organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­methyl-N-phenyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 16 January 2009; accepted 18 February 2009; online 21 February 2009)

The asymmetric unit of the crystal structure of the title compound, C14H15NO2S, contains two mol­ecules. The conformations of the N—C bonds in the C—SO2—NH—C segments of the structure have trans and gauche torsion angles with the S=O bonds. Furthermore, the torsion angles of the C—SO2—NH—C groups in the two mol­ecules are 46.1 (3) (glide image of mol­ecule 1) and 47.7 (3)° (mol­ecule 2). The ortho-methyl groups in the sulfonyl benzene ring are oriented away from the S=O bonds. The two benzene rings are tilted relative to each other by 67.5 (1) and 72.9 (1)° in the two mol­ecules. N—H⋯O and C—H⋯O hydrogen bonds pack the mol­ecules into one-dimensional chains in different directions, resulting in a two-dimensional network.

Related literature

For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Gowda et al. (2008a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691.],b[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1692.],c[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008c). Acta Cryst. E64, o2190.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO2S

  • Mr = 261.33

  • Orthorhombic, P c a 21

  • a = 19.113 (3) Å

  • b = 8.9290 (8) Å

  • c = 15.781 (1) Å

  • V = 2693.2 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.09 mm−1

  • T = 299 K

  • 0.50 × 0.43 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.401, Tmax = 0.593

  • 4916 measured reflections

  • 2505 independent reflections

  • 2421 reflections with I > 2σ(I)

  • Rint = 0.050

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.09

  • 2505 reflections

  • 330 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), no Friedel pairs

  • Flack parameter: 0.008 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.86 2.41 3.164 (3) 147
N2—H2N⋯O1ii 0.86 2.22 3.056 (3) 164
C11—H11⋯O2iii 0.93 2.50 3.227 (4) 135
C23—H23⋯O4iii 0.93 2.50 3.316 (4) 147
Symmetry codes: (i) [-x+1, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+1, z]; (iii) x, y+1, z.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008a, b, c), in the present work, the structure of N-(phenyl)-2,4-dimethylbenzenesulfonamide has been determined . The asymmetric unit contains 2 molecules (Fig. 1). The conformations of the N—C bonds in the C—SO2—NH—C segments of the structure have "trans" torsions and "gauche" torsions with the SO bonds. Further, the torsion angles of the C—SO2—NH—C groups in the two molecules are 46.1 (3)° (glide image of molecule 1) and 47.7 (3)° (molecule 2). The ortho-methyl groups in the sulfonyl benzene rings orient themselves away from the SO bonds, but in the direction of N—H bonds. The two benzene rings in the title compound are tilted relative to each other by 67.5 (1)° in the molecule 1 and 72.9 (1)° in molecule 2. The other bond parameters in the title compound are similar to those observed in N-(2,6-dimethylphenyl)-benzenesulfonamide (Gowda et al., 2008a), N-(2-methylphenyl)-benzenesulfonamide (Gowda et al., 2008b)) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007; Gowda et al., 2008c). The N-H···O hydrogen bonds pack the molecules into a 1D chain in the direction of c- axis, while C-H···O hydrogen bonds pack them into a 1D chain in the direction of b-axis, resulting in a 2D network (Table 1, Fig. 2).

Related literature top

For related structures, see: Gelbrich et al. (2007); Gowda et al. (2008a,b,c); Perlovich et al. (2006).

Experimental top

A solution of 1,3-xylene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 273K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with aniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(phenyl)-2,4-dimethylbenzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). The Uij components of C28 were restrained to approximate isotropic behavior.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines. H-atoms not involved in hydrogen bonding have been omitted.
2,4-Dimethyl-N-phenylbenzenesulfonamide top
Crystal data top
C14H15NO2SF(000) = 1104
Mr = 261.33Dx = 1.289 Mg m3
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 19.113 (3) Åθ = 4.6–19.0°
b = 8.9290 (8) ŵ = 2.09 mm1
c = 15.781 (1) ÅT = 299 K
V = 2693.2 (5) Å3Prism, colourless
Z = 80.50 × 0.43 × 0.25 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2421 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 66.9°, θmin = 4.6°
ω/2θ scansh = 2222
Absorption correction: ψ scan
(North et al., 1968)
k = 100
Tmin = 0.401, Tmax = 0.593l = 180
4916 measured reflections3 standard reflections every 120 min
2505 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.1061P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max = 0.012
S = 1.09Δρmax = 0.26 e Å3
2505 reflectionsΔρmin = 0.23 e Å3
330 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
7 restraintsExtinction coefficient: 0.0032 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), no Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.008 (17)
Crystal data top
C14H15NO2SV = 2693.2 (5) Å3
Mr = 261.33Z = 8
Orthorhombic, Pca21Cu Kα radiation
a = 19.113 (3) ŵ = 2.09 mm1
b = 8.9290 (8) ÅT = 299 K
c = 15.781 (1) Å0.50 × 0.43 × 0.25 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2421 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.050
Tmin = 0.401, Tmax = 0.5933 standard reflections every 120 min
4916 measured reflections intensity decay: 1.0%
2505 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.26 e Å3
S = 1.09Δρmin = 0.23 e Å3
2505 reflectionsAbsolute structure: Flack (1983), no Friedel pairs
330 parametersAbsolute structure parameter: 0.008 (17)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25250 (4)0.26684 (7)0.22911 (5)0.05031 (19)
O10.18269 (11)0.3237 (2)0.23659 (15)0.0594 (5)
O20.26004 (13)0.1099 (2)0.21441 (18)0.0702 (7)
N10.29100 (14)0.3475 (3)0.14888 (15)0.0544 (5)
H1N0.30020.29480.10460.065*
C10.29873 (15)0.3238 (3)0.32001 (19)0.0520 (6)
C20.36811 (17)0.2791 (4)0.3346 (2)0.0603 (7)
C30.39906 (19)0.3302 (5)0.4076 (3)0.0763 (10)
H30.44480.30040.41880.092*
C40.36652 (19)0.4232 (5)0.4657 (2)0.0767 (9)
C50.2984 (2)0.4650 (4)0.4490 (2)0.0737 (9)
H50.27480.52660.48690.088*
C60.26517 (16)0.4164 (3)0.3769 (2)0.0587 (6)
H60.21940.44640.36630.070*
C70.31002 (15)0.5019 (3)0.14938 (15)0.0472 (5)
C80.37518 (17)0.5411 (3)0.11944 (17)0.0559 (6)
H80.40670.46790.10220.067*
C90.3931 (2)0.6918 (4)0.1154 (2)0.0679 (9)
H90.43630.72000.09350.081*
C100.3472 (2)0.7996 (3)0.1438 (2)0.0693 (9)
H100.35960.90030.14140.083*
C110.2844 (2)0.7591 (3)0.1749 (3)0.0706 (8)
H110.25390.83230.19470.085*
C120.26465 (19)0.6103 (3)0.1777 (2)0.0633 (7)
H120.22090.58360.19870.076*
C130.4085 (2)0.1767 (5)0.2756 (3)0.0844 (12)
H13A0.41310.22370.22110.101*
H13B0.38380.08370.26950.101*
H13C0.45410.15790.29870.101*
C140.4032 (3)0.4784 (9)0.5438 (3)0.1129 (18)
H14A0.45240.45850.53920.135*
H14B0.38480.42780.59270.135*
H14C0.39590.58430.54970.135*
S20.58393 (3)0.79647 (7)0.45792 (4)0.04598 (18)
O30.61521 (12)0.8591 (3)0.53213 (13)0.0605 (5)
O40.59126 (13)0.6383 (2)0.44450 (15)0.0665 (6)
N20.61782 (13)0.8727 (3)0.37433 (15)0.0509 (5)
H2N0.64310.81640.34240.061*
C150.49526 (13)0.8489 (3)0.45929 (17)0.0496 (5)
C160.44843 (19)0.7964 (4)0.3987 (2)0.0673 (9)
C170.3784 (2)0.8473 (6)0.4075 (3)0.0906 (14)
H170.34540.81400.36840.109*
C180.35654 (19)0.9422 (6)0.4700 (3)0.0949 (15)
C190.4042 (2)0.9912 (6)0.5270 (3)0.0854 (12)
H190.39041.05670.56970.102*
C200.47306 (17)0.9454 (4)0.52259 (19)0.0634 (8)
H200.50500.97970.56260.076*
C210.60945 (12)1.0244 (3)0.34916 (17)0.0451 (5)
C220.60950 (17)1.1394 (3)0.4086 (2)0.0569 (6)
H220.61381.11850.46600.068*
C230.6030 (2)1.2854 (4)0.3806 (3)0.0678 (9)
H230.60191.36290.41990.081*
C240.5981 (2)1.3182 (4)0.2961 (3)0.0686 (9)
H240.59451.41720.27820.082*
C250.5986 (2)1.2031 (4)0.2377 (3)0.0692 (8)
H250.59561.22440.18010.083*
C260.60355 (16)1.0569 (3)0.26450 (18)0.0555 (7)
H260.60290.97970.22500.067*
C270.4682 (3)0.6917 (6)0.3282 (3)0.1016 (16)
H27A0.48950.60340.35160.122*
H27B0.50080.74050.29100.122*
H27C0.42710.66410.29700.122*
C280.2808 (2)0.9939 (10)0.4738 (4)0.136 (2)
H28A0.25420.92550.50790.164*
H28B0.26170.99660.41750.164*
H28C0.27871.09220.49830.164*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0539 (3)0.0320 (3)0.0650 (4)0.0034 (3)0.0112 (3)0.0002 (3)
O10.0510 (9)0.0539 (10)0.0733 (12)0.0010 (9)0.0070 (10)0.0024 (11)
O20.0789 (14)0.0290 (9)0.1028 (18)0.0078 (10)0.0143 (12)0.0020 (11)
N10.0726 (13)0.0345 (10)0.0562 (11)0.0029 (11)0.0167 (11)0.0072 (9)
C10.0531 (13)0.0439 (13)0.0591 (14)0.0029 (12)0.0083 (12)0.0089 (11)
C20.0536 (14)0.0536 (15)0.0736 (18)0.0048 (12)0.0098 (13)0.0140 (14)
C30.0591 (16)0.086 (3)0.084 (2)0.0040 (18)0.0014 (16)0.021 (2)
C40.0737 (18)0.087 (2)0.0698 (18)0.0161 (18)0.0008 (17)0.0115 (19)
C50.0827 (19)0.073 (2)0.0654 (17)0.0087 (18)0.0111 (16)0.0025 (17)
C60.0586 (14)0.0540 (15)0.0634 (15)0.0009 (13)0.0099 (12)0.0011 (13)
C70.0647 (14)0.0334 (11)0.0434 (10)0.0016 (11)0.0072 (11)0.0012 (9)
C80.0702 (15)0.0467 (15)0.0509 (12)0.0030 (14)0.0146 (12)0.0053 (11)
C90.084 (2)0.0538 (18)0.0657 (17)0.0167 (17)0.0161 (17)0.0060 (14)
C100.101 (2)0.0387 (13)0.0684 (17)0.0104 (15)0.0068 (18)0.0037 (13)
C110.094 (2)0.0341 (13)0.084 (2)0.0069 (16)0.0097 (19)0.0004 (14)
C120.0739 (18)0.0386 (13)0.0774 (19)0.0019 (14)0.0182 (15)0.0022 (14)
C130.0657 (19)0.079 (2)0.109 (3)0.023 (2)0.0120 (19)0.004 (2)
C140.118 (3)0.141 (5)0.080 (2)0.039 (4)0.019 (3)0.003 (3)
S20.0532 (3)0.0368 (3)0.0479 (3)0.0046 (2)0.0059 (2)0.0046 (2)
O30.0603 (11)0.0653 (13)0.0561 (10)0.0023 (10)0.0154 (9)0.0038 (10)
O40.0918 (14)0.0341 (9)0.0735 (13)0.0111 (10)0.0019 (11)0.0091 (10)
N20.0620 (12)0.0344 (10)0.0564 (11)0.0082 (10)0.0091 (10)0.0013 (9)
C150.0500 (11)0.0483 (12)0.0505 (12)0.0020 (11)0.0022 (11)0.0131 (11)
C160.0647 (17)0.0704 (19)0.0669 (17)0.0195 (16)0.0227 (15)0.0204 (15)
C170.063 (2)0.107 (3)0.102 (3)0.021 (2)0.027 (2)0.044 (3)
C180.0586 (17)0.117 (4)0.109 (3)0.010 (2)0.013 (2)0.062 (3)
C190.073 (2)0.097 (3)0.086 (2)0.021 (2)0.0239 (19)0.028 (2)
C200.0652 (17)0.0663 (18)0.0587 (15)0.0104 (15)0.0058 (12)0.0105 (14)
C210.0425 (10)0.0360 (12)0.0569 (13)0.0015 (10)0.0081 (10)0.0029 (10)
C220.0685 (16)0.0403 (14)0.0618 (14)0.0002 (13)0.0056 (13)0.0040 (12)
C230.077 (2)0.0372 (13)0.089 (2)0.0024 (14)0.0117 (18)0.0048 (15)
C240.0722 (18)0.0446 (17)0.089 (2)0.0011 (15)0.0141 (18)0.0130 (16)
C250.0773 (18)0.0575 (19)0.073 (2)0.0020 (15)0.0124 (17)0.0208 (17)
C260.0635 (14)0.0470 (15)0.0559 (14)0.0000 (13)0.0099 (12)0.0021 (12)
C270.125 (4)0.095 (3)0.084 (3)0.024 (3)0.038 (3)0.015 (2)
C280.065 (2)0.177 (5)0.167 (5)0.019 (3)0.018 (3)0.071 (5)
Geometric parameters (Å, º) top
S1—O21.4278 (19)S2—O31.429 (2)
S1—O11.433 (2)S2—O41.435 (2)
S1—N11.632 (2)S2—N21.619 (2)
S1—C11.760 (3)S2—C151.758 (3)
N1—C71.426 (3)N2—C211.421 (3)
N1—H1N0.8600N2—H2N0.8600
C1—C61.379 (4)C15—C201.386 (4)
C1—C21.404 (4)C15—C161.391 (4)
C2—C31.373 (6)C16—C171.421 (6)
C2—C131.517 (5)C16—C271.501 (6)
C3—C41.384 (6)C17—C181.366 (8)
C3—H30.9300C17—H170.9300
C4—C51.380 (6)C18—C191.354 (7)
C4—C141.502 (6)C18—C281.520 (6)
C5—C61.373 (5)C19—C201.379 (5)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C121.374 (4)C21—C261.372 (4)
C7—C81.377 (4)C21—C221.390 (4)
C8—C91.390 (4)C22—C231.382 (4)
C8—H80.9300C22—H220.9300
C9—C101.377 (6)C23—C241.367 (6)
C9—H90.9300C23—H230.9300
C10—C111.347 (6)C24—C251.381 (6)
C10—H100.9300C24—H240.9300
C11—C121.382 (4)C25—C261.375 (4)
C11—H110.9300C25—H250.9300
C12—H120.9300C26—H260.9300
C13—H13A0.9600C27—H27A0.9600
C13—H13B0.9600C27—H27B0.9600
C13—H13C0.9600C27—H27C0.9600
C14—H14A0.9600C28—H28A0.9600
C14—H14B0.9600C28—H28B0.9600
C14—H14C0.9600C28—H28C0.9600
O2—S1—O1117.09 (14)O3—S2—O4117.71 (14)
O2—S1—N1105.17 (14)O3—S2—N2109.64 (12)
O1—S1—N1109.11 (13)O4—S2—N2104.73 (13)
O2—S1—C1111.43 (15)O3—S2—C15106.81 (14)
O1—S1—C1107.33 (13)O4—S2—C15110.97 (14)
N1—S1—C1106.18 (12)N2—S2—C15106.48 (12)
C7—N1—S1122.50 (18)C21—N2—S2125.67 (18)
C7—N1—H1N118.7C21—N2—H2N117.2
S1—N1—H1N118.7S2—N2—H2N117.2
C6—C1—C2120.2 (3)C20—C15—C16120.5 (3)
C6—C1—S1118.1 (2)C20—C15—S2118.0 (2)
C2—C1—S1121.7 (2)C16—C15—S2121.5 (3)
C3—C2—C1116.8 (3)C15—C16—C17115.6 (4)
C3—C2—C13119.8 (3)C15—C16—C27123.8 (4)
C1—C2—C13123.4 (3)C17—C16—C27120.6 (4)
C2—C3—C4124.1 (3)C18—C17—C16123.8 (4)
C2—C3—H3117.9C18—C17—H17118.1
C4—C3—H3117.9C16—C17—H17118.1
C5—C4—C3117.4 (4)C19—C18—C17118.4 (4)
C5—C4—C14120.6 (4)C19—C18—C28121.1 (6)
C3—C4—C14122.0 (4)C17—C18—C28120.5 (5)
C6—C5—C4120.6 (4)C18—C19—C20120.9 (5)
C6—C5—H5119.7C18—C19—H19119.6
C4—C5—H5119.7C20—C19—H19119.6
C5—C6—C1120.9 (3)C19—C20—C15120.8 (4)
C5—C6—H6119.5C19—C20—H20119.6
C1—C6—H6119.5C15—C20—H20119.6
C12—C7—C8120.2 (3)C26—C21—C22120.0 (3)
C12—C7—N1121.4 (3)C26—C21—N2118.9 (2)
C8—C7—N1118.3 (2)C22—C21—N2121.0 (3)
C7—C8—C9118.9 (3)C23—C22—C21118.8 (3)
C7—C8—H8120.5C23—C22—H22120.6
C9—C8—H8120.5C21—C22—H22120.6
C10—C9—C8120.4 (3)C24—C23—C22121.3 (3)
C10—C9—H9119.8C24—C23—H23119.3
C8—C9—H9119.8C22—C23—H23119.3
C11—C10—C9119.9 (3)C23—C24—C25119.4 (3)
C11—C10—H10120.1C23—C24—H24120.3
C9—C10—H10120.1C25—C24—H24120.3
C10—C11—C12120.9 (3)C26—C25—C24120.1 (4)
C10—C11—H11119.6C26—C25—H25120.0
C12—C11—H11119.6C24—C25—H25120.0
C7—C12—C11119.6 (3)C21—C26—C25120.4 (3)
C7—C12—H12120.2C21—C26—H26119.8
C11—C12—H12120.2C25—C26—H26119.8
C2—C13—H13A109.5C16—C27—H27A109.5
C2—C13—H13B109.5C16—C27—H27B109.5
H13A—C13—H13B109.5H27A—C27—H27B109.5
C2—C13—H13C109.5C16—C27—H27C109.5
H13A—C13—H13C109.5H27A—C27—H27C109.5
H13B—C13—H13C109.5H27B—C27—H27C109.5
C4—C14—H14A109.5C18—C28—H28A109.5
C4—C14—H14B109.5C18—C28—H28B109.5
H14A—C14—H14B109.5H28A—C28—H28B109.5
C4—C14—H14C109.5C18—C28—H28C109.5
H14A—C14—H14C109.5H28A—C28—H28C109.5
H14B—C14—H14C109.5H28B—C28—H28C109.5
O2—S1—N1—C7164.3 (2)O3—S2—N2—C2167.5 (3)
O1—S1—N1—C769.3 (3)O4—S2—N2—C21165.3 (2)
C1—S1—N1—C746.1 (3)C15—S2—N2—C2147.7 (3)
O2—S1—C1—C6133.9 (2)O3—S2—C15—C205.2 (3)
O1—S1—C1—C64.5 (3)O4—S2—C15—C20134.7 (2)
N1—S1—C1—C6112.1 (2)N2—S2—C15—C20111.9 (2)
O2—S1—C1—C247.0 (3)O3—S2—C15—C16175.1 (2)
O1—S1—C1—C2176.5 (2)O4—S2—C15—C1645.6 (3)
N1—S1—C1—C267.0 (3)N2—S2—C15—C1667.8 (3)
C6—C1—C2—C31.0 (4)C20—C15—C16—C170.5 (4)
S1—C1—C2—C3180.0 (3)S2—C15—C16—C17179.8 (2)
C6—C1—C2—C13179.5 (3)C20—C15—C16—C27180.0 (3)
S1—C1—C2—C131.4 (4)S2—C15—C16—C270.4 (5)
C1—C2—C3—C41.0 (5)C15—C16—C17—C180.4 (6)
C13—C2—C3—C4179.6 (4)C27—C16—C17—C18179.9 (4)
C2—C3—C4—C50.8 (6)C16—C17—C18—C190.1 (6)
C2—C3—C4—C14178.8 (4)C16—C17—C18—C28178.7 (4)
C3—C4—C5—C60.6 (5)C17—C18—C19—C200.6 (6)
C14—C4—C5—C6179.0 (4)C28—C18—C19—C20179.2 (4)
C4—C5—C6—C10.6 (5)C18—C19—C20—C150.5 (6)
C2—C1—C6—C50.8 (5)C16—C15—C20—C190.1 (5)
S1—C1—C6—C5179.9 (3)S2—C15—C20—C19179.8 (3)
S1—N1—C7—C1245.2 (4)S2—N2—C21—C26142.9 (2)
S1—N1—C7—C8135.7 (2)S2—N2—C21—C2239.2 (4)
C12—C7—C8—C92.4 (5)C26—C21—C22—C230.5 (4)
N1—C7—C8—C9176.7 (3)N2—C21—C22—C23178.4 (3)
C7—C8—C9—C102.2 (5)C21—C22—C23—C241.5 (6)
C8—C9—C10—C110.5 (6)C22—C23—C24—C251.0 (6)
C9—C10—C11—C121.0 (6)C23—C24—C25—C260.4 (6)
C8—C7—C12—C111.0 (5)C22—C21—C26—C250.9 (4)
N1—C7—C12—C11178.1 (3)N2—C21—C26—C25177.0 (3)
C10—C11—C12—C70.8 (6)C24—C25—C26—C211.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.862.413.164 (3)147
N2—H2N···O1ii0.862.223.056 (3)164
C11—H11···O2iii0.932.503.227 (4)135
C23—H23···O4iii0.932.503.316 (4)147
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1/2, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H15NO2S
Mr261.33
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)299
a, b, c (Å)19.113 (3), 8.9290 (8), 15.781 (1)
V3)2693.2 (5)
Z8
Radiation typeCu Kα
µ (mm1)2.09
Crystal size (mm)0.50 × 0.43 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.401, 0.593
No. of measured, independent and
observed [I > 2σ(I)] reflections
4916, 2505, 2421
Rint0.050
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.09
No. of reflections2505
No. of parameters330
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.23
Absolute structureFlack (1983), no Friedel pairs
Absolute structure parameter0.008 (17)

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.862.413.164 (3)146.5
N2—H2N···O1ii0.862.223.056 (3)164.1
C11—H11···O2iii0.932.503.227 (4)135.1
C23—H23···O4iii0.932.503.316 (4)146.9
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1/2, y+1, z; (iii) x, y+1, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008c). Acta Cryst. E64, o2190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds