2)C33—C32—P2111.66 (13)
C14—C13—H13120.2C31—C32—P2114.61 (12)
C12—C13—H13120.2C33—C32—H32106.5
C15—C14—C13120.6 (2)C31—C32—H32106.5
C15—C14—H14119.7P2—C32—H32106.5
C13—C14—H14119.7C32—C33—H33A109.5
C14—C15—C16120.2 (3)C32—C33—H33B109.5
C14—C15—H15119.9H33A—C33—H33B109.5
C16—C15—H15119.9C32—C33—H33C109.5
C11—C16—C15120.2 (2)H33A—C33—H33C109.5
C11—C16—H16119.9H33B—C33—H33C109.5
C15—C16—H16119.9
C1—Cr1—P2—C1787.62 (9)C13—C14—C15—C160.2 (4)
C3—Cr1—P2—C17179.44 (9)C12—C11—C16—C151.3 (3)
C4—Cr1—P2—C172.15 (9)P3—C11—C16—C15173.94 (17)
P3—Cr1—P2—C1793.82 (7)C14—C15—C16—C110.6 (3)
C1—Cr1—P2—C2328.07 (10)C23—P2—C17—C18121.48 (17)
C3—Cr1—P2—C2363.75 (10)C32—P2—C17—C1818.42 (19)
C4—Cr1—P2—C23117.84 (10)Cr1—P2—C17—C18111.79 (16)
P3—Cr1—P2—C23150.49 (8)C23—P2—C17—C2263.80 (17)
C1—Cr1—P2—C32148.80 (10)C32—P2—C17—C22166.86 (15)
C3—Cr1—P2—C3256.98 (9)Cr1—P2—C17—C2262.93 (16)
C4—Cr1—P2—C32121.44 (9)C22—C17—C18—C192.1 (3)
P3—Cr1—P2—C3229.76 (7)P2—C17—C18—C19172.58 (18)
C2—Cr1—P3—C1123.62 (10)C17—C18—C19—C201.5 (4)
C3—Cr1—P3—C1165.13 (9)C18—C19—C20—C210.2 (4)
C4—Cr1—P3—C11111.19 (9)C19—C20—C21—C221.3 (4)
P2—Cr1—P3—C11154.94 (7)C20—C21—C22—C170.7 (3)
C2—Cr1—P3—C596.96 (10)C18—C17—C22—C211.0 (3)
C3—Cr1—P3—C5174.29 (9)P2—C17—C22—C21174.05 (17)
C4—Cr1—P3—C59.39 (10)C17—P2—C23—C2433.81 (18)
P2—Cr1—P3—C584.48 (8)C32—P2—C23—C2474.30 (18)
C2—Cr1—P3—C29141.81 (9)Cr1—P2—C23—C24155.96 (14)
C3—Cr1—P3—C2953.06 (9)C17—P2—C23—C28150.40 (17)
C4—Cr1—P3—C29130.62 (9)C32—P2—C23—C28101.49 (17)
P2—Cr1—P3—C2936.75 (7)Cr1—P2—C23—C2828.25 (19)
C11—P3—C5—C6164.12 (15)C28—C23—C24—C250.1 (3)
C29—P3—C5—C687.46 (16)P2—C23—C24—C25176.02 (18)
Cr1—P3—C5—C640.56 (18)C23—C24—C25—C260.9 (4)
C11—P3—C5—C1025.5 (2)C24—C25—C26—C270.9 (4)
C29—P3—C5—C1082.87 (18)C25—C26—C27—C280.2 (4)
Cr1—P3—C5—C10149.11 (15)C24—C23—C28—C270.6 (3)
C10—C5—C6—C73.0 (3)P2—C23—C28—C27175.27 (16)
P3—C5—C6—C7167.71 (16)C26—C27—C28—C230.5 (3)
C5—C6—C7—C82.5 (3)C11—P3—C29—C3056.18 (16)
C6—C7—C8—C90.6 (4)C5—P3—C29—C3049.99 (16)
C7—C8—C9—C100.8 (4)Cr1—P3—C29—C30176.46 (12)
C8—C9—C10—C50.2 (4)C11—P3—C29—C31178.84 (12)
C6—C5—C10—C91.7 (3)C5—P3—C29—C3172.67 (14)
P3—C5—C10—C9168.63 (18)Cr1—P3—C29—C3160.89 (13)
C5—P3—C11—C16134.04 (16)C30—C29—C31—C32156.37 (17)
C29—P3—C11—C1630.26 (18)P3—C29—C31—C3277.82 (19)
Cr1—P3—C11—C1693.51 (16)C29—C31—C32—C3358.3 (2)
C5—P3—C11—C1253.21 (17)C29—C31—C32—P268.9 (2)
C29—P3—C11—C12156.99 (15)C17—P2—C32—C33151.59 (14)
Cr1—P3—C11—C1279.24 (15)C23—P2—C32—C3348.44 (15)
C16—C11—C12—C131.1 (3)Cr1—P2—C32—C3381.72 (14)
P3—C11—C12—C13174.20 (17)C17—P2—C32—C3181.88 (14)
C11—C12—C13—C140.3 (4)C23—P2—C32—C31174.97 (14)
C12—C13—C14—C150.4 (4)Cr1—P2—C32—C3144.80 (15)

Experimental details

Crystal data
Chemical formula[Cr(C29H30P2)(CO)4]
Mr604.51
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)13.3013 (2), 14.2333 (2), 15.6694 (3)
V3)2966.55 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.48 × 0.42 × 0.28
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.785, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
24593, 7364, 6364
Rint0.049
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.072, 1.03
No. of reflections7364
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.30
Absolute structureFlack (1983), 3256 Friedel pairs
Absolute structure parameter0.001 (13)

Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1994), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cr1—C11.851 (2)Cr1—C41.901 (2)
Cr1—C21.8650 (19)Cr1—P22.3736 (5)
Cr1—C31.872 (2)Cr1—P32.3847 (5)
P2—Cr1—P391.389 (18)
 

Footnotes

On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

Acknowledgements

We thank the Malaysian Government and Universiti Sains Malaysia for support (IRPA grant Nos. 09–02–05–0008 and 190–9609–2801).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBennett, M. J., Cotton, F. A. & LaPrade, M. D. (1971). Acta Cryst. B27, 1899–1904.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJost, A., Rees, B. & Yelon, W. B. (1975). Acta Cryst. B31, 2649–2658.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationShawkataly, O. bin, Islam, S. D., Fun, H.-K. & Didierjean, C. (2006). Acta Cryst. E62, m1086–m1087.  Google Scholar
First citationShawkataly, O. bin, Saminathan, T., Fun, H.-K. & Sivakumar, K. (1996). Acta Cryst. C52, 1352–1355.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShawkataly, O. bin, Umathavan, A., Ramalingam, K., Fun, H.-K. & Ibrahim, A. R. (1997). Acta Cryst. C53, 1543–1545.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationUeng, C.-H. & Shih, G.-Y. (1992). Acta Cryst. C48, 988–991.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWhitaker, A. & Jeffery, J. W. (1967). Acta Cryst. 23, 977–984.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m250-m251
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds