organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Fluoro­phen­yl)-3-hydr­­oxy-3-phenyl­prop-2-en-1-one

aHubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University, Huangshi 435002,People's Republic of China, and bCollege of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
*Correspondence e-mail: zcy800204@163.com

(Received 10 December 2008; accepted 10 February 2009; online 13 February 2009)

In the crystal structure the title compound, C15H11FO2, the molecule exists in the enol form. It is stabilized by an intra­molecular O—H⋯O hydrogen bond, in which the donor O—H and acceptor H⋯O distances are almost equal. The dihedral angle between the two benzene rings is 22.30 (4)°.

Related literature

For background to the uses and characteristics of 1,3-diketones, see: Gilli et al. (2004[Gilli, P., Bertolasi, V., Pretto, L., Ferretti, V. & Gilli, G. (2004). J. Am. Chem. Soc. 126, 3845-3855.]); Hasegawa et al. (1997[Hasegawa, E., Ishiyama, K., Fujita, T., Kato, T. & Abe, T. (1997). J. Org. Chem. 62, 2396-2400.]); Jang et al. (2006[Jang, H., Shin, C. H., Jung, B. J., Kim, D. H., Shim, H. K. & Do, Y. (2006). Eur. J. Inorg. Chem. 4, 718-725.]); Ma et al. (1999[Ma, Y. L., Reardon, D., Gambarotta, S. & Yap, G. (1999). Organometallics, 18, 2773-2781.]); Yoshida et al. (2005[Yoshida, J., Sato, H., Yamagishi, A. & Hoshino, N. (2005). J. Am. Chem. Soc. 127, 8453-8456.]). For geometric data, see: Bertolasi et al. (1991[Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917-4925.]); Wang et al. (2006[Wang, D.-J., Zheng, C.-Y. & Fan, L. (2006). Acta Cryst. E62, o3681-o3682.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11FO2

  • Mr = 242.24

  • Monoclinic, P 21 /c

  • a = 11.8526 (5) Å

  • b = 11.7192 (5) Å

  • c = 9.4164 (4) Å

  • β = 113.405 (1)°

  • V = 1200.35 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.30 × 0.10 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.991, Tmax = 0.996

  • 11206 measured reflections

  • 2109 independent reflections

  • 1295 reflections with I > 2σ(I)

  • Rint = 0.106

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.140

  • S = 0.93

  • 2109 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 1.23 (3) 1.30 (3) 2.4827 (19) 157 (2)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3-Diketones posses a broad spectrum of useful and sometimes unique chemical properties, which make them extremely attractive as intermediates in syntheses (Hasegawa et al., 1997). They are also used in the chemistry of metallocomplexes (Ma et al., 1999; Yoshida et al., 2005; Jang et al., 2006). 1,3-Diketone structures have received increasing attention due to their enolic tautomeric forms and their ability to form strong intermolecular or intramolecular hydrogen bonds (Gilli et al., 2004). The crystal structure of the title compound (Fig. 1) is in the enol form, stabilized by an intramolecular hydrogen bond (Table 2). The bond lengths in the diketone fragment are either significantly shorter than normal single bonds or significantly longer than normal double bonds (Table 1). This shows that the structure displays a strong delocalization of double bonds in this region. The geometric data are in agreement with reported literature values (Bertolasi et al., 1991; Wang et al., 2006). The dihedral angle between the two aromatic rings is 22.30 (4)°.

Related literature top

For background to the uses and characteristics of 1,3-diketones, see: Gilli et al. (2004); Hasegawa et al. (1997); Jang et al. (2006); Ma et al. (1999); Yoshida et al. (2005). For geometric data, see: Bertolasi et al. (1991); Wang et al. (2006). [Please check amended text]

Experimental top

1-(4-Fluorophenyl)ethanone (1.38 g, 0.01 mol), ethyl benzoate (1.50 g, 0.01 mol), NaNH2 (0.78 g, 0.02 mol) and dry ether (40 ml) were placed in a round bottom flask. The mixture was stirred 6 h at room temperature under a blanket of nitrogen, acidified with dilute hydrochloric acid, and stirring was continued until all solids dissolved. The ether layer was separated and washed with saturated NaHCO3 solution, dried over anhydrous Na2SO4 and the solvent was removed by evaporation. The residual solid was recrystallized from an ethanol solution to give the title compound (yield 1.27 g, 52.4%, m.p. 351 K). Crystals suitable for X-ray diffraction were grown by slow evaporation of CHCl2–EtOH (1:5) solutions at room temperature.

Refinement top

The H atom of the hydroxyl group was located in a difference Fourier map and its position was refined freely, with Uiso(H) = 1.5 Uiso(O). The other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 to 0.97 Å, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
1-(4-Fluorophenyl)-3-hydroxy-3-phenylprop-2-en-1-one top
Crystal data top
C15H11FO2F(000) = 504
Mr = 242.24Dx = 1.340 Mg m3
Monoclinic, P21/cMelting point: 351 K
Hall symbol: -P2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.8526 (5) ÅCell parameters from 2616 reflections
b = 11.7192 (5) Åθ = 2.6–22.7°
c = 9.4164 (4) ŵ = 0.10 mm1
β = 113.405 (1)°T = 298 K
V = 1200.35 (9) Å3Plate, colourless
Z = 40.30 × 0.10 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2109 independent reflections
Radiation source: fine-focus sealed tube1295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.106
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.991, Tmax = 0.996k = 1313
11206 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0849P)2]
where P = (Fo2 + 2Fc2)/3
2109 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H11FO2V = 1200.35 (9) Å3
Mr = 242.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.8526 (5) ŵ = 0.10 mm1
b = 11.7192 (5) ÅT = 298 K
c = 9.4164 (4) Å0.30 × 0.10 × 0.04 mm
β = 113.405 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2109 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1295 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.996Rint = 0.106
11206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.25 e Å3
2109 reflectionsΔρmin = 0.19 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.27135 (19)0.29172 (18)0.4883 (2)0.0742 (6)
C20.29882 (19)0.17926 (17)0.4841 (2)0.0804 (6)
H20.25650.12360.51360.096*
C30.38951 (19)0.14902 (16)0.4358 (2)0.0753 (6)
H30.40820.07220.43290.090*
C40.45487 (16)0.23125 (14)0.39078 (19)0.0600 (5)
C50.42305 (18)0.34513 (15)0.3965 (2)0.0694 (6)
H50.46450.40180.36730.083*
C60.33131 (19)0.37574 (17)0.4446 (2)0.0781 (6)
H60.31060.45200.44730.094*
C70.55320 (17)0.19568 (14)0.3396 (2)0.0634 (5)
C80.63154 (16)0.27122 (14)0.3102 (2)0.0627 (5)
H80.62200.34910.32080.075*
C90.72513 (17)0.23318 (15)0.2648 (2)0.0664 (5)
C100.81581 (16)0.30949 (15)0.2408 (2)0.0635 (5)
C110.8874 (2)0.26895 (18)0.1647 (2)0.0811 (6)
H110.87780.19410.12910.097*
C120.9732 (2)0.3393 (2)0.1414 (3)0.0959 (7)
H121.01900.31160.08830.115*
C130.99055 (19)0.4487 (2)0.1958 (3)0.0909 (7)
H131.04860.49520.18110.109*
C140.92093 (19)0.48972 (18)0.2731 (2)0.0901 (7)
H140.93290.56390.31120.108*
C150.83398 (19)0.42134 (17)0.2941 (2)0.0781 (6)
H150.78690.45050.34450.094*
F10.18286 (12)0.32154 (11)0.53824 (16)0.1081 (5)
O10.56461 (14)0.08669 (11)0.32400 (18)0.0923 (5)
O20.73642 (15)0.12538 (11)0.24314 (19)0.0931 (5)
H2A0.650 (2)0.087 (2)0.270 (3)0.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0767 (13)0.0819 (14)0.0718 (13)0.0013 (11)0.0378 (11)0.0039 (10)
C20.0866 (15)0.0725 (14)0.0856 (15)0.0167 (11)0.0379 (12)0.0098 (11)
C30.0870 (14)0.0523 (12)0.0853 (14)0.0058 (10)0.0329 (12)0.0056 (9)
C40.0695 (11)0.0483 (10)0.0548 (11)0.0051 (8)0.0170 (9)0.0040 (8)
C50.0849 (14)0.0483 (11)0.0837 (14)0.0008 (9)0.0428 (11)0.0040 (9)
C60.0959 (15)0.0591 (12)0.0938 (15)0.0021 (10)0.0530 (13)0.0009 (10)
C70.0750 (12)0.0442 (10)0.0667 (12)0.0046 (9)0.0235 (10)0.0011 (8)
C80.0714 (12)0.0430 (10)0.0733 (12)0.0053 (8)0.0284 (10)0.0035 (8)
C90.0777 (13)0.0523 (11)0.0640 (12)0.0101 (9)0.0227 (10)0.0037 (9)
C100.0660 (12)0.0605 (12)0.0621 (11)0.0125 (9)0.0236 (9)0.0006 (9)
C110.0863 (14)0.0781 (14)0.0830 (15)0.0148 (12)0.0380 (12)0.0110 (11)
C120.0910 (16)0.114 (2)0.0986 (18)0.0141 (14)0.0549 (15)0.0037 (14)
C130.0850 (15)0.0948 (17)0.0980 (17)0.0036 (13)0.0418 (14)0.0061 (13)
C140.0968 (15)0.0715 (13)0.1198 (19)0.0030 (11)0.0617 (15)0.0042 (12)
C150.0875 (14)0.0619 (12)0.1025 (16)0.0039 (10)0.0562 (13)0.0060 (11)
F10.1104 (10)0.1162 (11)0.1240 (11)0.0001 (8)0.0742 (9)0.0031 (8)
O10.1175 (12)0.0406 (8)0.1328 (13)0.0027 (7)0.0647 (10)0.0009 (7)
O20.1094 (12)0.0522 (8)0.1332 (13)0.0088 (7)0.0645 (11)0.0136 (8)
Geometric parameters (Å, º) top
C1—F11.354 (2)C8—H80.9300
C1—C21.362 (3)C9—C101.483 (3)
C1—C61.370 (3)C10—C151.389 (3)
C2—C31.369 (3)C10—C111.393 (3)
C2—H20.9300C11—C121.393 (3)
C3—C41.404 (3)C11—H110.9300
C3—H30.9300C12—C131.365 (3)
C4—C51.394 (2)C12—H120.9300
C4—C71.487 (3)C13—C141.386 (3)
C5—C61.381 (3)C13—H130.9300
C5—H50.9300C14—C151.380 (3)
C6—H60.9300C14—H140.9300
O1—C71.299 (2)C15—H150.9300
O2—C91.295 (2)O1—H2A1.30 (3)
C7—C81.388 (2)O2—H2A1.23 (3)
C8—C91.410 (3)
F1—C1—C2119.14 (18)O2—C9—C8119.94 (18)
F1—C1—C6118.98 (18)O2—C9—C10115.95 (17)
C2—C1—C6121.88 (18)C8—C9—C10124.11 (16)
C1—C2—C3119.24 (18)C15—C10—C11117.95 (18)
C1—C2—H2120.4C15—C10—C9122.10 (16)
C3—C2—H2120.4C11—C10—C9119.94 (17)
C2—C3—C4121.53 (19)C12—C11—C10120.73 (19)
C2—C3—H3119.2C12—C11—H11119.6
C4—C3—H3119.2C10—C11—H11119.6
C5—C4—C3117.09 (18)C13—C12—C11120.5 (2)
C5—C4—C7122.68 (16)C13—C12—H12119.8
C3—C4—C7120.22 (17)C11—C12—H12119.8
C6—C5—C4121.45 (18)C12—C13—C14119.4 (2)
C6—C5—H5119.3C12—C13—H13120.3
C4—C5—H5119.3C14—C13—H13120.3
C1—C6—C5118.82 (18)C15—C14—C13120.5 (2)
C1—C6—H6120.6C15—C14—H14119.7
C5—C6—H6120.6C13—C14—H14119.7
O1—C7—C8119.79 (17)C14—C15—C10120.90 (18)
O1—C7—C4116.27 (16)C14—C15—H15119.5
C8—C7—C4123.94 (15)C10—C15—H15119.5
C7—C8—C9121.86 (16)C7—O1—H2A99.8 (11)
C7—C8—H8119.1C9—O2—H2A100.1 (12)
C9—C8—H8119.1
F1—C1—C2—C3179.05 (18)C4—C7—C8—C9178.70 (16)
C6—C1—C2—C30.5 (3)C7—C8—C9—O22.9 (3)
C1—C2—C3—C40.0 (3)C7—C8—C9—C10176.33 (17)
C2—C3—C4—C50.3 (3)O2—C9—C10—C15164.43 (17)
C2—C3—C4—C7179.74 (17)C8—C9—C10—C1514.9 (3)
C3—C4—C5—C60.1 (3)O2—C9—C10—C1114.5 (3)
C7—C4—C5—C6179.97 (17)C8—C9—C10—C11166.16 (17)
F1—C1—C6—C5178.82 (17)C15—C10—C11—C120.8 (3)
C2—C1—C6—C50.7 (3)C9—C10—C11—C12179.86 (19)
C4—C5—C6—C10.4 (3)C10—C11—C12—C131.5 (3)
C5—C4—C7—O1172.91 (17)C11—C12—C13—C140.8 (4)
C3—C4—C7—O17.0 (2)C12—C13—C14—C150.6 (4)
C5—C4—C7—C87.8 (3)C13—C14—C15—C101.2 (3)
C3—C4—C7—C8172.31 (18)C11—C10—C15—C140.5 (3)
O1—C7—C8—C90.6 (3)C9—C10—C15—C14178.53 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O11.23 (3)1.30 (3)2.4827 (19)157 (2)

Experimental details

Crystal data
Chemical formulaC15H11FO2
Mr242.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.8526 (5), 11.7192 (5), 9.4164 (4)
β (°) 113.405 (1)
V3)1200.35 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.10 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.991, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
11206, 2109, 1295
Rint0.106
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.140, 0.93
No. of reflections2109
No. of parameters166
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
O1—C71.299 (2)C7—C81.388 (2)
O2—C91.295 (2)C8—C91.410 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O11.23 (3)1.30 (3)2.4827 (19)157 (2)
 

Acknowledgements

The authors are grateful to Hubei Normal University for financial support.

References

First citationBertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917–4925.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGilli, P., Bertolasi, V., Pretto, L., Ferretti, V. & Gilli, G. (2004). J. Am. Chem. Soc. 126, 3845–3855.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHasegawa, E., Ishiyama, K., Fujita, T., Kato, T. & Abe, T. (1997). J. Org. Chem. 62, 2396–2400.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJang, H., Shin, C. H., Jung, B. J., Kim, D. H., Shim, H. K. & Do, Y. (2006). Eur. J. Inorg. Chem. 4, 718–725.  Web of Science CSD CrossRef Google Scholar
First citationMa, Y. L., Reardon, D., Gambarotta, S. & Yap, G. (1999). Organometallics, 18, 2773–2781.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, D.-J., Zheng, C.-Y. & Fan, L. (2006). Acta Cryst. E62, o3681–o3682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYoshida, J., Sato, H., Yamagishi, A. & Hoshino, N. (2005). J. Am. Chem. Soc. 127, 8453–8456.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds