metal-organic compounds
catena-Poly[[diaquabis(diphenylacetato)zinc(II)]-μ-4,4′-bipyridine]
aDepartment of Chemistry, Nanjing Xiaozhuang College, Nanjing 210017, People's Republic of China, and bCollege of Chemistry and Applied Chemistry, Huanggang Normal University, Huanggang 438000, People's Republic of China
*Correspondence e-mail: yushanshan_2005@163.com
In the title compound, [Zn(C14H11O2)2(C10H8N2)(H2O)2]n, the ZnII ion lies on a crystallographic inversion center and is in a slightly distorted octahedral coordination enviroment. 4,4′-Bipyridine ligands act as bridging ligands, connecting ZnII ions into a chain along the b-axis direction. In the these chains are linked by intermolecular O—H⋯O hydrogen bonds to form a two-dimensional network parallel to the ab plane.
Related literature
For background information, see: Janiak (2003); Moulton & Zaworotko (2001); Brammer (2004). For the role of weak noncovalent interactions in crystalline architectures, see: Hosseini (2005); Nishio (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809004450/lh2759sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809004450/lh2759Isup2.hkl
Soild ZnCl2(136 mg, 1 mmol), 4,4'-bipyridine (1 mmol, 0.156 g) and diphenylacetic acid (212 mg, 1 mmol) in water (8 ml) was placed in a Teflon-lined stainless-steel Parr bomb that was heated at 433 K for 48 h. Colorless block crystals were collected after the bomb was subsequently allowed to cool to room temperature.
The C-bound H atoms were placed to the bonded parent atoms in geometrically idealized positions (C—H = 0.93, and 0.98 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C). The O-bound H atoms were located in difference Fourier maps and refined as riding in their as-found positions but with O—H = 0.96 Å and with Uiso(H) = 1.5Ueq(C).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The asymmetric unit of (I), showing displacement ellipsoids at the 30% probability level. | |
Fig. 2. Part of the one-dimensional chain structure of (I). |
[Zn(C14H11O2)2(C10H8N2)(H2O)2] | Z = 1 |
Mr = 680.04 | F(000) = 354 |
Triclinic, P1 | Dx = 1.460 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7536 (13) Å | Cell parameters from 924 reflections |
b = 11.882 (3) Å | θ = 2.2–20.2° |
c = 12.229 (3) Å | µ = 0.85 mm−1 |
α = 98.522 (4)° | T = 291 K |
β = 103.273 (5)° | Block, colorless |
γ = 103.450 (4)° | 0.30 × 0.26 × 0.24 mm |
V = 773.2 (3) Å3 |
Bruker SMART CCD diffractometer | 2679 independent reflections |
Radiation source: fine-focus sealed tube | 2234 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −6→6 |
Tmin = 0.785, Tmax = 0.823 | k = −12→14 |
3891 measured reflections | l = −14→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.05P)2 + 1.22P] where P = (Fo2 + 2Fc2)/3 |
2679 reflections | (Δ/σ)max < 0.001 |
214 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
[Zn(C14H11O2)2(C10H8N2)(H2O)2] | γ = 103.450 (4)° |
Mr = 680.04 | V = 773.2 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.7536 (13) Å | Mo Kα radiation |
b = 11.882 (3) Å | µ = 0.85 mm−1 |
c = 12.229 (3) Å | T = 291 K |
α = 98.522 (4)° | 0.30 × 0.26 × 0.24 mm |
β = 103.273 (5)° |
Bruker SMART CCD diffractometer | 2679 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2234 reflections with I > 2σ(I) |
Tmin = 0.785, Tmax = 0.823 | Rint = 0.022 |
3891 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.23 e Å−3 |
2679 reflections | Δρmin = −0.22 e Å−3 |
214 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5242 (9) | 0.7816 (4) | −0.0135 (4) | 0.0552 (12) | |
H1 | 0.6390 | 0.7442 | 0.0197 | 0.066* | |
C2 | 0.4992 (9) | 0.7953 (4) | −0.1250 (4) | 0.0575 (12) | |
H2 | 0.5969 | 0.7669 | −0.1672 | 0.069* | |
C3 | 0.3272 (9) | 0.8519 (4) | −0.1754 (4) | 0.0540 (11) | |
H3 | 0.3106 | 0.8614 | −0.2507 | 0.065* | |
C4 | 0.1819 (9) | 0.8936 (4) | −0.1118 (4) | 0.0592 (13) | |
H4 | 0.0679 | 0.9317 | −0.1441 | 0.071* | |
C5 | 0.2073 (8) | 0.8782 (4) | 0.0000 (4) | 0.0481 (11) | |
H5 | 0.1076 | 0.9052 | 0.0418 | 0.058* | |
C6 | 0.3773 (8) | 0.8238 (4) | 0.0501 (4) | 0.0544 (12) | |
C7 | 0.3955 (8) | 0.8080 (4) | 0.1714 (4) | 0.0528 (12) | |
H7 | 0.2720 | 0.8423 | 0.1963 | 0.063* | |
C8 | 0.3306 (8) | 0.6802 (4) | 0.1832 (4) | 0.0550 (12) | |
C9 | 0.0736 (9) | 0.6218 (4) | 0.1441 (4) | 0.0588 (13) | |
H9 | −0.0450 | 0.6615 | 0.1215 | 0.071* | |
C10 | 0.0081 (9) | 0.4974 (4) | 0.1416 (4) | 0.0575 (13) | |
H10 | −0.1592 | 0.4555 | 0.1163 | 0.069* | |
C11 | 0.1787 (9) | 0.4365 (5) | 0.1745 (4) | 0.0557 (12) | |
H11 | 0.1303 | 0.3552 | 0.1695 | 0.067* | |
C12 | 0.4204 (8) | 0.4999 (4) | 0.2145 (4) | 0.0527 (11) | |
H12 | 0.5387 | 0.4609 | 0.2393 | 0.063* | |
C13 | 0.4981 (10) | 0.6189 (4) | 0.2200 (4) | 0.0552 (12) | |
H13 | 0.6662 | 0.6588 | 0.2489 | 0.066* | |
C14 | 0.6538 (8) | 0.8770 (4) | 0.2592 (4) | 0.0463 (11) | |
C15 | 1.1601 (9) | 0.7492 (4) | 0.4541 (4) | 0.0494 (11) | |
H15 | 1.2639 | 0.7935 | 0.4184 | 0.059* | |
C16 | 1.1620 (8) | 0.6347 (4) | 0.4540 (4) | 0.0478 (11) | |
H16 | 1.2728 | 0.6045 | 0.4222 | 0.057* | |
C17 | 1.0046 (9) | 0.5634 (4) | 0.4995 (4) | 0.0510 (11) | |
C18 | 0.8504 (9) | 0.6187 (4) | 0.5508 (4) | 0.0489 (11) | |
H18 | 0.7424 | 0.5755 | 0.5853 | 0.059* | |
C19 | 0.8580 (9) | 0.7341 (4) | 0.5501 (4) | 0.0476 (11) | |
H19 | 0.7515 | 0.7669 | 0.5829 | 0.057* | |
N1 | 1.0118 (8) | 0.8015 (3) | 0.5046 (4) | 0.0591 (10) | |
O1 | 0.6471 (6) | 0.9293 (3) | 0.3557 (3) | 0.0600 (9) | |
O2 | 0.8431 (5) | 0.8730 (3) | 0.2284 (3) | 0.0516 (8) | |
O3 | 1.2454 (6) | 1.0195 (3) | 0.3733 (3) | 0.0608 (9) | |
H3B | 1.1539 | 0.9696 | 0.2994 | 0.073* | |
H3C | 1.3925 | 0.9961 | 0.4024 | 0.073* | |
Zn1 | 1.0000 | 1.0000 | 0.5000 | 0.0473 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.053 (3) | 0.063 (3) | 0.046 (3) | 0.020 (2) | 0.004 (2) | 0.010 (2) |
C2 | 0.053 (3) | 0.059 (3) | 0.055 (3) | 0.003 (2) | 0.026 (2) | 0.001 (2) |
C3 | 0.051 (3) | 0.056 (3) | 0.049 (3) | 0.008 (2) | 0.010 (2) | 0.011 (2) |
C4 | 0.053 (3) | 0.051 (3) | 0.065 (3) | 0.011 (2) | −0.007 (2) | 0.028 (2) |
C5 | 0.047 (2) | 0.046 (2) | 0.055 (3) | 0.024 (2) | 0.008 (2) | 0.012 (2) |
C6 | 0.046 (3) | 0.052 (3) | 0.061 (3) | 0.014 (2) | 0.012 (2) | 0.004 (2) |
C7 | 0.044 (2) | 0.061 (3) | 0.045 (2) | 0.018 (2) | 0.001 (2) | 0.000 (2) |
C8 | 0.042 (2) | 0.051 (3) | 0.056 (3) | 0.002 (2) | 0.006 (2) | −0.008 (2) |
C9 | 0.062 (3) | 0.057 (3) | 0.050 (3) | 0.000 (2) | 0.016 (2) | 0.013 (2) |
C10 | 0.053 (3) | 0.059 (3) | 0.048 (3) | −0.013 (2) | 0.024 (2) | 0.005 (2) |
C11 | 0.060 (3) | 0.063 (3) | 0.048 (3) | 0.018 (2) | 0.028 (2) | 0.001 (2) |
C12 | 0.049 (3) | 0.049 (3) | 0.065 (3) | 0.016 (2) | 0.018 (2) | 0.020 (2) |
C13 | 0.063 (3) | 0.057 (3) | 0.051 (3) | 0.019 (2) | 0.019 (2) | 0.019 (2) |
C14 | 0.039 (2) | 0.045 (2) | 0.047 (2) | 0.0136 (18) | 0.0069 (19) | −0.0099 (19) |
C15 | 0.061 (3) | 0.047 (3) | 0.058 (3) | 0.030 (2) | 0.027 (2) | 0.026 (2) |
C16 | 0.051 (3) | 0.057 (3) | 0.054 (3) | 0.032 (2) | 0.025 (2) | 0.026 (2) |
C17 | 0.059 (3) | 0.043 (2) | 0.056 (3) | 0.025 (2) | 0.015 (2) | 0.011 (2) |
C18 | 0.054 (3) | 0.058 (3) | 0.049 (2) | 0.030 (2) | 0.019 (2) | 0.021 (2) |
C19 | 0.056 (3) | 0.041 (2) | 0.050 (3) | 0.023 (2) | 0.010 (2) | 0.017 (2) |
N1 | 0.065 (3) | 0.044 (2) | 0.064 (3) | 0.0170 (19) | 0.011 (2) | 0.0041 (19) |
O1 | 0.0470 (18) | 0.067 (2) | 0.057 (2) | 0.0143 (16) | 0.0080 (15) | −0.0010 (16) |
O2 | 0.0419 (17) | 0.0550 (19) | 0.0550 (18) | 0.0178 (14) | 0.0141 (14) | −0.0054 (14) |
O3 | 0.058 (2) | 0.056 (2) | 0.061 (2) | 0.0140 (16) | 0.0108 (16) | 0.0031 (16) |
Zn1 | 0.0440 (4) | 0.0420 (4) | 0.0436 (4) | 0.0021 (3) | 0.0025 (3) | 0.0020 (3) |
C1—C2 | 1.377 (6) | C12—H12 | 0.9300 |
C1—C6 | 1.398 (6) | C13—H13 | 0.9300 |
C1—H1 | 0.9300 | C14—O2 | 1.240 (5) |
C2—C3 | 1.401 (7) | C14—O1 | 1.263 (5) |
C2—H2 | 0.9300 | C15—C16 | 1.363 (6) |
C3—C4 | 1.388 (7) | C15—N1 | 1.368 (6) |
C3—H3 | 0.9300 | C15—H15 | 0.9300 |
C4—C5 | 1.385 (6) | C16—C17 | 1.365 (6) |
C4—H4 | 0.9300 | C16—H16 | 0.9300 |
C5—C6 | 1.374 (6) | C17—C18 | 1.420 (6) |
C5—H5 | 0.9300 | C17—C17i | 1.497 (8) |
C6—C7 | 1.505 (7) | C18—C19 | 1.362 (6) |
C7—C8 | 1.514 (7) | C18—H18 | 0.9300 |
C7—C14 | 1.572 (6) | C19—N1 | 1.328 (6) |
C7—H7 | 0.9800 | C19—H19 | 0.9300 |
C8—C13 | 1.373 (7) | N1—Zn1 | 2.384 (4) |
C8—C9 | 1.413 (6) | O1—Zn1 | 2.250 (3) |
C9—C10 | 1.432 (7) | O3—Zn1 | 2.326 (3) |
C9—H9 | 0.9300 | O3—H3B | 0.9600 |
C10—C11 | 1.372 (7) | O3—H3C | 0.9600 |
C10—H10 | 0.9300 | Zn1—O1ii | 2.250 (3) |
C11—C12 | 1.354 (7) | Zn1—O3ii | 2.326 (3) |
C11—H11 | 0.9300 | Zn1—N1ii | 2.384 (4) |
C12—C13 | 1.367 (6) | ||
C2—C1—C6 | 120.1 (5) | C8—C13—H13 | 119.7 |
C2—C1—H1 | 120.0 | O2—C14—O1 | 126.4 (4) |
C6—C1—H1 | 120.0 | O2—C14—C7 | 117.4 (4) |
C1—C2—C3 | 120.3 (5) | O1—C14—C7 | 116.2 (4) |
C1—C2—H2 | 119.9 | C16—C15—N1 | 122.6 (4) |
C3—C2—H2 | 119.9 | C16—C15—H15 | 118.7 |
C4—C3—C2 | 119.3 (4) | N1—C15—H15 | 118.7 |
C4—C3—H3 | 120.3 | C15—C16—C17 | 121.4 (4) |
C2—C3—H3 | 120.3 | C15—C16—H16 | 119.3 |
C5—C4—C3 | 119.8 (4) | C17—C16—H16 | 119.3 |
C5—C4—H4 | 120.1 | C16—C17—C18 | 115.3 (4) |
C3—C4—H4 | 120.1 | C16—C17—C17i | 123.8 (5) |
C6—C5—C4 | 121.1 (5) | C18—C17—C17i | 120.9 (5) |
C6—C5—H5 | 119.4 | C19—C18—C17 | 121.1 (4) |
C4—C5—H5 | 119.4 | C19—C18—H18 | 119.4 |
C5—C6—C1 | 119.4 (5) | C17—C18—H18 | 119.4 |
C5—C6—C7 | 119.0 (4) | N1—C19—C18 | 122.5 (4) |
C1—C6—C7 | 121.6 (4) | N1—C19—H19 | 118.8 |
C6—C7—C8 | 114.4 (4) | C18—C19—H19 | 118.8 |
C6—C7—C14 | 113.9 (4) | C19—N1—C15 | 117.1 (4) |
C8—C7—C14 | 109.1 (4) | C19—N1—Zn1 | 120.2 (3) |
C6—C7—H7 | 106.3 | C15—N1—Zn1 | 122.6 (3) |
C8—C7—H7 | 106.3 | C14—O1—Zn1 | 119.4 (3) |
C14—C7—H7 | 106.3 | Zn1—O3—H3B | 109.4 |
C13—C8—C9 | 120.2 (5) | Zn1—O3—H3C | 109.2 |
C13—C8—C7 | 125.6 (4) | H3B—O3—H3C | 109.5 |
C9—C8—C7 | 114.0 (4) | O1—Zn1—O1ii | 180.000 (1) |
C8—C9—C10 | 115.4 (5) | O1—Zn1—O3 | 92.45 (12) |
C8—C9—H9 | 122.3 | O1ii—Zn1—O3 | 87.55 (12) |
C10—C9—H9 | 122.3 | O1—Zn1—O3ii | 87.55 (12) |
C11—C10—C9 | 123.6 (5) | O1ii—Zn1—O3ii | 92.45 (12) |
C11—C10—H10 | 118.2 | O3—Zn1—O3ii | 180.000 (1) |
C9—C10—H10 | 118.2 | O1—Zn1—N1ii | 90.93 (13) |
C12—C11—C10 | 117.1 (5) | O1ii—Zn1—N1ii | 89.07 (13) |
C12—C11—H11 | 121.4 | O3—Zn1—N1ii | 86.86 (13) |
C10—C11—H11 | 121.4 | O3ii—Zn1—N1ii | 93.14 (13) |
C11—C12—C13 | 122.8 (5) | O1—Zn1—N1 | 89.07 (13) |
C11—C12—H12 | 118.6 | O1ii—Zn1—N1 | 90.93 (13) |
C13—C12—H12 | 118.6 | O3—Zn1—N1 | 93.14 (13) |
C12—C13—C8 | 120.7 (5) | O3ii—Zn1—N1 | 86.86 (13) |
C12—C13—H13 | 119.7 | N1ii—Zn1—N1 | 180.000 (2) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3B···O2 | 0.96 | 1.82 | 2.618 (5) | 139 |
O3—H3C···O1iii | 0.96 | 1.97 | 2.802 (5) | 143 |
Symmetry code: (iii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C14H11O2)2(C10H8N2)(H2O)2] |
Mr | 680.04 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 291 |
a, b, c (Å) | 5.7536 (13), 11.882 (3), 12.229 (3) |
α, β, γ (°) | 98.522 (4), 103.273 (5), 103.450 (4) |
V (Å3) | 773.2 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.85 |
Crystal size (mm) | 0.30 × 0.26 × 0.24 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.785, 0.823 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3891, 2679, 2234 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.135, 1.02 |
No. of reflections | 2679 |
No. of parameters | 214 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.22 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3B···O2 | 0.96 | 1.82 | 2.618 (5) | 139 |
O3—H3C···O1i | 0.96 | 1.97 | 2.802 (5) | 143 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
The authors thank Nanjing Xiaozhuang College of China for financial support (grant No. 2007NXY31).
References
Brammer, L. (2004). Chem. Soc. Rev. 33, 476–489. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hosseini, M. W. (2005). Acc. Chem. Res. 38, 313–323. Web of Science CrossRef PubMed CAS Google Scholar
Janiak, C. (2003). Dalton Trans. pp. 2781–2804. Web of Science CrossRef Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Nishio, M. (2004). CrystEngComm, 6, 130–158. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During the past decade, the design of new metal-organic supramolecular solids has attracted attention in the fields of coordination chemistry and crystal engineering, for the sake of developing desired crystalline materials with potential functionality (Moulton & Zaworotko, 2001; Janiak , 2003). Furthermore, it has been realised that weak noncovalent interactions such as hydrogen bonds, aromatic stacking, and van der Waals forces (Hosseini, 2005; Nishio, 2004) are crucial in the direction of such crystalline architectures. Hitherto, a variety of organic connectors containing pyridyl and/or carboxylate groups (Brammer, 2004) have been widely used to construct metal-organic supramolecular frameworks. Herein we report the crystal structure of the title compound (1).
The asymmetric unit of (I) is illustrated in Fig. 1. The structure of (I) is a one-dimensional chain (Fig. 2), in which the ZnII ions are coordinated by two O atoms from two monodentate carboxylate groups of two bis(diphenylacetato) ligands, two N atoms of two bridging 4,4'-bipyridine ligands and two O atoms from two water molecules. The ZnII ion is in a slightly distorted octahedral coordination environment. In the crystal structure, these one-dimensional chains are linked via intermolecular O—H···O hydrogen bonds to form a two-dimensional network.