metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m321-m322

(1-Butyl-1,4-di­aza­bi­cyclo­[2.2.2]octon-1-ium-κN4)tri­chloridocobalt(II)

aDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand, and bDepartment of Chemistry, University of Hull, Kingston upon Hull HU6 7RX, England
*Correspondence e-mail: apinpus@chiangmai.ac.th

(Received 11 February 2009; accepted 19 February 2009; online 25 February 2009)

The title compound, [Co(C10H21N2)Cl3], was obtained as the by-product of the attempted synthesis of a cobalt sulfate framework using 1,4-diaza­bicyclo­[2.2.2]octane as an organic template. The asymmetric unit comprises two distinct mol­ecules, and in each, the cobalt(II) ions are tetra­hedrally coordinated by three chloride anions and one 1-butyl­diaza­bicyclo­[2.2.2]octan-1-ium cation. The organic ligands are generated in situ, and exhibit two forms differentiated by the eclipsed and staggered conformations of the butyl groups. These mol­ecules inter­act by way of C—H⋯Cl hydrogen bonds, forming a three-dimensional hydrogen-bonding array.

Related literature

Examples of closely related structures are N-methyl-1,4-diaza­bicyclo­(2.2.2) octonium trichloro-aqua-nickel(II) (Ross & Stucky, 1969[Ross, F. K. & Stucky, G. D. (1969). Inorg. Chem. 8, 2734-2740.]) and N,N′-dimethyl-1,4-diaza­niabicyclo­[2.2.2]octane tetra­chloro­cobaltate (C8H18N2)[CoCl4] (Qu & Sun, 2005[Qu, Y. & Sun, X.-M. (2005). Acta Cryst. E61, m2121-m2123.]). The organic cation in both structures do not coordinate to the cobalt ion but, in each case, the C—H⋯Cl hydrogen-bonding inter­actions are similar to those in the title compound. For hydrogen bonding in related structures, see: Bremner & Harrison (2003[Bremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m425-m426.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H21N2)Cl3]

  • Mr = 334.57

  • Monoclinic, P 21

  • a = 8.379 (2) Å

  • b = 12.1090 (13) Å

  • c = 14.711 (4) Å

  • β = 91.683 (4)°

  • V = 1492.0 (6) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.69430 Å

  • μ = 1.67 mm−1

  • T = 120 K

  • 0.12 × 0.02 × 0.02 mm

Data collection
  • Bruker D8 with APEXII detector diffractometer

  • Absorption correction: multi-scan (TWINABS; Bruker, 2004[Bruker (2004). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.597, Tmax = 0.746 (expected range = 0.774–0.967)

  • 12848 measured reflections

  • 8831 independent reflections

  • 7018 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.098

  • S = 1.04

  • 8831 reflections

  • 292 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3980 Friedel pairs

  • Flack parameter: 0.064 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯Cl6i 0.99 2.66 3.567 (5) 153
C4—H4A⋯Cl1ii 0.99 2.66 3.511 (5) 145
C6—H6B⋯Cl3ii 0.99 2.69 3.606 (5) 154
C7—H7B⋯Cl3iii 0.99 2.80 3.729 (5) 157
C12—H12B⋯Cl5iv 0.99 2.62 3.485 (4) 146
C14—H14A⋯Cl6iv 0.99 2.75 3.567 (5) 140
C16—H16A⋯Cl1v 0.99 2.60 3.548 (4) 161
C16—H16B⋯Cl5v 0.99 2.81 3.739 (4) 156
Symmetry codes: (i) x-1, y, z-1; (ii) [-x, y-{\script{1\over 2}}, -z+1]; (iii) x-1, y, z; (iv) [-x+2, y-{\script{1\over 2}}, -z+2]; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: TWINABS (Bruker, 2004[Bruker (2004). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystals of Co(C10H21N2)Cl3 (I) were unintentionally obtained as a by-product from the hydrothermal reaction between cobalt(II) sulfate heptahydrate and 1,4-diazabicyclo[2.2.2]octane in a water/butan-1-ol mixture. The N-butyl-1,4-diazabicyclo[2.2.2]octanium ligand was presumably generated in situ under acidic conditions. The structure of I is built up from two distinct [Co(C10H21N2)Cl3] molecules as shown in Fig. 1. They are different in the spatial orientation of the butyl group of the N-butyl-1,4-diazabicyclo[2.2.2]octanium ligand, one of which is in the eclipsed conformation (A) and the other is in the staggered conformation (B). The A molecules are connected by the C—H···Cl hydrogen bonding interactions to form a two-dimensional A sheet in the ab plane (Fig. 2), whereas the B molecules form the B sheet also in theab plane using similar C—H···Cl hydrogen bonding interactions (Fig. 3). The A and B sheets are then regularly alternated in the ABAB fashion, and linked by way of also the C—H···Cl hydrogen bonding interactions along c to give the infinite three-dimensional hydrogen bonding array (Fig. 4).

The hydrogen bond geometries found in I (H···Cl, 2.62–2.81 Å; C···Cl, 3.485 (4)–3.739 (4) Å; C—H···Cl, 140.00–164.00°) are well comparable to those found in related structures, e.g. (C6H14N2)[CoCl4] (Bremner & Harrison, 2003) and (C8H18N2)[CoCl4] (Qu & Sun, 2005).

Related literature top

Examples of closely related structures are N-methyl-1,4-diazabicyclo(2.2.2) octonium trichloro-aqua-nickel(II) (Ross & Stucky, 1969) and N,N'-dimethyl-1,4-diazaniabicyclo[2.2.2]octane tetrachlorocobaltate (C8H18N2)[CoCl4] (Qu & Sun, 2005). The organic cation in both structures do not coordinate to the cobalt ion but, in each case, the C—H···Cl hydrogen-bonding interactions are similar to those in the title compound. For hydrogen bonding in related structures, see: Bremner & Harrison (2003).

Experimental top

Crystals of I were obtained as a by-product from the hydrothermal reaction of cobalt(II) sulfate heptahydrate, 1,4-diazabicyclo[2.2.2]octane and hydrochloric acid in a water/butan-1-ol mixture at 453 K for 120 h.

Refinement top

H atoms were placed in calcluated positions with C-H = 0.99Å or 0.98Å for methyl H atoms and were included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

The examined crystal was found to be twinned, composing of two crystal components which were miss-set by about two degrees. The crystal was therefore treated as a twin and the two components integrated separately using the same unit cell. Both components were used for the structure refinement and the twin fraction was found to be 0.698:0.302 (1).

Three alerts from checkCIF:

PLAT220_ALERT_2_C

PLAT222_ALERT_2_C

The rather weak van der Waals interactions involving the n-butyl chains mean there is considerable freedom for these carbon and hydrogen atoms to vibrate. The slightly enlarged displacement parameters observed are entirely expected on chemical grounds.

PLAT341_ALERT_3_C

The calculated estimated standard uncertainties associated with the unit-cell parameters are faithfully reproduced from the Bruker APEXII suite (Bruker, 2004). All observed data were used in their calculation. These give rise to moderate precision in the C—C bonds. To some extent this is a consequence of the integration procedure which uses two twin components - deconvolution of the low angle components is problematic as the two componenets are miss-set by approximately 2°.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: TWINABS (Bruker, 2004); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 70% probability level.
[Figure 2] Fig. 2. View of the A sheet along the ab plane with the hydrogen bonding atoms indicated.
[Figure 3] Fig. 3. View of the B sheet along the ab plane with the hydrogen bonding atoms indicated.
[Figure 4] Fig. 4. The packing of A and B sheets along c in ABAB fashion.
[Figure 5] Fig. 5. Molecular packing in unit cell.
(1-Butyl-1,4-diazabicyclo[2.2.2]octon-1-ium-κN4)trichloridocobalt(II) top
Crystal data top
[Co(C10H21N2)Cl3]F(000) = 692
Mr = 334.57Dx = 1.490 Mg m3
Monoclinic, P21Synchrotron radiation, λ = 0.69430 Å
Hall symbol: P 2ybCell parameters from 12848 reflections
a = 8.379 (2) Åθ = 1.4–30.7°
b = 12.1090 (13) ŵ = 1.67 mm1
c = 14.711 (4) ÅT = 120 K
β = 91.683 (4)°Needle, blue
V = 1492.0 (6) Å30.12 × 0.02 × 0.02 mm
Z = 4
Data collection top
Bruker D8 with APEXII detector
diffractometer
8831 independent reflections
Radiation source: Daresbury SRS, UK7018 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.054
ω scansθmax = 30.7°, θmin = 1.4°
Absorption correction: multi-scan
(TWINABS; Bruker, 2004)
h = 1212
Tmin = 0.597, Tmax = 0.746k = 1717
12848 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.2945P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
8831 reflectionsΔρmax = 0.65 e Å3
292 parametersΔρmin = 0.44 e Å3
1 restraintAbsolute structure: Flack (1983), 3980 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.064 (17)
Crystal data top
[Co(C10H21N2)Cl3]V = 1492.0 (6) Å3
Mr = 334.57Z = 4
Monoclinic, P21Synchrotron radiation, λ = 0.69430 Å
a = 8.379 (2) ŵ = 1.67 mm1
b = 12.1090 (13) ÅT = 120 K
c = 14.711 (4) Å0.12 × 0.02 × 0.02 mm
β = 91.683 (4)°
Data collection top
Bruker D8 with APEXII detector
diffractometer
8831 independent reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2004)
7018 reflections with I > 2σ(I)
Tmin = 0.597, Tmax = 0.746Rint = 0.054
12848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.65 e Å3
S = 1.04Δρmin = 0.44 e Å3
8831 reflectionsAbsolute structure: Flack (1983), 3980 Friedel pairs
292 parametersAbsolute structure parameter: 0.064 (17)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.17969 (6)0.70552 (4)0.56075 (3)0.02973 (12)
Cl10.08844 (13)0.78922 (10)0.68543 (6)0.0382 (2)
Cl20.28560 (14)0.53800 (9)0.58911 (8)0.0416 (2)
Cl30.32696 (13)0.81305 (9)0.47062 (7)0.0373 (2)
N10.0308 (4)0.6782 (3)0.48346 (19)0.0264 (7)
N20.2901 (4)0.6376 (3)0.3900 (2)0.0278 (7)
C10.1094 (5)0.7827 (4)0.4539 (3)0.0304 (8)
H1A0.03100.83060.42400.037*
H1B0.14850.82240.50770.037*
C20.2502 (5)0.7587 (3)0.3875 (3)0.0296 (9)
H2A0.34430.80260.40470.036*
H2B0.22160.78010.32510.036*
C30.0056 (5)0.6132 (4)0.4005 (3)0.0327 (9)
H3A0.07410.54950.41750.039*
H3B0.06470.66010.35780.039*
C40.1487 (5)0.5719 (4)0.3539 (3)0.0319 (9)
H4A0.16300.49230.36650.038*
H4B0.14300.58180.28720.038*
C50.1470 (5)0.6141 (4)0.5373 (3)0.0318 (8)
H5A0.15880.64990.59720.038*
H5B0.10480.53860.54800.038*
C60.3093 (5)0.6065 (4)0.4892 (2)0.0315 (8)
H6A0.38530.65750.51790.038*
H6B0.35160.53050.49370.038*
C70.4381 (6)0.6160 (4)0.3329 (3)0.0351 (9)
H7A0.41960.64150.27010.042*
H7B0.52640.66070.35690.042*
C80.4898 (7)0.4966 (4)0.3294 (3)0.0477 (13)
H8A0.52100.47320.39090.057*
H8B0.39820.45040.31180.057*
C90.6289 (7)0.4765 (5)0.2626 (3)0.0541 (15)
H9A0.71870.52570.27790.065*
H9B0.59580.49510.20040.065*
C100.6843 (9)0.3581 (7)0.2648 (4)0.086 (3)
H10A0.59680.30940.24730.129*
H10B0.77520.34840.22210.129*
H10C0.71670.33930.32640.129*
Co20.86290 (6)0.69012 (4)1.06702 (3)0.02719 (12)
Cl40.74916 (13)0.52684 (9)1.09830 (7)0.0360 (2)
Cl50.70380 (13)0.79352 (9)0.97538 (7)0.0361 (2)
Cl60.97391 (13)0.78267 (9)1.18605 (6)0.0331 (2)
N31.0632 (4)0.6586 (3)0.98991 (19)0.0256 (7)
N41.3114 (4)0.6133 (3)0.8981 (2)0.0266 (7)
C111.1771 (5)0.5881 (4)1.0443 (2)0.0335 (9)
H11A1.13030.51381.05230.040*
H11B1.19550.62111.10520.040*
C121.3367 (5)0.5778 (3)0.9963 (2)0.0290 (8)
H12A1.41810.62541.02680.035*
H12B1.37480.50050.99900.035*
C131.0170 (5)0.5989 (4)0.9044 (3)0.0323 (9)
H13A0.95720.64930.86280.039*
H13B0.94640.53600.91860.039*
C141.1659 (5)0.5563 (4)0.8579 (2)0.0303 (9)
H14A1.17550.47550.86670.036*
H14B1.15690.57120.79180.036*
C151.1471 (5)0.7610 (3)0.9650 (3)0.0314 (8)
H15A1.19270.79631.02060.038*
H15B1.07010.81310.93610.038*
C161.2827 (5)0.7362 (3)0.8985 (2)0.0279 (8)
H16A1.25160.76180.83660.033*
H16B1.38140.77550.91830.033*
C171.4589 (5)0.5863 (4)0.8441 (3)0.0345 (9)
H17A1.55470.61340.87820.041*
H17B1.45220.62650.78550.041*
C181.4796 (5)0.4631 (4)0.8249 (3)0.0348 (9)
H18A1.44220.41990.87730.042*
H18B1.41310.44240.77080.042*
C191.6527 (5)0.4346 (4)0.8082 (3)0.0385 (10)
H19A1.66020.35500.79350.046*
H19B1.71670.44770.86480.046*
C201.7244 (6)0.5012 (4)0.7312 (3)0.0417 (11)
H20A1.65720.49320.67600.062*
H20B1.83210.47390.71970.062*
H20C1.73000.57930.74850.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0326 (3)0.0238 (3)0.0327 (2)0.0009 (2)0.0002 (2)0.0029 (2)
Cl10.0502 (6)0.0355 (6)0.0288 (4)0.0037 (5)0.0015 (4)0.0005 (4)
Cl20.0429 (6)0.0268 (5)0.0546 (6)0.0019 (5)0.0071 (5)0.0055 (4)
Cl30.0385 (5)0.0285 (5)0.0454 (5)0.0021 (4)0.0099 (4)0.0031 (4)
N10.0319 (17)0.0216 (17)0.0260 (13)0.0059 (13)0.0046 (12)0.0006 (12)
N20.0305 (18)0.0259 (18)0.0271 (15)0.0015 (14)0.0002 (13)0.0009 (12)
C10.034 (2)0.023 (2)0.0347 (18)0.0029 (17)0.0007 (15)0.0025 (15)
C20.036 (2)0.024 (2)0.0297 (18)0.0071 (16)0.0058 (16)0.0001 (14)
C30.035 (2)0.036 (2)0.0273 (17)0.0080 (18)0.0036 (15)0.0027 (15)
C40.035 (2)0.026 (2)0.0349 (19)0.0051 (17)0.0052 (16)0.0050 (15)
C50.040 (2)0.028 (2)0.0277 (17)0.0031 (18)0.0017 (15)0.0001 (14)
C60.041 (2)0.031 (2)0.0230 (16)0.0036 (19)0.0033 (15)0.0048 (14)
C70.040 (2)0.036 (2)0.0294 (18)0.0053 (19)0.0000 (16)0.0029 (15)
C80.058 (3)0.045 (3)0.040 (2)0.015 (2)0.005 (2)0.0049 (19)
C90.045 (3)0.077 (4)0.040 (2)0.015 (3)0.005 (2)0.018 (2)
C100.086 (5)0.118 (7)0.054 (3)0.066 (5)0.020 (3)0.032 (4)
Co20.0293 (3)0.0241 (3)0.0285 (2)0.0002 (2)0.00579 (18)0.0004 (2)
Cl40.0406 (6)0.0265 (5)0.0415 (5)0.0042 (4)0.0101 (4)0.0004 (4)
Cl50.0366 (5)0.0301 (6)0.0414 (5)0.0042 (4)0.0033 (4)0.0018 (4)
Cl60.0415 (5)0.0306 (5)0.0276 (4)0.0026 (5)0.0055 (4)0.0014 (4)
N30.0284 (17)0.0228 (17)0.0258 (14)0.0007 (13)0.0045 (12)0.0004 (11)
N40.0296 (17)0.0228 (17)0.0276 (15)0.0018 (14)0.0030 (12)0.0029 (12)
C110.033 (2)0.041 (2)0.0269 (17)0.0037 (19)0.0052 (15)0.0063 (16)
C120.034 (2)0.0229 (19)0.0305 (17)0.0007 (16)0.0021 (15)0.0017 (14)
C130.028 (2)0.039 (2)0.0296 (18)0.0032 (18)0.0005 (15)0.0075 (16)
C140.028 (2)0.032 (2)0.0308 (18)0.0036 (17)0.0071 (15)0.0063 (15)
C150.040 (2)0.021 (2)0.0335 (18)0.0005 (17)0.0088 (17)0.0034 (14)
C160.030 (2)0.026 (2)0.0269 (17)0.0035 (15)0.0037 (15)0.0036 (14)
C170.035 (2)0.035 (2)0.035 (2)0.0053 (19)0.0128 (17)0.0069 (17)
C180.037 (2)0.031 (2)0.036 (2)0.0011 (18)0.0072 (17)0.0030 (16)
C190.034 (2)0.046 (3)0.036 (2)0.006 (2)0.0090 (18)0.0050 (19)
C200.045 (3)0.046 (3)0.035 (2)0.003 (2)0.0141 (19)0.0008 (19)
Geometric parameters (Å, º) top
Co1—N12.096 (3)Co2—N32.088 (3)
Co1—Cl22.2483 (13)Co2—Cl42.2482 (12)
Co1—Cl12.2491 (12)Co2—Cl52.2487 (12)
Co1—Cl32.2521 (11)Co2—Cl62.2564 (11)
N1—C11.486 (5)N3—C151.477 (5)
N1—C31.491 (5)N3—C131.493 (5)
N1—C51.491 (5)N3—C111.495 (5)
N2—C71.500 (6)N4—C141.507 (5)
N2—C21.505 (5)N4—C161.508 (5)
N2—C61.520 (5)N4—C121.516 (5)
N2—C41.536 (5)N4—C171.524 (5)
C1—C21.537 (6)C11—C121.536 (6)
C1—H1A0.9900C11—H11A0.9900
C1—H1B0.9900C11—H11B0.9900
C2—H2A0.9900C12—H12A0.9900
C2—H2B0.9900C12—H12B0.9900
C3—C41.530 (6)C13—C141.530 (5)
C3—H3A0.9900C13—H13A0.9900
C3—H3B0.9900C13—H13B0.9900
C4—H4A0.9900C14—H14A0.9900
C4—H4B0.9900C14—H14B0.9900
C5—C61.517 (6)C15—C161.550 (5)
C5—H5A0.9900C15—H15A0.9900
C5—H5B0.9900C15—H15B0.9900
C6—H6A0.9900C16—H16A0.9900
C6—H6B0.9900C16—H16B0.9900
C7—C81.510 (7)C17—C181.530 (6)
C7—H7A0.9900C17—H17A0.9900
C7—H7B0.9900C17—H17B0.9900
C8—C91.522 (7)C18—C191.518 (6)
C8—H8A0.9900C18—H18A0.9900
C8—H8B0.9900C18—H18B0.9900
C9—C101.508 (9)C19—C201.528 (6)
C9—H9A0.9900C19—H19A0.9900
C9—H9B0.9900C19—H19B0.9900
C10—H10A0.9800C20—H20A0.9800
C10—H10B0.9800C20—H20B0.9800
C10—H10C0.9800C20—H20C0.9800
N1—Co1—Cl2106.21 (10)N3—Co2—Cl4107.62 (10)
N1—Co1—Cl1102.29 (9)N3—Co2—Cl5104.35 (9)
Cl2—Co1—Cl1113.39 (5)Cl4—Co2—Cl5111.41 (5)
N1—Co1—Cl3103.81 (9)N3—Co2—Cl6101.11 (10)
Cl2—Co1—Cl3114.25 (5)Cl4—Co2—Cl6116.46 (4)
Cl1—Co1—Cl3115.14 (5)Cl5—Co2—Cl6114.35 (5)
C1—N1—C3108.0 (3)C15—N3—C13108.1 (3)
C1—N1—C5107.9 (3)C15—N3—C11108.1 (3)
C3—N1—C5108.2 (3)C13—N3—C11108.7 (3)
C1—N1—Co1112.5 (2)C15—N3—Co2112.2 (2)
C3—N1—Co1109.8 (2)C13—N3—Co2110.7 (2)
C5—N1—Co1110.3 (2)C11—N3—Co2108.9 (2)
C7—N2—C2109.7 (3)C14—N4—C16109.0 (3)
C7—N2—C6112.7 (3)C14—N4—C12109.5 (3)
C2—N2—C6107.1 (3)C16—N4—C12107.1 (3)
C7—N2—C4110.5 (3)C14—N4—C17110.9 (3)
C2—N2—C4108.8 (3)C16—N4—C17110.2 (3)
C6—N2—C4108.0 (3)C12—N4—C17110.1 (3)
N1—C1—C2110.5 (3)N3—C11—C12110.6 (3)
N1—C1—H1A109.5N3—C11—H11A109.5
C2—C1—H1A109.5C12—C11—H11A109.5
N1—C1—H1B109.5N3—C11—H11B109.5
C2—C1—H1B109.5C12—C11—H11B109.5
H1A—C1—H1B108.1H11A—C11—H11B108.1
N2—C2—C1109.6 (3)N4—C12—C11108.4 (3)
N2—C2—H2A109.8N4—C12—H12A110.0
C1—C2—H2A109.8C11—C12—H12A110.0
N2—C2—H2B109.8N4—C12—H12B110.0
C1—C2—H2B109.8C11—C12—H12B110.0
H2A—C2—H2B108.2H12A—C12—H12B108.4
N1—C3—C4110.4 (3)N3—C13—C14110.2 (3)
N1—C3—H3A109.6N3—C13—H13A109.6
C4—C3—H3A109.6C14—C13—H13A109.6
N1—C3—H3B109.6N3—C13—H13B109.6
C4—C3—H3B109.6C14—C13—H13B109.6
H3A—C3—H3B108.1H13A—C13—H13B108.1
C3—C4—N2109.0 (3)N4—C14—C13109.4 (3)
C3—C4—H4A109.9N4—C14—H14A109.8
N2—C4—H4A109.9C13—C14—H14A109.8
C3—C4—H4B109.9N4—C14—H14B109.8
N2—C4—H4B109.9C13—C14—H14B109.8
H4A—C4—H4B108.3H14A—C14—H14B108.3
N1—C5—C6112.0 (3)N3—C15—C16111.0 (3)
N1—C5—H5A109.2N3—C15—H15A109.4
C6—C5—H5A109.2C16—C15—H15A109.4
N1—C5—H5B109.2N3—C15—H15B109.4
C6—C5—H5B109.2C16—C15—H15B109.4
H5A—C5—H5B107.9H15A—C15—H15B108.0
C5—C6—N2108.3 (3)N4—C16—C15108.3 (3)
C5—C6—H6A110.0N4—C16—H16A110.0
N2—C6—H6A110.0C15—C16—H16A110.0
C5—C6—H6B110.0N4—C16—H16B110.0
N2—C6—H6B110.0C15—C16—H16B110.0
H6A—C6—H6B108.4H16A—C16—H16B108.4
N2—C7—C8114.7 (4)N4—C17—C18113.8 (3)
N2—C7—H7A108.6N4—C17—H17A108.8
C8—C7—H7A108.6C18—C17—H17A108.8
N2—C7—H7B108.6N4—C17—H17B108.8
C8—C7—H7B108.6C18—C17—H17B108.8
H7A—C7—H7B107.6H17A—C17—H17B107.7
C7—C8—C9112.8 (5)C19—C18—C17111.5 (4)
C7—C8—H8A109.0C19—C18—H18A109.3
C9—C8—H8A109.0C17—C18—H18A109.3
C7—C8—H8B109.0C19—C18—H18B109.3
C9—C8—H8B109.0C17—C18—H18B109.3
H8A—C8—H8B107.8H18A—C18—H18B108.0
C10—C9—C8111.6 (6)C18—C19—C20113.4 (4)
C10—C9—H9A109.3C18—C19—H19A108.9
C8—C9—H9A109.3C20—C19—H19A108.9
C10—C9—H9B109.3C18—C19—H19B108.9
C8—C9—H9B109.3C20—C19—H19B108.9
H9A—C9—H9B108.0H19A—C19—H19B107.7
C9—C10—H10A109.5C19—C20—H20A109.5
C9—C10—H10B109.5C19—C20—H20B109.5
H10A—C10—H10B109.5H20A—C20—H20B109.5
C9—C10—H10C109.5C19—C20—H20C109.5
H10A—C10—H10C109.5H20A—C20—H20C109.5
H10B—C10—H10C109.5H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cl6i0.992.663.567 (5)153
C4—H4A···Cl1ii0.992.663.511 (5)145
C6—H6B···Cl3ii0.992.693.606 (5)154
C7—H7B···Cl3iii0.992.803.729 (5)157
C12—H12B···Cl5iv0.992.623.485 (4)146
C14—H14A···Cl6iv0.992.753.567 (5)140
C16—H16A···Cl1v0.992.603.548 (4)161
C16—H16B···Cl5v0.992.813.739 (4)156
Symmetry codes: (i) x1, y, z1; (ii) x, y1/2, z+1; (iii) x1, y, z; (iv) x+2, y1/2, z+2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C10H21N2)Cl3]
Mr334.57
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)8.379 (2), 12.1090 (13), 14.711 (4)
β (°) 91.683 (4)
V3)1492.0 (6)
Z4
Radiation typeSynchrotron, λ = 0.69430 Å
µ (mm1)1.67
Crystal size (mm)0.12 × 0.02 × 0.02
Data collection
DiffractometerBruker D8 with APEXII detector
diffractometer
Absorption correctionMulti-scan
(TWINABS; Bruker, 2004)
Tmin, Tmax0.597, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12848, 8831, 7018
Rint0.054
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.098, 1.04
No. of reflections8831
No. of parameters292
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.44
Absolute structureFlack (1983), 3980 Friedel pairs
Absolute structure parameter0.064 (17)

Computer programs: APEX2 (Bruker, 2007), TWINABS (Bruker, 2004), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cl6i0.992.663.567 (5)153
C4—H4A···Cl1ii0.992.663.511 (5)145
C6—H6B···Cl3ii0.992.693.606 (5)154
C7—H7B···Cl3iii0.992.803.729 (5)157
C12—H12B···Cl5iv0.992.623.485 (4)146
C14—H14A···Cl6iv0.992.753.567 (5)140
C16—H16A···Cl1v0.992.603.548 (4)161
C16—H16B···Cl5v0.992.813.739 (4)156
Symmetry codes: (i) x1, y, z1; (ii) x, y1/2, z+1; (iii) x1, y, z; (iv) x+2, y1/2, z+2; (v) x+1, y, z.
 

Acknowledgements

The authors thank the Thailand Research Fund, Center for Innovation in Chemistry and Thailand Toray Science Found­ation for financial support. BY thanks the Royal Golden Jubilee PhD program and the Graduate School of Chiang Mai University for a Graduate Scholarship.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m425–m426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationQu, Y. & Sun, X.-M. (2005). Acta Cryst. E61, m2121–m2123.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRoss, F. K. & Stucky, G. D. (1969). Inorg. Chem. 8, 2734–2740.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m321-m322
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds