metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­bis­(di­phenyl­acetato)­zinc(II)]-μ-4,4′-bi­pyridine]

aDepartment of Chemistry, Nanjing Xiaozhuang College, Nanjing 210017, People's Republic of China, and bCollege of Chemistry and Applied Chemistry, Huanggang Normal University, Huanggang 438000, People's Republic of China
*Correspondence e-mail: yushanshan_2005@163.com

(Received 19 January 2009; accepted 7 February 2009; online 18 February 2009)

In the title compound, [Zn(C14H11O2)2(C10H8N2)(H2O)2]n, the ZnII ion lies on a crystallographic inversion center and is in a slightly distorted octahedral coordination enviroment. 4,4′-Bipyridine ligands act as bridging ligands, connecting ZnII ions into a chain along the b-axis direction. In the crystal structure, these chains are linked by inter­molecular O—H⋯O hydrogen bonds to form a two-dimensional network parallel to the ab plane.

Related literature

For background information, see: Janiak (2003[Janiak, C. (2003). Dalton Trans. pp. 2781-2804.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Brammer (2004[Brammer, L. (2004). Chem. Soc. Rev. 33, 476-489.]). For the role of weak noncovalent inter­actions in crystalline architectures, see: Hosseini (2005[Hosseini, M. W. (2005). Acc. Chem. Res. 38, 313-323.]); Nishio (2004[Nishio, M. (2004). CrystEngComm, 6, 130-158.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C14H11O2)2(C10H8N2)(H2O)2]

  • Mr = 680.04

  • Triclinic, [P \overline 1]

  • a = 5.7536 (13) Å

  • b = 11.882 (3) Å

  • c = 12.229 (3) Å

  • α = 98.522 (4)°

  • β = 103.273 (5)°

  • γ = 103.450 (4)°

  • V = 773.2 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 291 K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.785, Tmax = 0.823

  • 3891 measured reflections

  • 2679 independent reflections

  • 2234 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.135

  • S = 1.02

  • 2679 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O2 0.96 1.82 2.618 (5) 139
O3—H3C⋯O1i 0.96 1.97 2.802 (5) 143
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the past decade, the design of new metal-organic supramolecular solids has attracted attention in the fields of coordination chemistry and crystal engineering, for the sake of developing desired crystalline materials with potential functionality (Moulton & Zaworotko, 2001; Janiak , 2003). Furthermore, it has been realised that weak noncovalent interactions such as hydrogen bonds, aromatic stacking, and van der Waals forces (Hosseini, 2005; Nishio, 2004) are crucial in the direction of such crystalline architectures. Hitherto, a variety of organic connectors containing pyridyl and/or carboxylate groups (Brammer, 2004) have been widely used to construct metal-organic supramolecular frameworks. Herein we report the crystal structure of the title compound (1).

The asymmetric unit of (I) is illustrated in Fig. 1. The structure of (I) is a one-dimensional chain (Fig. 2), in which the ZnII ions are coordinated by two O atoms from two monodentate carboxylate groups of two bis(diphenylacetato) ligands, two N atoms of two bridging 4,4'-bipyridine ligands and two O atoms from two water molecules. The ZnII ion is in a slightly distorted octahedral coordination environment. In the crystal structure, these one-dimensional chains are linked via intermolecular O—H···O hydrogen bonds to form a two-dimensional network.

Related literature top

For background information, see: Janiak (2003); Moulton & Zaworotko (2001); Brammer (2004). For the role of weak noncovalent interactions in crystalline architectures, see: Hosseini (2005); Nishio (2004). Please check added text.

Experimental top

Soild ZnCl2(136 mg, 1 mmol), 4,4'-bipyridine (1 mmol, 0.156 g) and diphenylacetic acid (212 mg, 1 mmol) in water (8 ml) was placed in a Teflon-lined stainless-steel Parr bomb that was heated at 433 K for 48 h. Colorless block crystals were collected after the bomb was subsequently allowed to cool to room temperature.

Refinement top

The C-bound H atoms were placed to the bonded parent atoms in geometrically idealized positions (C—H = 0.93, and 0.98 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C). The O-bound H atoms were located in difference Fourier maps and refined as riding in their as-found positions but with O—H = 0.96 Å and with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Part of the one-dimensional chain structure of (I).
catena-Poly[[diaquabis(diphenylacetato)zinc(II)]-µ-4,4'-bipyridine] top
Crystal data top
[Zn(C14H11O2)2(C10H8N2)(H2O)2]Z = 1
Mr = 680.04F(000) = 354
Triclinic, P1Dx = 1.460 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7536 (13) ÅCell parameters from 924 reflections
b = 11.882 (3) Åθ = 2.2–20.2°
c = 12.229 (3) ŵ = 0.85 mm1
α = 98.522 (4)°T = 291 K
β = 103.273 (5)°Block, colorless
γ = 103.450 (4)°0.30 × 0.26 × 0.24 mm
V = 773.2 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
2679 independent reflections
Radiation source: fine-focus sealed tube2234 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 66
Tmin = 0.785, Tmax = 0.823k = 1214
3891 measured reflectionsl = 1411
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.05P)2 + 1.22P]
where P = (Fo2 + 2Fc2)/3
2679 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Zn(C14H11O2)2(C10H8N2)(H2O)2]γ = 103.450 (4)°
Mr = 680.04V = 773.2 (3) Å3
Triclinic, P1Z = 1
a = 5.7536 (13) ÅMo Kα radiation
b = 11.882 (3) ŵ = 0.85 mm1
c = 12.229 (3) ÅT = 291 K
α = 98.522 (4)°0.30 × 0.26 × 0.24 mm
β = 103.273 (5)°
Data collection top
Bruker SMART CCD
diffractometer
2679 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2234 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.823Rint = 0.022
3891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
2679 reflectionsΔρmin = 0.22 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5242 (9)0.7816 (4)0.0135 (4)0.0552 (12)
H10.63900.74420.01970.066*
C20.4992 (9)0.7953 (4)0.1250 (4)0.0575 (12)
H20.59690.76690.16720.069*
C30.3272 (9)0.8519 (4)0.1754 (4)0.0540 (11)
H30.31060.86140.25070.065*
C40.1819 (9)0.8936 (4)0.1118 (4)0.0592 (13)
H40.06790.93170.14410.071*
C50.2073 (8)0.8782 (4)0.0000 (4)0.0481 (11)
H50.10760.90520.04180.058*
C60.3773 (8)0.8238 (4)0.0501 (4)0.0544 (12)
C70.3955 (8)0.8080 (4)0.1714 (4)0.0528 (12)
H70.27200.84230.19630.063*
C80.3306 (8)0.6802 (4)0.1832 (4)0.0550 (12)
C90.0736 (9)0.6218 (4)0.1441 (4)0.0588 (13)
H90.04500.66150.12150.071*
C100.0081 (9)0.4974 (4)0.1416 (4)0.0575 (13)
H100.15920.45550.11630.069*
C110.1787 (9)0.4365 (5)0.1745 (4)0.0557 (12)
H110.13030.35520.16950.067*
C120.4204 (8)0.4999 (4)0.2145 (4)0.0527 (11)
H120.53870.46090.23930.063*
C130.4981 (10)0.6189 (4)0.2200 (4)0.0552 (12)
H130.66620.65880.24890.066*
C140.6538 (8)0.8770 (4)0.2592 (4)0.0463 (11)
C151.1601 (9)0.7492 (4)0.4541 (4)0.0494 (11)
H151.26390.79350.41840.059*
C161.1620 (8)0.6347 (4)0.4540 (4)0.0478 (11)
H161.27280.60450.42220.057*
C171.0046 (9)0.5634 (4)0.4995 (4)0.0510 (11)
C180.8504 (9)0.6187 (4)0.5508 (4)0.0489 (11)
H180.74240.57550.58530.059*
C190.8580 (9)0.7341 (4)0.5501 (4)0.0476 (11)
H190.75150.76690.58290.057*
N11.0118 (8)0.8015 (3)0.5046 (4)0.0591 (10)
O10.6471 (6)0.9293 (3)0.3557 (3)0.0600 (9)
O20.8431 (5)0.8730 (3)0.2284 (3)0.0516 (8)
O31.2454 (6)1.0195 (3)0.3733 (3)0.0608 (9)
H3B1.15390.96960.29940.073*
H3C1.39250.99610.40240.073*
Zn11.00001.00000.50000.0473 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (3)0.063 (3)0.046 (3)0.020 (2)0.004 (2)0.010 (2)
C20.053 (3)0.059 (3)0.055 (3)0.003 (2)0.026 (2)0.001 (2)
C30.051 (3)0.056 (3)0.049 (3)0.008 (2)0.010 (2)0.011 (2)
C40.053 (3)0.051 (3)0.065 (3)0.011 (2)0.007 (2)0.028 (2)
C50.047 (2)0.046 (2)0.055 (3)0.024 (2)0.008 (2)0.012 (2)
C60.046 (3)0.052 (3)0.061 (3)0.014 (2)0.012 (2)0.004 (2)
C70.044 (2)0.061 (3)0.045 (2)0.018 (2)0.001 (2)0.000 (2)
C80.042 (2)0.051 (3)0.056 (3)0.002 (2)0.006 (2)0.008 (2)
C90.062 (3)0.057 (3)0.050 (3)0.000 (2)0.016 (2)0.013 (2)
C100.053 (3)0.059 (3)0.048 (3)0.013 (2)0.024 (2)0.005 (2)
C110.060 (3)0.063 (3)0.048 (3)0.018 (2)0.028 (2)0.001 (2)
C120.049 (3)0.049 (3)0.065 (3)0.016 (2)0.018 (2)0.020 (2)
C130.063 (3)0.057 (3)0.051 (3)0.019 (2)0.019 (2)0.019 (2)
C140.039 (2)0.045 (2)0.047 (2)0.0136 (18)0.0069 (19)0.0099 (19)
C150.061 (3)0.047 (3)0.058 (3)0.030 (2)0.027 (2)0.026 (2)
C160.051 (3)0.057 (3)0.054 (3)0.032 (2)0.025 (2)0.026 (2)
C170.059 (3)0.043 (2)0.056 (3)0.025 (2)0.015 (2)0.011 (2)
C180.054 (3)0.058 (3)0.049 (2)0.030 (2)0.019 (2)0.021 (2)
C190.056 (3)0.041 (2)0.050 (3)0.023 (2)0.010 (2)0.017 (2)
N10.065 (3)0.044 (2)0.064 (3)0.0170 (19)0.011 (2)0.0041 (19)
O10.0470 (18)0.067 (2)0.057 (2)0.0143 (16)0.0080 (15)0.0010 (16)
O20.0419 (17)0.0550 (19)0.0550 (18)0.0178 (14)0.0141 (14)0.0054 (14)
O30.058 (2)0.056 (2)0.061 (2)0.0140 (16)0.0108 (16)0.0031 (16)
Zn10.0440 (4)0.0420 (4)0.0436 (4)0.0021 (3)0.0025 (3)0.0020 (3)
Geometric parameters (Å, º) top
C1—C21.377 (6)C12—H120.9300
C1—C61.398 (6)C13—H130.9300
C1—H10.9300C14—O21.240 (5)
C2—C31.401 (7)C14—O11.263 (5)
C2—H20.9300C15—C161.363 (6)
C3—C41.388 (7)C15—N11.368 (6)
C3—H30.9300C15—H150.9300
C4—C51.385 (6)C16—C171.365 (6)
C4—H40.9300C16—H160.9300
C5—C61.374 (6)C17—C181.420 (6)
C5—H50.9300C17—C17i1.497 (8)
C6—C71.505 (7)C18—C191.362 (6)
C7—C81.514 (7)C18—H180.9300
C7—C141.572 (6)C19—N11.328 (6)
C7—H70.9800C19—H190.9300
C8—C131.373 (7)N1—Zn12.384 (4)
C8—C91.413 (6)O1—Zn12.250 (3)
C9—C101.432 (7)O3—Zn12.326 (3)
C9—H90.9300O3—H3B0.9600
C10—C111.372 (7)O3—H3C0.9600
C10—H100.9300Zn1—O1ii2.250 (3)
C11—C121.354 (7)Zn1—O3ii2.326 (3)
C11—H110.9300Zn1—N1ii2.384 (4)
C12—C131.367 (6)
C2—C1—C6120.1 (5)C8—C13—H13119.7
C2—C1—H1120.0O2—C14—O1126.4 (4)
C6—C1—H1120.0O2—C14—C7117.4 (4)
C1—C2—C3120.3 (5)O1—C14—C7116.2 (4)
C1—C2—H2119.9C16—C15—N1122.6 (4)
C3—C2—H2119.9C16—C15—H15118.7
C4—C3—C2119.3 (4)N1—C15—H15118.7
C4—C3—H3120.3C15—C16—C17121.4 (4)
C2—C3—H3120.3C15—C16—H16119.3
C5—C4—C3119.8 (4)C17—C16—H16119.3
C5—C4—H4120.1C16—C17—C18115.3 (4)
C3—C4—H4120.1C16—C17—C17i123.8 (5)
C6—C5—C4121.1 (5)C18—C17—C17i120.9 (5)
C6—C5—H5119.4C19—C18—C17121.1 (4)
C4—C5—H5119.4C19—C18—H18119.4
C5—C6—C1119.4 (5)C17—C18—H18119.4
C5—C6—C7119.0 (4)N1—C19—C18122.5 (4)
C1—C6—C7121.6 (4)N1—C19—H19118.8
C6—C7—C8114.4 (4)C18—C19—H19118.8
C6—C7—C14113.9 (4)C19—N1—C15117.1 (4)
C8—C7—C14109.1 (4)C19—N1—Zn1120.2 (3)
C6—C7—H7106.3C15—N1—Zn1122.6 (3)
C8—C7—H7106.3C14—O1—Zn1119.4 (3)
C14—C7—H7106.3Zn1—O3—H3B109.4
C13—C8—C9120.2 (5)Zn1—O3—H3C109.2
C13—C8—C7125.6 (4)H3B—O3—H3C109.5
C9—C8—C7114.0 (4)O1—Zn1—O1ii180.000 (1)
C8—C9—C10115.4 (5)O1—Zn1—O392.45 (12)
C8—C9—H9122.3O1ii—Zn1—O387.55 (12)
C10—C9—H9122.3O1—Zn1—O3ii87.55 (12)
C11—C10—C9123.6 (5)O1ii—Zn1—O3ii92.45 (12)
C11—C10—H10118.2O3—Zn1—O3ii180.000 (1)
C9—C10—H10118.2O1—Zn1—N1ii90.93 (13)
C12—C11—C10117.1 (5)O1ii—Zn1—N1ii89.07 (13)
C12—C11—H11121.4O3—Zn1—N1ii86.86 (13)
C10—C11—H11121.4O3ii—Zn1—N1ii93.14 (13)
C11—C12—C13122.8 (5)O1—Zn1—N189.07 (13)
C11—C12—H12118.6O1ii—Zn1—N190.93 (13)
C13—C12—H12118.6O3—Zn1—N193.14 (13)
C12—C13—C8120.7 (5)O3ii—Zn1—N186.86 (13)
C12—C13—H13119.7N1ii—Zn1—N1180.000 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O20.961.822.618 (5)139
O3—H3C···O1iii0.961.972.802 (5)143
Symmetry code: (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C14H11O2)2(C10H8N2)(H2O)2]
Mr680.04
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)5.7536 (13), 11.882 (3), 12.229 (3)
α, β, γ (°)98.522 (4), 103.273 (5), 103.450 (4)
V3)773.2 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.785, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
3891, 2679, 2234
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.135, 1.02
No. of reflections2679
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O20.961.822.618 (5)139
O3—H3C···O1i0.961.972.802 (5)143
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank Nanjing Xiaozhuang College of China for financial support (grant No. 2007NXY31).

References

First citationBrammer, L. (2004). Chem. Soc. Rev. 33, 476–489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHosseini, M. W. (2005). Acc. Chem. Res. 38, 313–323.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJaniak, C. (2003). Dalton Trans. pp. 2781–2804.  Web of Science CrossRef Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNishio, M. (2004). CrystEngComm, 6, 130–158.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds