organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-Dieth­­oxy-2,2′-[propane-1,2-diyl­bis­(nitrilo­methyl­­idyne)]diphenol

aDepartment of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China
*Correspondence e-mail: dzxyjz@126.com

(Received 22 January 2009; accepted 27 January 2009; online 28 February 2009)

In the title mol­ecule, C21H26N2O4, the dihedral angle between the two benzene rings is 88.4 (3)°. Two fairly strong intra­molecular O—H⋯N hydrogen bonds may, in part, influence the mol­ecular conformation.

Related literature

For background information on the coordination ability of tetradentate Schiff-base ligands, see: Bermejo et al. (2007[Bermejo, M. R., Fernandez, M. I., Gomez-forneas, E., Gonzalez-noya, A., Maneiro, M., Pedrido, R. & Rodringuez, M. J. (2007). Eur. J. Inorg. Chem. pp. 3104-3112.]); Ni et al. (2005[Ni, Z. H., Kou, H. Z., Zhang, L. F., Ge, C. H., Cui, A. L., Wang, R. J., Li, Y. D. & Sato, O. (2005). Angew. Chem. Int. Ed. 44, 7742-7745.]); Nayak et al., 2006[Nayak, M., Koner, R., Lin, H. H., Florke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem. 45, 10764-10773.]; Mohanta et al., 2002[Mohanta, S., Lin, H. H., Lee, C. J. & Wei, H. H. (2002). Inorg. Chem. Commun. 5, 585-588.]; Saha et al. (2007[Saha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563-571.]); Wang et al. (2008[Wang, H., Zhang, D., Tian, L. & Zhang, L.-F. (2008). Acta Cryst. E64, m1460.]); Yu et al. (2007[Yu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun. 10, 401-403.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26N2O4

  • Mr = 370.44

  • Triclinic, [P \overline 1]

  • a = 9.140 (3) Å

  • b = 11.451 (4) Å

  • c = 13.013 (5) Å

  • α = 113.845 (5)°

  • β = 109.628 (6)°

  • γ = 108.812 (5)°

  • V = 993.5 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 (2) K

  • 0.12 × 0.11 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.990, Tmax = 0.992

  • 4894 measured reflections

  • 3451 independent reflections

  • 2325 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.193

  • S = 1.00

  • 3451 reflections

  • 249 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2 0.82 1.89 2.614 (3) 147
O1—H1⋯N1 0.82 1.85 2.576 (2) 146

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Among the tetradentate schiff-base ligands studied intensely during the past several decades, the planar, salen types and their complexes (with interesting magnetic properties) have been given much attention due to their excellent coordination ability, utilizing two N atoms and two O atoms (Ni et al., 2005; Wang et al., 2008; Yu et al., 2007; Nayak et al., 2006; Mohanta et al., 2002; Saha et al., 2007).

Herein, we report the synthesis and crystal structure of a new tetradentate Schiff base ligand, N,N'-bis(2-hydroxy-3-ethoxybenzylidene)- 1,2-diaminopropane. The molecular structure of the title compound is shown in Fig. 1. The molecule possesses an O2N2 donor set affording a potentially tetradentate ligand. The imide bond lengths 1.262 (3) for N1—C7 and 1.263 (3) Å for N2—C16 are slightly shorter than that of N,N'-bis(2-hydroxy-3-methoxybenzylidene)ethylenediamine (1.272 Å) (Bermejo, et al., 2007). The C—N bond distance of 1.461 (3) Å is in agreement well with that found in the same compound. Two fairly strong intramolecular O···H—N hydrogen bonds may in part influence the molecular conformation.

Related literature top

For background information, see: Bermejo et al. (2007); Ni et al. (2005); Nayak et al., 2006; Mohanta et al., 2002; Saha et al. (2007); Wang et al. (2008); Yu et al. (2007).

Experimental top

The Schiff base ligand was synthesized by condensation 1,2-diaminopropane and 2-hydroxy-3-ethoxybenzaldehyde with molar ratio 1:2 in ethanol. The mixture formed was allowed to partially evaporate in air for sevral days to produce crystals suitable for X-ray diffraction with a yield about 65%.

Refinement top

H atoms were placed in calculated positions with C—H distances of 0.93, 0.96, 0.97 Å and O—H 0.82 Å, and were allowed for as riding atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms, Uiso(H) = 1.2Ueq(C) for all other C bound H atoms and Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
6,6'-Diethoxy-2,2'-[propane-1,2-diylbis(nitrilomethylidyne)]diphenol top
Crystal data top
C21H26N2O4Z = 2
Mr = 370.44F(000) = 396
Triclinic, P1Dx = 1.238 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.140 (3) ÅCell parameters from 1361 reflections
b = 11.451 (4) Åθ = 2.4–23.9°
c = 13.013 (5) ŵ = 0.09 mm1
α = 113.845 (5)°T = 273 K
β = 109.628 (6)°Block, yellow
γ = 108.812 (5)°0.12 × 0.11 × 0.09 mm
V = 993.5 (6) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3451 independent reflections
Radiation source: fine-focus sealed tube2325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.990, Tmax = 0.992k = 1311
4894 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1202P)2]
where P = (Fo2 + 2Fc2)/3
3451 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C21H26N2O4γ = 108.812 (5)°
Mr = 370.44V = 993.5 (6) Å3
Triclinic, P1Z = 2
a = 9.140 (3) ÅMo Kα radiation
b = 11.451 (4) ŵ = 0.09 mm1
c = 13.013 (5) ÅT = 273 K
α = 113.845 (5)°0.12 × 0.11 × 0.09 mm
β = 109.628 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3451 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2325 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 0.992Rint = 0.030
4894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.193H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
3451 reflectionsΔρmin = 0.26 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2732 (2)0.85334 (19)0.31097 (15)0.0615 (5)
H10.28810.88510.38480.092*
O20.1699 (2)0.75251 (19)0.06238 (15)0.0625 (5)
O30.1229 (2)0.44342 (19)0.38472 (16)0.0658 (5)
H30.16140.53360.43070.099*
O40.0549 (2)0.16836 (19)0.25933 (17)0.0666 (5)
N10.1898 (3)0.8527 (2)0.4813 (2)0.0553 (5)
N20.3270 (3)0.7183 (2)0.60118 (19)0.0571 (5)
C10.0337 (3)0.6987 (3)0.2479 (2)0.0521 (6)
C20.0950 (3)0.7499 (2)0.2166 (2)0.0477 (6)
C30.0365 (3)0.6931 (3)0.0830 (2)0.0514 (6)
C40.1454 (3)0.5848 (3)0.0147 (3)0.0621 (7)
H40.18420.54460.10360.075*
C50.2713 (4)0.5348 (3)0.0171 (3)0.0717 (8)
H50.39370.46180.05040.086*
C60.2174 (3)0.5916 (3)0.1466 (3)0.0673 (7)
H60.30330.55880.16740.081*
C70.0251 (4)0.7553 (3)0.3859 (3)0.0554 (6)
H70.06190.71820.40450.067*
C80.1151 (4)0.6978 (3)0.0732 (2)0.0642 (7)
H8A0.02690.72140.11030.077*
H8B0.05830.58920.12700.077*
C90.2824 (4)0.7724 (3)0.0729 (3)0.0811 (9)
H9A0.33760.87970.01920.122*
H9B0.24920.73820.16260.122*
H9C0.36810.74750.03690.122*
C100.3713 (3)0.5196 (3)0.5889 (2)0.0523 (6)
C110.2296 (3)0.4113 (3)0.4549 (2)0.0509 (6)
C120.1958 (3)0.2656 (3)0.3898 (2)0.0543 (6)
C130.3036 (4)0.2294 (3)0.4590 (3)0.0641 (7)
H130.28160.13240.41610.077*
C140.4442 (4)0.3374 (3)0.5920 (3)0.0722 (8)
H140.51580.31240.63790.087*
C150.4778 (4)0.4803 (3)0.6557 (3)0.0687 (7)
H150.57280.55200.74460.082*
C160.4133 (3)0.6729 (3)0.6564 (2)0.0563 (6)
H160.50920.74180.74540.068*
C170.0096 (4)0.0166 (3)0.1890 (3)0.0718 (8)
H17A0.01390.02730.23600.086*
H17B0.11000.01280.18100.086*
C180.1577 (5)0.0678 (3)0.0545 (3)0.0911 (10)
H18A0.25500.06080.06370.137*
H18B0.19430.17170.00500.137*
H18C0.13160.02530.00790.137*
C190.3894 (4)0.8780 (3)0.6768 (2)0.0609 (7)
H19A0.49580.93450.67790.073*
H19B0.42620.91450.76810.073*
C200.2425 (4)0.9054 (3)0.6181 (2)0.0606 (7)
H200.13540.84980.61810.073*
C210.3133 (5)1.0728 (3)0.6992 (3)0.0823 (9)
H21A0.41901.12740.70010.123*
H21B0.34641.10760.78890.123*
H21C0.21921.08910.65990.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0559 (10)0.0630 (11)0.0471 (9)0.0206 (9)0.0246 (9)0.0290 (9)
O20.0652 (11)0.0655 (11)0.0460 (9)0.0286 (9)0.0262 (8)0.0316 (9)
O30.0776 (12)0.0552 (11)0.0516 (10)0.0405 (10)0.0184 (9)0.0305 (9)
O40.0835 (12)0.0521 (10)0.0561 (11)0.0391 (10)0.0296 (10)0.0292 (9)
N10.0655 (13)0.0568 (12)0.0575 (12)0.0359 (11)0.0376 (11)0.0371 (11)
N20.0645 (12)0.0497 (12)0.0481 (12)0.0273 (10)0.0254 (10)0.0279 (10)
C10.0525 (13)0.0543 (14)0.0617 (15)0.0350 (12)0.0305 (12)0.0374 (13)
C20.0481 (13)0.0457 (13)0.0480 (13)0.0267 (11)0.0205 (11)0.0290 (11)
C30.0581 (14)0.0496 (14)0.0507 (14)0.0336 (12)0.0263 (12)0.0305 (12)
C40.0612 (16)0.0656 (17)0.0531 (15)0.0383 (14)0.0199 (13)0.0346 (13)
C50.0499 (15)0.0744 (19)0.0703 (19)0.0333 (14)0.0175 (14)0.0382 (16)
C60.0514 (15)0.0750 (18)0.0800 (19)0.0363 (14)0.0324 (15)0.0483 (16)
C70.0610 (15)0.0584 (15)0.0669 (16)0.0367 (13)0.0408 (14)0.0419 (14)
C80.0781 (17)0.0652 (16)0.0425 (13)0.0379 (14)0.0274 (13)0.0302 (13)
C90.095 (2)0.085 (2)0.0584 (17)0.0396 (18)0.0421 (16)0.0423 (16)
C100.0522 (13)0.0598 (15)0.0498 (13)0.0284 (12)0.0264 (12)0.0370 (12)
C110.0558 (13)0.0574 (15)0.0537 (14)0.0337 (12)0.0300 (12)0.0394 (12)
C120.0609 (15)0.0575 (15)0.0559 (15)0.0335 (13)0.0342 (13)0.0372 (13)
C130.0728 (17)0.0681 (17)0.0798 (19)0.0450 (15)0.0460 (16)0.0538 (16)
C140.0699 (17)0.083 (2)0.083 (2)0.0471 (16)0.0342 (16)0.0630 (18)
C150.0634 (16)0.0759 (19)0.0646 (16)0.0350 (15)0.0245 (14)0.0484 (15)
C160.0538 (14)0.0562 (15)0.0439 (13)0.0209 (12)0.0201 (12)0.0291 (12)
C170.0860 (19)0.0567 (17)0.079 (2)0.0429 (16)0.0472 (17)0.0374 (15)
C180.106 (2)0.0601 (18)0.080 (2)0.0436 (18)0.041 (2)0.0271 (17)
C190.0686 (15)0.0513 (15)0.0475 (14)0.0251 (13)0.0255 (12)0.0271 (12)
C200.0739 (17)0.0623 (16)0.0578 (15)0.0367 (14)0.0445 (14)0.0359 (13)
C210.114 (2)0.0701 (19)0.081 (2)0.0571 (19)0.063 (2)0.0424 (17)
Geometric parameters (Å, º) top
O1—C21.341 (3)C9—H9B0.9600
O1—H10.8200C9—H9C0.9600
O2—C31.361 (3)C10—C151.391 (3)
O2—C81.437 (3)C10—C111.397 (3)
O3—C111.351 (3)C10—C161.447 (3)
O3—H30.8200C11—C121.394 (3)
O4—C121.364 (3)C12—C131.387 (4)
O4—C171.423 (3)C13—C141.388 (4)
N1—C71.262 (3)C13—H130.9300
N1—C201.461 (3)C14—C151.366 (4)
N2—C161.263 (3)C14—H140.9300
N2—C191.461 (3)C15—H150.9300
C1—C61.393 (3)C16—H160.9300
C1—C21.401 (3)C17—C181.489 (4)
C1—C71.456 (4)C17—H17A0.9700
C2—C31.404 (3)C17—H17B0.9700
C3—C41.376 (3)C18—H18A0.9600
C4—C51.382 (4)C18—H18B0.9600
C4—H40.9300C18—H18C0.9600
C5—C61.362 (4)C19—C201.503 (4)
C5—H50.9300C19—H19A0.9700
C6—H60.9300C19—H19B0.9700
C7—H70.9300C20—C211.521 (4)
C8—C91.490 (4)C20—H200.9800
C8—H8A0.9700C21—H21A0.9600
C8—H8B0.9700C21—H21B0.9600
C9—H9A0.9600C21—H21C0.9600
C2—O1—H1109.5O4—C12—C13124.9 (2)
C3—O2—C8116.92 (19)O4—C12—C11115.6 (2)
C11—O3—H3109.5C13—C12—C11119.5 (2)
C12—O4—C17118.2 (2)C12—C13—C14120.2 (3)
C7—N1—C20120.5 (2)C12—C13—H13119.9
C16—N2—C19118.7 (2)C14—C13—H13119.9
C6—C1—C2119.9 (2)C15—C14—C13120.3 (2)
C6—C1—C7120.0 (2)C15—C14—H14119.9
C2—C1—C7120.1 (2)C13—C14—H14119.9
O1—C2—C1122.0 (2)C14—C15—C10120.7 (3)
O1—C2—C3118.7 (2)C14—C15—H15119.6
C1—C2—C3119.4 (2)C10—C15—H15119.6
O2—C3—C4125.7 (2)N2—C16—C10123.6 (2)
O2—C3—C2115.3 (2)N2—C16—H16118.2
C4—C3—C2119.1 (2)C10—C16—H16118.2
C3—C4—C5121.1 (2)O4—C17—C18107.3 (2)
C3—C4—H4119.4O4—C17—H17A110.3
C5—C4—H4119.4C18—C17—H17A110.3
C6—C5—C4120.5 (2)O4—C17—H17B110.3
C6—C5—H5119.8C18—C17—H17B110.3
C4—C5—H5119.8H17A—C17—H17B108.5
C5—C6—C1120.0 (3)C17—C18—H18A109.5
C5—C6—H6120.0C17—C18—H18B109.5
C1—C6—H6120.0H18A—C18—H18B109.5
N1—C7—C1122.4 (2)C17—C18—H18C109.5
N1—C7—H7118.8H18A—C18—H18C109.5
C1—C7—H7118.8H18B—C18—H18C109.5
O2—C8—C9107.9 (2)N2—C19—C20112.0 (2)
O2—C8—H8A110.1N2—C19—H19A109.2
C9—C8—H8A110.1C20—C19—H19A109.2
O2—C8—H8B110.1N2—C19—H19B109.2
C9—C8—H8B110.1C20—C19—H19B109.2
H8A—C8—H8B108.4H19A—C19—H19B107.9
C8—C9—H9A109.5N1—C20—C19109.1 (2)
C8—C9—H9B109.5N1—C20—C21109.2 (2)
H9A—C9—H9B109.5C19—C20—C21110.2 (2)
C8—C9—H9C109.5N1—C20—H20109.5
H9A—C9—H9C109.5C19—C20—H20109.5
H9B—C9—H9C109.5C21—C20—H20109.5
C15—C10—C11119.3 (2)C20—C21—H21A109.5
C15—C10—C16119.9 (2)C20—C21—H21B109.5
C11—C10—C16120.8 (2)H21A—C21—H21B109.5
O3—C11—C12118.1 (2)C20—C21—H21C109.5
O3—C11—C10121.8 (2)H21A—C21—H21C109.5
C12—C11—C10120.0 (2)H21B—C21—H21C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.892.614 (3)147
O1—H1···N10.821.852.576 (2)146

Experimental details

Crystal data
Chemical formulaC21H26N2O4
Mr370.44
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)9.140 (3), 11.451 (4), 13.013 (5)
α, β, γ (°)113.845 (5), 109.628 (6), 108.812 (5)
V3)993.5 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.12 × 0.11 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.990, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
4894, 3451, 2325
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.193, 1.00
No. of reflections3451
No. of parameters249
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.892.614 (3)146.7
O1—H1···N10.821.852.576 (2)146.2
 

References

First citationBermejo, M. R., Fernandez, M. I., Gomez-forneas, E., Gonzalez-noya, A., Maneiro, M., Pedrido, R. & Rodringuez, M. J. (2007). Eur. J. Inorg. Chem. pp. 3104–3112.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMohanta, S., Lin, H. H., Lee, C. J. & Wei, H. H. (2002). Inorg. Chem. Commun. 5, 585–588.  Web of Science CSD CrossRef CAS Google Scholar
First citationNayak, M., Koner, R., Lin, H. H., Florke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem. 45, 10764–10773.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNi, Z. H., Kou, H. Z., Zhang, L. F., Ge, C. H., Cui, A. L., Wang, R. J., Li, Y. D. & Sato, O. (2005). Angew. Chem. Int. Ed. 44, 7742–7745.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563–571.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Zhang, D., Tian, L. & Zhang, L.-F. (2008). Acta Cryst. E64, m1460.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun. 10, 401–403.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds