organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o526-o527

rac-(2R*,3S*,5S*,6R*,7S*,8S*)-7,8-Di­chloro­bi­cyclo­[2.2.2]octane-2,3,5,6-tetrayl tetra­acetate

aDepartment of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey, bDepartment of Chemistry, Faculty of Science, Sakarya University, 54100 Sakarya, Turkey, and cDepartment of Chemistry, Faculty of Science, Middle East Technical University, 06531 Ankara, Turkey
*Correspondence e-mail: ertan@atauni.edu.tr

(Received 19 January 2009; accepted 10 February 2009; online 13 February 2009)

The title compound, C16H20Cl2O8, contains a central bicyclo­[2.2.2]octane skeleton with slightly twisted conformation. In this structure, the C—C bond lengths are in the range 1.525 (2)–1.552 (2) Å. Two sides of this skeleton have cis,cis acet­oxy substituents and the Cl atoms have a trans arrangement. An extensive network of weak C—H⋯O interactions stabilizes the crystal structure.

Related literature

For background information on inositol and its derivatives, see: Michell (2008[Michell, R. H. (2008). Nat. Rev. Mol. Cell Biol. 9, 151-161.]); Reitz (1991[Reitz, A. B. (1991). Editor. Inositol Phosphates and Derivatives: Synthesis, Biochemistry and Therapeutic Potential. Washington: American Chemical Society.]); Dwek (1996[Dwek, A. (1996). Chem. Rev. 96, 683-720.]); Billington et al. (1994[Billington, D. C., Perron-Sierra, F., Beaubras, S., Duhault, J., Espinal, J. & Challal, S. (1994). Bioorg. Med. Chem. Lett. 4, 2307-2311.]); Varki (1993[Varki, A. (1993). Glycobiology, 3, 97-130.]); Heightman & Vasella (1991[Heightman, T. D. & Vasella, A. T. (1991). Angew. Chem. Int. Ed. 38, 750-770.]). For background on the carba-analogues of oligosaccharides, see: Ogawa et al. (2000[Ogawa, S., Ohmura, M. & Hisamatsu, S. (2000). Synthesis, pp. 312-316.], 1988[Ogawa, S., Hirai, K., Odagiri, T., Matsunaga, N., Yamajaki, T. & Nakajima, A. (1988). Eur. J. Org. Chem. pp. 1099-1109.]); Saumi (1990[Saumi, T. (1990). Top. Curr. Chem. 154, 257-283.]); Saumi & Ogawa (1990[Saumi, T. & Ogawa, S. (1990). Adv. Carbohydr. Chem. Biochem. 48, 21-90.]). For related structures, see: Baran et al. (2008[Baran, A., Günel, A. & Balcı, M. (2008). J. Org. Chem. 73, 4370-4375.]); Mehta et al. (2007[Mehta, G., Sen, S. & Ramesh, S. S. (2007). Eur. J. Org. Chem. pp. 423-436.]); Shih et al. (2007[Shih, T.-L., Yang, R.-Y., Li, S.-T., Chiang, C.-F. & Lin, C.-H. (2007). J. Org. Chem. 72, 4258-4261.]); Gültekin et al. (2004[Gültekin, M. S., Celik, M. & Balcı, M. (2004). Curr. Org. Chem. 8, 1159-1186.]); Mehta & Ramesh (2001[Mehta, G. & Ramesh, S. S. (2001). Tetrahedron Lett. 42, 1987-1990.]); Balcı (1997[Balcı, M. (1997). Pure Appl. Chem. 69, 97-104.]); Balcı et al. (1990[Balcı, M., Sutbeyaz, Y. & Secen, H. (1990). Tetrahedron, 46, 3715-3742.]);Ülkü et al. (1995[Ülkü, D., Tahir, M. N., Menzek, A. & Balcı, M. (1995). Acta Cryst. C51, 2714-2715.]); Buser & Vasella (2006[Buser, S. & Vasella, A. (2006). Helv. Chim. Acta, 89, 614-620.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20Cl2O8

  • Mr = 411.22

  • Monoclinic, P 21 /a

  • a = 10.1061 (3) Å

  • b = 13.3383 (4) Å

  • c = 14.2229 (3) Å

  • β = 90.189 (2)°

  • V = 1917.21 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 294 K

  • 0.5 × 0.3 × 0.2 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.873, Tmax = 0.927

  • 54750 measured reflections

  • 5628 independent reflections

  • 5575 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.157

  • S = 1.32

  • 5628 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O6i 0.98 2.46 3.425 (3) 169
C8—H8⋯O8ii 0.98 2.42 3.377 (3) 166
C16—H16A⋯O7ii 0.96 2.53 3.416 (4) 154
C12—H12B⋯O5iii 0.96 2.52 3.297 (4) 137
C6—H6⋯O7iv 0.98 2.60 3.240 (3) 123
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Glycosidases and their inhibitors have been the subject of much research in the last decade. Inositols (cyclohexanehexols) are sugar-like molecules. There are nine stereoisomers, all of which may be referred to as inositol (Michell, 2008; Reitz, 1991). The most prominent naturally occurring form is myo-inositol, cis-1,2,3,5-trans-4,6-cyclohexanehexol and it is actively involved in cellular events and processes. Inositol and their derivatives can inhibit the glycosidases and affect many biological processes (Dwek, 1996; Billington et al. 1994; Varki, 1993; Heightman & Vasella 1991). Carba-analogues of oligosaccharides (carbasugar) generated by replacing the endocyclic oxygen atom in monosaccharides (Ogawa et al. 2000 and 1988; Saumi, 1990; Saumi & Ogawa, 1990) are thought to be more potent drug candidates than natural sugars, since they are hydrolytically stable.

New synthetic methodologies for various inositols and their derivatives have been developed. After this discovery, an enormous increase in the synthesis of cyclitol derivatives (Mehta et al. 2007; Shih et al. 2007; Gültekin et al. 2004; Mehta & Ramesh, 2001; Balcı, 1997; Balcı et al.1990) was observed since these show glycosidase inhibitory properties. More recently, a bridged and bicyclic system, the racemic gluco-configured norbornane has been synthesised and tested as inhibitor of β-glycosidases (Buser & Vasella, 2006). They noticed that the configuration of the hydroxy group play an important role in inhibitor activity. Motivated by the medical value of certain cyclitol derivatives, we were interested in designing a new generation of possible glycosidase inhibitors with the bicyclic structures having bicyclo[2.2.2]octane skeleton.

For the construction of the bicyclo[2.2.2]octane skeleton we started from 2,2-dimethyl-3a,7a-dihydro-1,3-benzo-dioxole and vinylene carbonate and synthesized the tetraacetate 1 in 3 steps (Baran et al., 2008).

For the synthesis of isomeric hexols with bicyclo[2.2.2]octane skeleton, the tetracetate 1 was reacted with m-CPBA. The reaction was completed after 21 days by refluxing in chloroform. Recently, we isolated a side product I in 8% yields beside the major product 2 (86%). The structure of the side product was confirmed by NMR-spectroscopic studies. The incorporation of the chlorine atoms into the molecule and their configuration were determined by X-ray diffraction analysis. The title compound (I) C16H20O8Cl2 contains a central bicyclo[2.2.2]octane skeleton with slightly twisted conformation. In this structure C—C bond lengths are in the range of 1.525 (2)- 1.552 (2) Å. Two sides of this skeleton have cis, cis –OAc substituents. In addition to this, Cl atoms have trans stereochemistry at the other side (C7—Cl1=1.796 (2), C8—Cl2=1.798 (2) Å). Intermolecular C—H···O hydrogen bonds are effective in determining the molecular conformation and the crystal structure of the title compound (Table 1).

Related literature top

For background information on inositol and its derivatives, see: Michell (2008); Reitz (1991); Dwek (1996); Billington et al. (1994); Varki (1993); Heightman & Vasella (1991). For background on the carba-analogues of oligosaccharides, see: Ogawa et al. (2000, 1988); Saumi (1990); Saumi & Ogawa (1990). For related structures, see: Baran et al. (2008); Mehta et al. (2007); Shih et al. (2007); Gültekin et al. (2004); Mehta & Ramesh (2001); Balcı (1997); Balcı et al. (1990);Ülkü et al. (1995); Buser & Vasella (2006).

Experimental top

Oxidation of 2S,3R,5R,6S-rel-Bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetraacetate with m-CPBA in chloroform was performed as followed. (1.0 g, 2.94 mmol) tetraacetate 1 in 100 ml of chloroform was reacted with (1.50 g, 6 mmol, 70%) m-CPBA as described in the literature (Baran et al., 2008). Evaporation of solvent under reduced pressure and recrystallization of product from ethyl acetate gave epoxide 2. After separation of epoxide 2, the solvent was removed and the residue was dissolved in ether and crystallization at 273 K gave colourless crystals of the dichloro compound I (97 mg, 8%) m.p. 469–472 K. 1H NMR (400 MHz, CDCl3) δ 5.41 (dd, J = 8.0 and 4.4 Hz, 1H), 5.33–5.28 (m, 3H), 4.59 (dd, J = 7.6 and 2. 0 Hz, 1H), 3.97 (br d, J = 7.6 Hz, 1H), 2.92 (dt, J= 4.4 and 1.2 and Hz, 1H), 2.43 (q, J = 2.0 Hz, 1H), 2.14 (s, –CH3), 2.11 (s,-CH3), 2.074 (s, –CH3), 2.07 (s, –CH3). 13C NMR (100 MHz, CDCl3) δ 168.1, 167.8, 167.6, 167.4, 64.7, 63.6, 62.3, 61.9, 57.8, 56.5, 43.9, 40.2, 19.2, 18.8, 18.7, 18.6. IR (KBr, cm-1) 2984, 2968, 1758, 1431, 1370, 1201, 982, 900. Anal. Calcd for C16H20Cl2O8: C, 46.73; H, 4.90. Found: C, 46.80; H, 5.16.

Chlorination of 2S*,3R*,5R*,6S*--Bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetraacetate was according the described procedure. (0.3 g, 0.88 mmol) tetraacetate 1 was dissolved in 100 ml of dichloromethane. Chlorine gas (generated from the reaction of KMnO4 with HCl) was passed through the solution. After 20 m the gas flow was stopped and the flask was closed with a stopper. The mixture was stirred at room temperature for 3 h, and then the solvent was evaporated. The crude product was dissolved in ether and crystallized at 273 K to give (0.29 g, 80%) colourless crystals of I (m.p.469–472 K). The interesting feature of this reaction is the unusual formations of chlorine adduct I during epoxidation reaction. A similar reaction was also observed during the epoxidation reaction of a benzobarrelene derivative (Ülkü et al., 1995) which was also completed in three weeks. We assume that solvent, chloroform undergoes a slow oxidation reaction with the m-chloroperbenzoic acid and generates chlorine which adds to the double bond.

To test whether the adduct I has been generated by addition of free chlorine to the double bond or by other mechanism, we treated the tetraacetate 1 with chlorine gas for 3 h. The chlorine added to the double bond in 1 in a yield of 80% and gave I, which was identical with the adduct isolated from the epoxidation reaction of 1 as the side product.

To the best of our knowledge, chlorine addition to a double bond during an epoxidation reaction has been not presented in the literature. This reaction can be probably encountered only during those reactions which are completed in 2–3 weeks because of the very slow oxidation of chloroform.

Refinement top

H atoms were placed in geometrically idealized positions (C—H=0.96–0.98 Å) and treated as riding, with Uiso(H)=1.2Ueq(C)(for methine) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The formation of the title compound.
rac-(2R*,3S*,5S*,6R*,7S*, 8S*)-7,8-Dichlorobicyclo[2.2.2]octane-2,3,5,6-tetrayl tetraacetate top
Crystal data top
C16H20Cl2O8F(000) = 856
Mr = 411.22Dx = 1.425 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 16740 reflections
a = 10.1061 (3) Åθ = 2.9–30.0°
b = 13.3383 (4) ŵ = 0.38 mm1
c = 14.2229 (3) ÅT = 294 K
β = 90.189 (2)°Block, colourless
V = 1917.21 (9) Å30.5 × 0.3 × 0.2 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
5628 independent reflections
Graphite monochromator5575 reflections with I > 2σ(I)
Detector resolution: 10 pixels mm-1Rint = 0.024
dtprofit.ref scansθmax = 30.2°, θmin = 2.9°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1414
Tmin = 0.873, Tmax = 0.927k = 1818
54750 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.32 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.7822P]
where P = (Fo2 + 2Fc2)/3
5628 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C16H20Cl2O8V = 1917.21 (9) Å3
Mr = 411.22Z = 4
Monoclinic, P21/aMo Kα radiation
a = 10.1061 (3) ŵ = 0.38 mm1
b = 13.3383 (4) ÅT = 294 K
c = 14.2229 (3) Å0.5 × 0.3 × 0.2 mm
β = 90.189 (2)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
5628 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
5575 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.927Rint = 0.024
54750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.32Δρmax = 0.38 e Å3
5628 reflectionsΔρmin = 0.38 e Å3
239 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43075 (15)0.68316 (10)0.83281 (11)0.0493 (3)
O20.40605 (14)0.67994 (10)0.65495 (10)0.0456 (3)
O30.65280 (15)0.43371 (11)0.67091 (11)0.0515 (4)
O40.61501 (15)0.40594 (12)0.84846 (12)0.0562 (4)
O60.7006 (2)0.27009 (13)0.68650 (16)0.0760 (6)
C10.4340 (2)0.49728 (14)0.64831 (14)0.0432 (4)
H10.43880.49420.57960.052*
O70.5083 (2)0.68542 (15)0.51586 (12)0.0707 (5)
C30.49349 (19)0.59673 (14)0.79258 (14)0.0431 (4)
H30.58570.59310.81390.052*
O50.5382 (3)0.2886 (2)0.94322 (18)0.1158 (11)
C90.7365 (2)0.35432 (17)0.67186 (17)0.0565 (5)
C50.49031 (19)0.41067 (14)0.79928 (14)0.0445 (4)
H50.43680.35180.81510.053*
C80.27942 (19)0.50853 (14)0.78399 (14)0.0436 (4)
H80.24520.57720.78680.052*
C20.48878 (19)0.59749 (13)0.68357 (14)0.0411 (4)
H20.57830.60730.65890.049*
C70.2918 (2)0.47717 (15)0.68102 (14)0.0451 (4)
H70.27610.40480.67730.054*
C60.5167 (2)0.41264 (14)0.69188 (15)0.0454 (4)
H60.49110.34830.66400.055*
C130.4288 (2)0.71914 (16)0.56923 (15)0.0492 (4)
C40.41742 (19)0.50589 (14)0.82877 (14)0.0420 (4)
H40.41030.50880.89740.050*
C140.4989 (2)0.76967 (16)0.82909 (17)0.0551 (5)
C120.7623 (3)0.3419 (3)0.9605 (2)0.0785 (8)
H12C0.76000.31591.02340.118*
H12A0.79420.40970.96170.118*
H12B0.82020.30150.92290.118*
C150.4182 (3)0.85465 (19)0.8642 (2)0.0736 (7)
H15A0.40560.84780.93070.110*
H15B0.33370.85460.83310.110*
H15C0.46300.91660.85140.110*
C100.6262 (3)0.3398 (2)0.91940 (16)0.0590 (5)
C110.8745 (3)0.3867 (2)0.6533 (2)0.0790 (8)
H11C0.91720.40330.71160.119*
H11A0.87370.44440.61300.119*
H11B0.92180.33320.62320.119*
C160.3424 (3)0.8084 (2)0.5524 (2)0.0740 (8)
H16C0.36780.84050.49480.111*
H16B0.35210.85480.60360.111*
H16A0.25180.78730.54810.111*
O80.60945 (19)0.77413 (14)0.79959 (18)0.0809 (6)
Cl20.16803 (6)0.42687 (5)0.84582 (5)0.06100 (17)
Cl10.16992 (6)0.53836 (5)0.60893 (5)0.06395 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0548 (8)0.0384 (7)0.0547 (8)0.0079 (6)0.0039 (6)0.0063 (6)
O20.0461 (7)0.0389 (7)0.0519 (7)0.0066 (5)0.0045 (6)0.0054 (5)
O30.0473 (8)0.0395 (7)0.0676 (9)0.0078 (6)0.0118 (7)0.0062 (6)
O40.0438 (8)0.0582 (9)0.0665 (9)0.0014 (6)0.0081 (7)0.0147 (7)
O60.0746 (12)0.0437 (9)0.1097 (16)0.0146 (8)0.0097 (11)0.0094 (9)
C10.0472 (10)0.0381 (9)0.0445 (9)0.0027 (7)0.0024 (7)0.0014 (7)
O70.0774 (12)0.0783 (12)0.0564 (10)0.0201 (10)0.0151 (9)0.0154 (9)
C30.0414 (9)0.0386 (9)0.0493 (10)0.0036 (7)0.0006 (7)0.0007 (7)
O50.0850 (15)0.163 (3)0.0992 (17)0.0404 (16)0.0287 (12)0.0788 (18)
C90.0581 (12)0.0464 (11)0.0650 (13)0.0160 (9)0.0092 (10)0.0055 (10)
C50.0413 (9)0.0396 (9)0.0527 (10)0.0002 (7)0.0017 (8)0.0076 (8)
C80.0406 (9)0.0368 (9)0.0534 (10)0.0030 (7)0.0038 (8)0.0028 (7)
C20.0382 (8)0.0356 (8)0.0496 (10)0.0026 (7)0.0038 (7)0.0056 (7)
C70.0446 (10)0.0382 (9)0.0525 (10)0.0019 (7)0.0041 (8)0.0013 (8)
C60.0449 (10)0.0358 (9)0.0556 (11)0.0020 (7)0.0042 (8)0.0014 (8)
C130.0514 (11)0.0437 (10)0.0525 (11)0.0014 (8)0.0026 (9)0.0080 (8)
C40.0425 (9)0.0396 (9)0.0439 (9)0.0033 (7)0.0010 (7)0.0031 (7)
C140.0606 (13)0.0411 (10)0.0636 (13)0.0115 (9)0.0101 (10)0.0013 (9)
C120.0621 (15)0.104 (2)0.0691 (16)0.0164 (15)0.0158 (13)0.0076 (15)
C150.092 (2)0.0414 (12)0.0874 (19)0.0048 (12)0.0021 (15)0.0067 (12)
C100.0579 (13)0.0691 (14)0.0500 (11)0.0075 (11)0.0047 (10)0.0066 (10)
C110.0552 (14)0.0768 (18)0.105 (2)0.0165 (13)0.0163 (14)0.0124 (16)
C160.0815 (18)0.0573 (14)0.0833 (18)0.0202 (13)0.0038 (14)0.0190 (13)
O80.0582 (11)0.0543 (10)0.1301 (18)0.0180 (8)0.0015 (11)0.0029 (11)
Cl20.0510 (3)0.0560 (3)0.0761 (4)0.0096 (2)0.0142 (3)0.0077 (3)
Cl10.0534 (3)0.0690 (4)0.0694 (4)0.0004 (3)0.0176 (3)0.0018 (3)
Geometric parameters (Å, º) top
O1—C141.345 (2)C8—Cl21.7982 (19)
O1—C31.436 (2)C8—H80.9800
O2—C131.347 (2)C2—H20.9800
O2—C21.439 (2)C7—Cl11.796 (2)
O3—C91.355 (2)C7—H70.9800
O3—C61.436 (2)C6—H60.9800
O4—C101.345 (3)C13—C161.495 (3)
O4—C51.441 (2)C4—H40.9800
O6—C91.199 (3)C14—O81.197 (3)
C1—C21.531 (3)C14—C151.484 (4)
C1—C61.534 (3)C12—C101.493 (4)
C1—C71.536 (3)C12—H12C0.9600
C1—H10.9800C12—H12A0.9600
O7—C131.195 (3)C12—H12B0.9600
C3—C41.525 (3)C15—H15A0.9600
C3—C21.551 (3)C15—H15B0.9600
C3—H30.9800C15—H15C0.9600
O5—C101.173 (3)C11—H11C0.9600
C9—C111.484 (4)C11—H11A0.9600
C5—C41.528 (3)C11—H11B0.9600
C5—C61.552 (3)C16—H16C0.9600
C5—H50.9800C16—H16B0.9600
C8—C71.529 (3)C16—H16A0.9600
C8—C41.532 (3)
C14—O1—C3116.52 (17)O3—C6—C5112.04 (17)
C13—O2—C2116.86 (15)C1—C6—C5108.37 (16)
C9—O3—C6116.31 (17)O3—C6—H6109.8
C10—O4—C5117.68 (18)C1—C6—H6109.8
C2—C1—C6108.32 (16)C5—C6—H6109.8
C2—C1—C7113.02 (16)O7—C13—O2123.09 (19)
C6—C1—C7104.95 (16)O7—C13—C16126.3 (2)
C2—C1—H1110.1O2—C13—C16110.6 (2)
C6—C1—H1110.1C3—C4—C5108.89 (16)
C7—C1—H1110.1C3—C4—C8107.50 (15)
O1—C3—C4106.24 (15)C5—C4—C8110.13 (16)
O1—C3—C2112.40 (15)C3—C4—H4110.1
C4—C3—C2109.19 (15)C5—C4—H4110.1
O1—C3—H3109.6C8—C4—H4110.1
C4—C3—H3109.6O8—C14—O1122.4 (2)
C2—C3—H3109.6O8—C14—C15126.5 (2)
O6—C9—O3123.0 (2)O1—C14—C15111.1 (2)
O6—C9—C11126.0 (2)C10—C12—H12C109.5
O3—C9—C11111.0 (2)C10—C12—H12A109.5
O4—C5—C4108.96 (17)H12C—C12—H12A109.5
O4—C5—C6109.03 (16)C10—C12—H12B109.5
C4—C5—C6109.92 (15)H12C—C12—H12B109.5
O4—C5—H5109.6H12A—C12—H12B109.5
C4—C5—H5109.6C14—C15—H15A109.5
C6—C5—H5109.6C14—C15—H15B109.5
C7—C8—C4108.35 (16)H15A—C15—H15B109.5
C7—C8—Cl2110.86 (13)C14—C15—H15C109.5
C4—C8—Cl2110.69 (13)H15A—C15—H15C109.5
C7—C8—H8109.0H15B—C15—H15C109.5
C4—C8—H8109.0O5—C10—O4122.5 (2)
Cl2—C8—H8109.0O5—C10—C12126.6 (3)
O2—C2—C1111.44 (16)O4—C10—C12110.9 (2)
O2—C2—C3107.67 (15)C9—C11—H11C109.5
C1—C2—C3109.37 (15)C9—C11—H11A109.5
O2—C2—H2109.4H11C—C11—H11A109.5
C1—C2—H2109.4C9—C11—H11B109.5
C3—C2—H2109.4H11C—C11—H11B109.5
C8—C7—C1108.79 (16)H11A—C11—H11B109.5
C8—C7—Cl1111.38 (14)C13—C16—H16C109.5
C1—C7—Cl1112.85 (14)C13—C16—H16B109.5
C8—C7—H7107.9H16C—C16—H16B109.5
C1—C7—H7107.9C13—C16—H16A109.5
Cl1—C7—H7107.9H16C—C16—H16A109.5
O3—C6—C1107.03 (15)H16B—C16—H16A109.5
C14—O1—C3—C4164.71 (17)C2—C1—C6—O353.5 (2)
C14—O1—C3—C275.9 (2)C7—C1—C6—O3174.44 (16)
C6—O3—C9—O62.1 (4)C2—C1—C6—C567.6 (2)
C6—O3—C9—C11177.5 (2)C7—C1—C6—C553.4 (2)
C10—O4—C5—C4105.8 (2)O4—C5—C6—O314.1 (2)
C10—O4—C5—C6134.2 (2)C4—C5—C6—O3105.27 (18)
C13—O2—C2—C185.8 (2)O4—C5—C6—C1131.97 (17)
C13—O2—C2—C3154.22 (17)C4—C5—C6—C112.6 (2)
C6—C1—C2—O2172.81 (15)C2—O2—C13—O73.9 (3)
C7—C1—C2—O257.0 (2)C2—O2—C13—C16175.8 (2)
C6—C1—C2—C353.9 (2)O1—C3—C4—C5172.47 (15)
C7—C1—C2—C362.0 (2)C2—C3—C4—C566.09 (19)
O1—C3—C2—O27.5 (2)O1—C3—C4—C868.23 (19)
C4—C3—C2—O2110.12 (17)C2—C3—C4—C853.2 (2)
O1—C3—C2—C1128.73 (16)O4—C5—C4—C367.1 (2)
C4—C3—C2—C111.1 (2)C6—C5—C4—C352.3 (2)
C4—C8—C7—C123.6 (2)O4—C5—C4—C8175.22 (15)
Cl2—C8—C7—C1145.30 (14)C6—C5—C4—C865.4 (2)
C4—C8—C7—Cl1148.64 (13)C7—C8—C4—C374.40 (19)
Cl2—C8—C7—Cl189.70 (15)Cl2—C8—C4—C3163.84 (13)
C2—C1—C7—C841.9 (2)C7—C8—C4—C544.1 (2)
C6—C1—C7—C875.91 (19)Cl2—C8—C4—C577.66 (18)
C2—C1—C7—Cl182.20 (18)C3—O1—C14—O84.8 (3)
C6—C1—C7—Cl1159.95 (14)C3—O1—C14—C15174.3 (2)
C9—O3—C6—C1156.87 (19)C5—O4—C10—O51.7 (4)
C9—O3—C6—C584.5 (2)C5—O4—C10—C12178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O6i0.982.463.425 (3)169
C8—H8···O8ii0.982.423.377 (3)166
C16—H16A···O7ii0.962.533.416 (4)154
C12—H12B···O5iii0.962.523.297 (4)137
C6—H6···O7iv0.982.603.240 (3)123
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y+3/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H20Cl2O8
Mr411.22
Crystal system, space groupMonoclinic, P21/a
Temperature (K)294
a, b, c (Å)10.1061 (3), 13.3383 (4), 14.2229 (3)
β (°) 90.189 (2)
V3)1917.21 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.5 × 0.3 × 0.2
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.873, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
54750, 5628, 5575
Rint0.024
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.157, 1.32
No. of reflections5628
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.38

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O6i0.982.463.425 (3)169
C8—H8···O8ii0.982.423.377 (3)166
C16—H16A···O7ii0.962.533.416 (4)154
C12—H12B···O5iii0.962.523.297 (4)137
C6—H6···O7iv0.982.603.240 (3)123
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y+3/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors are indebted to TUBITAK (Scientific and Technological Research Council of Turkey) and TUBA (Turkish Academy of Sciences) for their financial support of this work. Furthermore, we are grateful to the Department of Chemistry (Atatürk University) for the use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

References

First citationBalcı, M. (1997). Pure Appl. Chem. 69, 97–104.  Google Scholar
First citationBalcı, M., Sutbeyaz, Y. & Secen, H. (1990). Tetrahedron, 46, 3715–3742.  Google Scholar
First citationBaran, A., Günel, A. & Balcı, M. (2008). J. Org. Chem. 73, 4370–4375.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBillington, D. C., Perron-Sierra, F., Beaubras, S., Duhault, J., Espinal, J. & Challal, S. (1994). Bioorg. Med. Chem. Lett. 4, 2307–2311.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBuser, S. & Vasella, A. (2006). Helv. Chim. Acta, 89, 614–620.  Web of Science CrossRef CAS Google Scholar
First citationDwek, A. (1996). Chem. Rev. 96, 683–720.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGültekin, M. S., Celik, M. & Balcı, M. (2004). Curr. Org. Chem. 8, 1159–1186.  Google Scholar
First citationHeightman, T. D. & Vasella, A. T. (1991). Angew. Chem. Int. Ed. 38, 750–770.  CrossRef Google Scholar
First citationMehta, G. & Ramesh, S. S. (2001). Tetrahedron Lett. 42, 1987–1990.  Web of Science CrossRef CAS Google Scholar
First citationMehta, G., Sen, S. & Ramesh, S. S. (2007). Eur. J. Org. Chem. pp. 423–436.  Web of Science CSD CrossRef Google Scholar
First citationMichell, R. H. (2008). Nat. Rev. Mol. Cell Biol. 9, 151–161.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOgawa, S., Hirai, K., Odagiri, T., Matsunaga, N., Yamajaki, T. & Nakajima, A. (1988). Eur. J. Org. Chem. pp. 1099–1109.  Google Scholar
First citationOgawa, S., Ohmura, M. & Hisamatsu, S. (2000). Synthesis, pp. 312–316.  Google Scholar
First citationReitz, A. B. (1991). Editor. Inositol Phosphates and Derivatives: Synthesis, Biochemistry and Therapeutic Potential. Washington: American Chemical Society.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSaumi, T. (1990). Top. Curr. Chem. 154, 257–283.  Google Scholar
First citationSaumi, T. & Ogawa, S. (1990). Adv. Carbohydr. Chem. Biochem. 48, 21–90.  PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShih, T.-L., Yang, R.-Y., Li, S.-T., Chiang, C.-F. & Lin, C.-H. (2007). J. Org. Chem. 72, 4258–4261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationÜlkü, D., Tahir, M. N., Menzek, A. & Balcı, M. (1995). Acta Cryst. C51, 2714–2715.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationVarki, A. (1993). Glycobiology, 3, 97–130.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o526-o527
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds