metal-organic compounds
(1-Butyl-1,4-diazabicyclo[2.2.2]octon-1-ium-κN4)trichloridocobalt(II)
aDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand, and bDepartment of Chemistry, University of Hull, Kingston upon Hull HU6 7RX, England
*Correspondence e-mail: apinpus@chiangmai.ac.th
The title compound, [Co(C10H21N2)Cl3], was obtained as the by-product of the attempted synthesis of a cobalt sulfate framework using 1,4-diazabicyclo[2.2.2]octane as an organic template. The comprises two distinct molecules, and in each, the cobalt(II) ions are tetrahedrally coordinated by three chloride anions and one 1-butyldiazabicyclo[2.2.2]octan-1-ium cation. The organic ligands are generated in situ, and exhibit two forms differentiated by the eclipsed and staggered conformations of the butyl groups. These molecules interact by way of C—H⋯Cl hydrogen bonds, forming a three-dimensional hydrogen-bonding array.
Related literature
Examples of closely related structures are N-methyl-1,4-diazabicyclo(2.2.2) octonium trichloro-aqua-nickel(II) (Ross & Stucky, 1969) and N,N′-dimethyl-1,4-diazaniabicyclo[2.2.2]octane tetrachlorocobaltate (C8H18N2)[CoCl4] (Qu & Sun, 2005). The organic cation in both structures do not coordinate to the cobalt ion but, in each case, the C—H⋯Cl hydrogen-bonding interactions are similar to those in the title compound. For hydrogen bonding in related structures, see: Bremner & Harrison (2003).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell APEX2; data reduction: TWINABS (Bruker, 2004); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809005893/lh2775sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809005893/lh2775Isup2.hkl
Crystals of I were obtained as a by-product from the hydrothermal reaction of cobalt(II) sulfate heptahydrate, 1,4-diazabicyclo[2.2.2]octane and hydrochloric acid in a water/butan-1-ol mixture at 453 K for 120 h.
H atoms were placed in calcluated positions with C-H = 0.99Å or 0.98Å for methyl H atoms and were included in the
in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.The examined crystal was found to be twinned, composing of two crystal components which were miss-set by about two degrees. The crystal was therefore treated as a twin and the two components integrated separately using the same
Both components were used for the structure and the twin fraction was found to be 0.698:0.302 (1).Three alerts from checkCIF:
PLAT220_ALERT_2_C
PLAT222_ALERT_2_C
The rather weak van der Waals interactions involving the n-butyl chains mean there is considerable freedom for these carbon and hydrogen atoms to vibrate. The slightly enlarged displacement parameters observed are entirely expected on chemical grounds.
PLAT341_ALERT_3_C
The calculated estimated standard uncertainties associated with the unit-cell parameters are faithfully reproduced from the Bruker APEXII suite (Bruker, 2004). All observed data were used in their calculation. These give rise to moderate precision in the C—C bonds. To some extent this is a consequence of the integration procedure which uses two twin components - deconvolution of the low angle components is problematic as the two componenets are miss-set by approximately 2°.
Data collection: APEX2 (Bruker, 2007); cell
APEX2 (Bruker, 2007); data reduction: TWINABS (Bruker, 2004); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 70% probability level. | |
Fig. 2. View of the A sheet along the ab plane with the hydrogen bonding atoms indicated. | |
Fig. 3. View of the B sheet along the ab plane with the hydrogen bonding atoms indicated. | |
Fig. 4. The packing of A and B sheets along c in ABAB fashion. | |
Fig. 5. Molecular packing in unit cell. |
[Co(C10H21N2)Cl3] | F(000) = 692 |
Mr = 334.57 | Dx = 1.490 Mg m−3 |
Monoclinic, P21 | Synchrotron radiation, λ = 0.69430 Å |
Hall symbol: P 2yb | Cell parameters from 12848 reflections |
a = 8.379 (2) Å | θ = 1.4–30.7° |
b = 12.1090 (13) Å | µ = 1.67 mm−1 |
c = 14.711 (4) Å | T = 120 K |
β = 91.683 (4)° | Needle, blue |
V = 1492.0 (6) Å3 | 0.12 × 0.02 × 0.02 mm |
Z = 4 |
Bruker D8 with APEXII detector diffractometer | 8831 independent reflections |
Radiation source: Daresbury SRS, UK | 7018 reflections with I > 2σ(I) |
Silicon 111 monochromator | Rint = 0.054 |
ω scans | θmax = 30.7°, θmin = 1.4° |
Absorption correction: multi-scan (TWINABS; Bruker, 2004) | h = −12→12 |
Tmin = 0.597, Tmax = 0.746 | k = −17→17 |
12848 measured reflections | l = −20→20 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0352P)2 + 0.2945P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
8831 reflections | Δρmax = 0.65 e Å−3 |
292 parameters | Δρmin = −0.44 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 3980 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.064 (17) |
[Co(C10H21N2)Cl3] | V = 1492.0 (6) Å3 |
Mr = 334.57 | Z = 4 |
Monoclinic, P21 | Synchrotron radiation, λ = 0.69430 Å |
a = 8.379 (2) Å | µ = 1.67 mm−1 |
b = 12.1090 (13) Å | T = 120 K |
c = 14.711 (4) Å | 0.12 × 0.02 × 0.02 mm |
β = 91.683 (4)° |
Bruker D8 with APEXII detector diffractometer | 8831 independent reflections |
Absorption correction: multi-scan (TWINABS; Bruker, 2004) | 7018 reflections with I > 2σ(I) |
Tmin = 0.597, Tmax = 0.746 | Rint = 0.054 |
12848 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.098 | Δρmax = 0.65 e Å−3 |
S = 1.04 | Δρmin = −0.44 e Å−3 |
8831 reflections | Absolute structure: Flack (1983), 3980 Friedel pairs |
292 parameters | Absolute structure parameter: 0.064 (17) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.17969 (6) | 0.70552 (4) | 0.56075 (3) | 0.02973 (12) | |
Cl1 | 0.08844 (13) | 0.78922 (10) | 0.68543 (6) | 0.0382 (2) | |
Cl2 | 0.28560 (14) | 0.53800 (9) | 0.58911 (8) | 0.0416 (2) | |
Cl3 | 0.32696 (13) | 0.81305 (9) | 0.47062 (7) | 0.0373 (2) | |
N1 | −0.0308 (4) | 0.6782 (3) | 0.48346 (19) | 0.0264 (7) | |
N2 | −0.2901 (4) | 0.6376 (3) | 0.3900 (2) | 0.0278 (7) | |
C1 | −0.1094 (5) | 0.7827 (4) | 0.4539 (3) | 0.0304 (8) | |
H1A | −0.0310 | 0.8306 | 0.4240 | 0.037* | |
H1B | −0.1485 | 0.8224 | 0.5077 | 0.037* | |
C2 | −0.2502 (5) | 0.7587 (3) | 0.3875 (3) | 0.0296 (9) | |
H2A | −0.3443 | 0.8026 | 0.4047 | 0.036* | |
H2B | −0.2216 | 0.7801 | 0.3251 | 0.036* | |
C3 | 0.0056 (5) | 0.6132 (4) | 0.4005 (3) | 0.0327 (9) | |
H3A | 0.0741 | 0.5495 | 0.4175 | 0.039* | |
H3B | 0.0647 | 0.6601 | 0.3578 | 0.039* | |
C4 | −0.1487 (5) | 0.5719 (4) | 0.3539 (3) | 0.0319 (9) | |
H4A | −0.1630 | 0.4923 | 0.3665 | 0.038* | |
H4B | −0.1430 | 0.5818 | 0.2872 | 0.038* | |
C5 | −0.1470 (5) | 0.6141 (4) | 0.5373 (3) | 0.0318 (8) | |
H5A | −0.1588 | 0.6499 | 0.5972 | 0.038* | |
H5B | −0.1048 | 0.5386 | 0.5480 | 0.038* | |
C6 | −0.3093 (5) | 0.6065 (4) | 0.4892 (2) | 0.0315 (8) | |
H6A | −0.3853 | 0.6575 | 0.5179 | 0.038* | |
H6B | −0.3516 | 0.5305 | 0.4937 | 0.038* | |
C7 | −0.4381 (6) | 0.6160 (4) | 0.3329 (3) | 0.0351 (9) | |
H7A | −0.4196 | 0.6415 | 0.2701 | 0.042* | |
H7B | −0.5264 | 0.6607 | 0.3569 | 0.042* | |
C8 | −0.4898 (7) | 0.4966 (4) | 0.3294 (3) | 0.0477 (13) | |
H8A | −0.5210 | 0.4732 | 0.3909 | 0.057* | |
H8B | −0.3982 | 0.4504 | 0.3118 | 0.057* | |
C9 | −0.6289 (7) | 0.4765 (5) | 0.2626 (3) | 0.0541 (15) | |
H9A | −0.7187 | 0.5257 | 0.2779 | 0.065* | |
H9B | −0.5958 | 0.4951 | 0.2004 | 0.065* | |
C10 | −0.6843 (9) | 0.3581 (7) | 0.2648 (4) | 0.086 (3) | |
H10A | −0.5968 | 0.3094 | 0.2473 | 0.129* | |
H10B | −0.7752 | 0.3484 | 0.2221 | 0.129* | |
H10C | −0.7167 | 0.3393 | 0.3264 | 0.129* | |
Co2 | 0.86290 (6) | 0.69012 (4) | 1.06702 (3) | 0.02719 (12) | |
Cl4 | 0.74916 (13) | 0.52684 (9) | 1.09830 (7) | 0.0360 (2) | |
Cl5 | 0.70380 (13) | 0.79352 (9) | 0.97538 (7) | 0.0361 (2) | |
Cl6 | 0.97391 (13) | 0.78267 (9) | 1.18605 (6) | 0.0331 (2) | |
N3 | 1.0632 (4) | 0.6586 (3) | 0.98991 (19) | 0.0256 (7) | |
N4 | 1.3114 (4) | 0.6133 (3) | 0.8981 (2) | 0.0266 (7) | |
C11 | 1.1771 (5) | 0.5881 (4) | 1.0443 (2) | 0.0335 (9) | |
H11A | 1.1303 | 0.5138 | 1.0523 | 0.040* | |
H11B | 1.1955 | 0.6211 | 1.1052 | 0.040* | |
C12 | 1.3367 (5) | 0.5778 (3) | 0.9963 (2) | 0.0290 (8) | |
H12A | 1.4181 | 0.6254 | 1.0268 | 0.035* | |
H12B | 1.3748 | 0.5005 | 0.9990 | 0.035* | |
C13 | 1.0170 (5) | 0.5989 (4) | 0.9044 (3) | 0.0323 (9) | |
H13A | 0.9572 | 0.6493 | 0.8628 | 0.039* | |
H13B | 0.9464 | 0.5360 | 0.9186 | 0.039* | |
C14 | 1.1659 (5) | 0.5563 (4) | 0.8579 (2) | 0.0303 (9) | |
H14A | 1.1755 | 0.4755 | 0.8667 | 0.036* | |
H14B | 1.1569 | 0.5712 | 0.7918 | 0.036* | |
C15 | 1.1471 (5) | 0.7610 (3) | 0.9650 (3) | 0.0314 (8) | |
H15A | 1.1927 | 0.7963 | 1.0206 | 0.038* | |
H15B | 1.0701 | 0.8131 | 0.9361 | 0.038* | |
C16 | 1.2827 (5) | 0.7362 (3) | 0.8985 (2) | 0.0279 (8) | |
H16A | 1.2516 | 0.7618 | 0.8366 | 0.033* | |
H16B | 1.3814 | 0.7755 | 0.9183 | 0.033* | |
C17 | 1.4589 (5) | 0.5863 (4) | 0.8441 (3) | 0.0345 (9) | |
H17A | 1.5547 | 0.6134 | 0.8782 | 0.041* | |
H17B | 1.4522 | 0.6265 | 0.7855 | 0.041* | |
C18 | 1.4796 (5) | 0.4631 (4) | 0.8249 (3) | 0.0348 (9) | |
H18A | 1.4422 | 0.4199 | 0.8773 | 0.042* | |
H18B | 1.4131 | 0.4424 | 0.7708 | 0.042* | |
C19 | 1.6527 (5) | 0.4346 (4) | 0.8082 (3) | 0.0385 (10) | |
H19A | 1.6602 | 0.3550 | 0.7935 | 0.046* | |
H19B | 1.7167 | 0.4477 | 0.8648 | 0.046* | |
C20 | 1.7244 (6) | 0.5012 (4) | 0.7312 (3) | 0.0417 (11) | |
H20A | 1.6572 | 0.4932 | 0.6760 | 0.062* | |
H20B | 1.8321 | 0.4739 | 0.7197 | 0.062* | |
H20C | 1.7300 | 0.5793 | 0.7485 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0326 (3) | 0.0238 (3) | 0.0327 (2) | −0.0009 (2) | −0.0002 (2) | 0.0029 (2) |
Cl1 | 0.0502 (6) | 0.0355 (6) | 0.0288 (4) | −0.0037 (5) | 0.0015 (4) | −0.0005 (4) |
Cl2 | 0.0429 (6) | 0.0268 (5) | 0.0546 (6) | 0.0019 (5) | −0.0071 (5) | 0.0055 (4) |
Cl3 | 0.0385 (5) | 0.0285 (5) | 0.0454 (5) | −0.0021 (4) | 0.0099 (4) | 0.0031 (4) |
N1 | 0.0319 (17) | 0.0216 (17) | 0.0260 (13) | 0.0059 (13) | 0.0046 (12) | 0.0006 (12) |
N2 | 0.0305 (18) | 0.0259 (18) | 0.0271 (15) | 0.0015 (14) | 0.0002 (13) | −0.0009 (12) |
C1 | 0.034 (2) | 0.023 (2) | 0.0347 (18) | 0.0029 (17) | 0.0007 (15) | 0.0025 (15) |
C2 | 0.036 (2) | 0.024 (2) | 0.0297 (18) | 0.0071 (16) | 0.0058 (16) | −0.0001 (14) |
C3 | 0.035 (2) | 0.036 (2) | 0.0273 (17) | 0.0080 (18) | 0.0036 (15) | −0.0027 (15) |
C4 | 0.035 (2) | 0.026 (2) | 0.0349 (19) | 0.0051 (17) | 0.0052 (16) | −0.0050 (15) |
C5 | 0.040 (2) | 0.028 (2) | 0.0277 (17) | −0.0031 (18) | 0.0017 (15) | 0.0001 (14) |
C6 | 0.041 (2) | 0.031 (2) | 0.0230 (16) | −0.0036 (19) | 0.0033 (15) | 0.0048 (14) |
C7 | 0.040 (2) | 0.036 (2) | 0.0294 (18) | 0.0053 (19) | 0.0000 (16) | −0.0029 (15) |
C8 | 0.058 (3) | 0.045 (3) | 0.040 (2) | −0.015 (2) | −0.005 (2) | −0.0049 (19) |
C9 | 0.045 (3) | 0.077 (4) | 0.040 (2) | −0.015 (3) | 0.005 (2) | −0.018 (2) |
C10 | 0.086 (5) | 0.118 (7) | 0.054 (3) | −0.066 (5) | 0.020 (3) | −0.032 (4) |
Co2 | 0.0293 (3) | 0.0241 (3) | 0.0285 (2) | −0.0002 (2) | 0.00579 (18) | −0.0004 (2) |
Cl4 | 0.0406 (6) | 0.0265 (5) | 0.0415 (5) | −0.0042 (4) | 0.0101 (4) | 0.0004 (4) |
Cl5 | 0.0366 (5) | 0.0301 (6) | 0.0414 (5) | 0.0042 (4) | −0.0033 (4) | −0.0018 (4) |
Cl6 | 0.0415 (5) | 0.0306 (5) | 0.0276 (4) | −0.0026 (5) | 0.0055 (4) | −0.0014 (4) |
N3 | 0.0284 (17) | 0.0228 (17) | 0.0258 (14) | −0.0007 (13) | 0.0045 (12) | −0.0004 (11) |
N4 | 0.0296 (17) | 0.0228 (17) | 0.0276 (15) | −0.0018 (14) | 0.0030 (12) | −0.0029 (12) |
C11 | 0.033 (2) | 0.041 (2) | 0.0269 (17) | 0.0037 (19) | 0.0052 (15) | 0.0063 (16) |
C12 | 0.034 (2) | 0.0229 (19) | 0.0305 (17) | 0.0007 (16) | 0.0021 (15) | 0.0017 (14) |
C13 | 0.028 (2) | 0.039 (2) | 0.0296 (18) | −0.0032 (18) | 0.0005 (15) | −0.0075 (16) |
C14 | 0.028 (2) | 0.032 (2) | 0.0308 (18) | −0.0036 (17) | 0.0071 (15) | −0.0063 (15) |
C15 | 0.040 (2) | 0.021 (2) | 0.0335 (18) | −0.0005 (17) | 0.0088 (17) | 0.0034 (14) |
C16 | 0.030 (2) | 0.026 (2) | 0.0269 (17) | −0.0035 (15) | 0.0037 (15) | 0.0036 (14) |
C17 | 0.035 (2) | 0.035 (2) | 0.035 (2) | −0.0053 (19) | 0.0128 (17) | −0.0069 (17) |
C18 | 0.037 (2) | 0.031 (2) | 0.036 (2) | −0.0011 (18) | 0.0072 (17) | −0.0030 (16) |
C19 | 0.034 (2) | 0.046 (3) | 0.036 (2) | 0.006 (2) | 0.0090 (18) | 0.0050 (19) |
C20 | 0.045 (3) | 0.046 (3) | 0.035 (2) | −0.003 (2) | 0.0141 (19) | −0.0008 (19) |
Co1—N1 | 2.096 (3) | Co2—N3 | 2.088 (3) |
Co1—Cl2 | 2.2483 (13) | Co2—Cl4 | 2.2482 (12) |
Co1—Cl1 | 2.2491 (12) | Co2—Cl5 | 2.2487 (12) |
Co1—Cl3 | 2.2521 (11) | Co2—Cl6 | 2.2564 (11) |
N1—C1 | 1.486 (5) | N3—C15 | 1.477 (5) |
N1—C3 | 1.491 (5) | N3—C13 | 1.493 (5) |
N1—C5 | 1.491 (5) | N3—C11 | 1.495 (5) |
N2—C7 | 1.500 (6) | N4—C14 | 1.507 (5) |
N2—C2 | 1.505 (5) | N4—C16 | 1.508 (5) |
N2—C6 | 1.520 (5) | N4—C12 | 1.516 (5) |
N2—C4 | 1.536 (5) | N4—C17 | 1.524 (5) |
C1—C2 | 1.537 (6) | C11—C12 | 1.536 (6) |
C1—H1A | 0.9900 | C11—H11A | 0.9900 |
C1—H1B | 0.9900 | C11—H11B | 0.9900 |
C2—H2A | 0.9900 | C12—H12A | 0.9900 |
C2—H2B | 0.9900 | C12—H12B | 0.9900 |
C3—C4 | 1.530 (6) | C13—C14 | 1.530 (5) |
C3—H3A | 0.9900 | C13—H13A | 0.9900 |
C3—H3B | 0.9900 | C13—H13B | 0.9900 |
C4—H4A | 0.9900 | C14—H14A | 0.9900 |
C4—H4B | 0.9900 | C14—H14B | 0.9900 |
C5—C6 | 1.517 (6) | C15—C16 | 1.550 (5) |
C5—H5A | 0.9900 | C15—H15A | 0.9900 |
C5—H5B | 0.9900 | C15—H15B | 0.9900 |
C6—H6A | 0.9900 | C16—H16A | 0.9900 |
C6—H6B | 0.9900 | C16—H16B | 0.9900 |
C7—C8 | 1.510 (7) | C17—C18 | 1.530 (6) |
C7—H7A | 0.9900 | C17—H17A | 0.9900 |
C7—H7B | 0.9900 | C17—H17B | 0.9900 |
C8—C9 | 1.522 (7) | C18—C19 | 1.518 (6) |
C8—H8A | 0.9900 | C18—H18A | 0.9900 |
C8—H8B | 0.9900 | C18—H18B | 0.9900 |
C9—C10 | 1.508 (9) | C19—C20 | 1.528 (6) |
C9—H9A | 0.9900 | C19—H19A | 0.9900 |
C9—H9B | 0.9900 | C19—H19B | 0.9900 |
C10—H10A | 0.9800 | C20—H20A | 0.9800 |
C10—H10B | 0.9800 | C20—H20B | 0.9800 |
C10—H10C | 0.9800 | C20—H20C | 0.9800 |
N1—Co1—Cl2 | 106.21 (10) | N3—Co2—Cl4 | 107.62 (10) |
N1—Co1—Cl1 | 102.29 (9) | N3—Co2—Cl5 | 104.35 (9) |
Cl2—Co1—Cl1 | 113.39 (5) | Cl4—Co2—Cl5 | 111.41 (5) |
N1—Co1—Cl3 | 103.81 (9) | N3—Co2—Cl6 | 101.11 (10) |
Cl2—Co1—Cl3 | 114.25 (5) | Cl4—Co2—Cl6 | 116.46 (4) |
Cl1—Co1—Cl3 | 115.14 (5) | Cl5—Co2—Cl6 | 114.35 (5) |
C1—N1—C3 | 108.0 (3) | C15—N3—C13 | 108.1 (3) |
C1—N1—C5 | 107.9 (3) | C15—N3—C11 | 108.1 (3) |
C3—N1—C5 | 108.2 (3) | C13—N3—C11 | 108.7 (3) |
C1—N1—Co1 | 112.5 (2) | C15—N3—Co2 | 112.2 (2) |
C3—N1—Co1 | 109.8 (2) | C13—N3—Co2 | 110.7 (2) |
C5—N1—Co1 | 110.3 (2) | C11—N3—Co2 | 108.9 (2) |
C7—N2—C2 | 109.7 (3) | C14—N4—C16 | 109.0 (3) |
C7—N2—C6 | 112.7 (3) | C14—N4—C12 | 109.5 (3) |
C2—N2—C6 | 107.1 (3) | C16—N4—C12 | 107.1 (3) |
C7—N2—C4 | 110.5 (3) | C14—N4—C17 | 110.9 (3) |
C2—N2—C4 | 108.8 (3) | C16—N4—C17 | 110.2 (3) |
C6—N2—C4 | 108.0 (3) | C12—N4—C17 | 110.1 (3) |
N1—C1—C2 | 110.5 (3) | N3—C11—C12 | 110.6 (3) |
N1—C1—H1A | 109.5 | N3—C11—H11A | 109.5 |
C2—C1—H1A | 109.5 | C12—C11—H11A | 109.5 |
N1—C1—H1B | 109.5 | N3—C11—H11B | 109.5 |
C2—C1—H1B | 109.5 | C12—C11—H11B | 109.5 |
H1A—C1—H1B | 108.1 | H11A—C11—H11B | 108.1 |
N2—C2—C1 | 109.6 (3) | N4—C12—C11 | 108.4 (3) |
N2—C2—H2A | 109.8 | N4—C12—H12A | 110.0 |
C1—C2—H2A | 109.8 | C11—C12—H12A | 110.0 |
N2—C2—H2B | 109.8 | N4—C12—H12B | 110.0 |
C1—C2—H2B | 109.8 | C11—C12—H12B | 110.0 |
H2A—C2—H2B | 108.2 | H12A—C12—H12B | 108.4 |
N1—C3—C4 | 110.4 (3) | N3—C13—C14 | 110.2 (3) |
N1—C3—H3A | 109.6 | N3—C13—H13A | 109.6 |
C4—C3—H3A | 109.6 | C14—C13—H13A | 109.6 |
N1—C3—H3B | 109.6 | N3—C13—H13B | 109.6 |
C4—C3—H3B | 109.6 | C14—C13—H13B | 109.6 |
H3A—C3—H3B | 108.1 | H13A—C13—H13B | 108.1 |
C3—C4—N2 | 109.0 (3) | N4—C14—C13 | 109.4 (3) |
C3—C4—H4A | 109.9 | N4—C14—H14A | 109.8 |
N2—C4—H4A | 109.9 | C13—C14—H14A | 109.8 |
C3—C4—H4B | 109.9 | N4—C14—H14B | 109.8 |
N2—C4—H4B | 109.9 | C13—C14—H14B | 109.8 |
H4A—C4—H4B | 108.3 | H14A—C14—H14B | 108.3 |
N1—C5—C6 | 112.0 (3) | N3—C15—C16 | 111.0 (3) |
N1—C5—H5A | 109.2 | N3—C15—H15A | 109.4 |
C6—C5—H5A | 109.2 | C16—C15—H15A | 109.4 |
N1—C5—H5B | 109.2 | N3—C15—H15B | 109.4 |
C6—C5—H5B | 109.2 | C16—C15—H15B | 109.4 |
H5A—C5—H5B | 107.9 | H15A—C15—H15B | 108.0 |
C5—C6—N2 | 108.3 (3) | N4—C16—C15 | 108.3 (3) |
C5—C6—H6A | 110.0 | N4—C16—H16A | 110.0 |
N2—C6—H6A | 110.0 | C15—C16—H16A | 110.0 |
C5—C6—H6B | 110.0 | N4—C16—H16B | 110.0 |
N2—C6—H6B | 110.0 | C15—C16—H16B | 110.0 |
H6A—C6—H6B | 108.4 | H16A—C16—H16B | 108.4 |
N2—C7—C8 | 114.7 (4) | N4—C17—C18 | 113.8 (3) |
N2—C7—H7A | 108.6 | N4—C17—H17A | 108.8 |
C8—C7—H7A | 108.6 | C18—C17—H17A | 108.8 |
N2—C7—H7B | 108.6 | N4—C17—H17B | 108.8 |
C8—C7—H7B | 108.6 | C18—C17—H17B | 108.8 |
H7A—C7—H7B | 107.6 | H17A—C17—H17B | 107.7 |
C7—C8—C9 | 112.8 (5) | C19—C18—C17 | 111.5 (4) |
C7—C8—H8A | 109.0 | C19—C18—H18A | 109.3 |
C9—C8—H8A | 109.0 | C17—C18—H18A | 109.3 |
C7—C8—H8B | 109.0 | C19—C18—H18B | 109.3 |
C9—C8—H8B | 109.0 | C17—C18—H18B | 109.3 |
H8A—C8—H8B | 107.8 | H18A—C18—H18B | 108.0 |
C10—C9—C8 | 111.6 (6) | C18—C19—C20 | 113.4 (4) |
C10—C9—H9A | 109.3 | C18—C19—H19A | 108.9 |
C8—C9—H9A | 109.3 | C20—C19—H19A | 108.9 |
C10—C9—H9B | 109.3 | C18—C19—H19B | 108.9 |
C8—C9—H9B | 109.3 | C20—C19—H19B | 108.9 |
H9A—C9—H9B | 108.0 | H19A—C19—H19B | 107.7 |
C9—C10—H10A | 109.5 | C19—C20—H20A | 109.5 |
C9—C10—H10B | 109.5 | C19—C20—H20B | 109.5 |
H10A—C10—H10B | 109.5 | H20A—C20—H20B | 109.5 |
C9—C10—H10C | 109.5 | C19—C20—H20C | 109.5 |
H10A—C10—H10C | 109.5 | H20A—C20—H20C | 109.5 |
H10B—C10—H10C | 109.5 | H20B—C20—H20C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2B···Cl6i | 0.99 | 2.66 | 3.567 (5) | 153 |
C4—H4A···Cl1ii | 0.99 | 2.66 | 3.511 (5) | 145 |
C6—H6B···Cl3ii | 0.99 | 2.69 | 3.606 (5) | 154 |
C7—H7B···Cl3iii | 0.99 | 2.80 | 3.729 (5) | 157 |
C12—H12B···Cl5iv | 0.99 | 2.62 | 3.485 (4) | 146 |
C14—H14A···Cl6iv | 0.99 | 2.75 | 3.567 (5) | 140 |
C16—H16A···Cl1v | 0.99 | 2.60 | 3.548 (4) | 161 |
C16—H16B···Cl5v | 0.99 | 2.81 | 3.739 (4) | 156 |
Symmetry codes: (i) x−1, y, z−1; (ii) −x, y−1/2, −z+1; (iii) x−1, y, z; (iv) −x+2, y−1/2, −z+2; (v) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Co(C10H21N2)Cl3] |
Mr | 334.57 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 120 |
a, b, c (Å) | 8.379 (2), 12.1090 (13), 14.711 (4) |
β (°) | 91.683 (4) |
V (Å3) | 1492.0 (6) |
Z | 4 |
Radiation type | Synchrotron, λ = 0.69430 Å |
µ (mm−1) | 1.67 |
Crystal size (mm) | 0.12 × 0.02 × 0.02 |
Data collection | |
Diffractometer | Bruker D8 with APEXII detector diffractometer |
Absorption correction | Multi-scan (TWINABS; Bruker, 2004) |
Tmin, Tmax | 0.597, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12848, 8831, 7018 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.735 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.098, 1.04 |
No. of reflections | 8831 |
No. of parameters | 292 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −0.44 |
Absolute structure | Flack (1983), 3980 Friedel pairs |
Absolute structure parameter | 0.064 (17) |
Computer programs: APEX2 (Bruker, 2007), TWINABS (Bruker, 2004), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2B···Cl6i | 0.99 | 2.66 | 3.567 (5) | 153 |
C4—H4A···Cl1ii | 0.99 | 2.66 | 3.511 (5) | 145 |
C6—H6B···Cl3ii | 0.99 | 2.69 | 3.606 (5) | 154 |
C7—H7B···Cl3iii | 0.99 | 2.80 | 3.729 (5) | 157 |
C12—H12B···Cl5iv | 0.99 | 2.62 | 3.485 (4) | 146 |
C14—H14A···Cl6iv | 0.99 | 2.75 | 3.567 (5) | 140 |
C16—H16A···Cl1v | 0.99 | 2.60 | 3.548 (4) | 161 |
C16—H16B···Cl5v | 0.99 | 2.81 | 3.739 (4) | 156 |
Symmetry codes: (i) x−1, y, z−1; (ii) −x, y−1/2, −z+1; (iii) x−1, y, z; (iv) −x+2, y−1/2, −z+2; (v) x+1, y, z. |
Acknowledgements
The authors thank the Thailand Research Fund, Center for Innovation in Chemistry and Thailand Toray Science Foundation for financial support. BY thanks the Royal Golden Jubilee PhD program and the Graduate School of Chiang Mai University for a Graduate Scholarship.
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m425–m426. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2004). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Qu, Y. & Sun, X.-M. (2005). Acta Cryst. E61, m2121–m2123. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ross, F. K. & Stucky, G. D. (1969). Inorg. Chem. 8, 2734–2740. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The crystals of Co(C10H21N2)Cl3 (I) were unintentionally obtained as a by-product from the hydrothermal reaction between cobalt(II) sulfate heptahydrate and 1,4-diazabicyclo[2.2.2]octane in a water/butan-1-ol mixture. The N-butyl-1,4-diazabicyclo[2.2.2]octanium ligand was presumably generated in situ under acidic conditions. The structure of I is built up from two distinct [Co(C10H21N2)Cl3] molecules as shown in Fig. 1. They are different in the spatial orientation of the butyl group of the N-butyl-1,4-diazabicyclo[2.2.2]octanium ligand, one of which is in the eclipsed conformation (A) and the other is in the staggered conformation (B). The A molecules are connected by the C—H···Cl hydrogen bonding interactions to form a two-dimensional A sheet in the ab plane (Fig. 2), whereas the B molecules form the B sheet also in theab plane using similar C—H···Cl hydrogen bonding interactions (Fig. 3). The A and B sheets are then regularly alternated in the ABAB fashion, and linked by way of also the C—H···Cl hydrogen bonding interactions along c to give the infinite three-dimensional hydrogen bonding array (Fig. 4).
The hydrogen bond geometries found in I (H···Cl, 2.62–2.81 Å; C···Cl, 3.485 (4)–3.739 (4) Å; C—H···Cl, 140.00–164.00°) are well comparable to those found in related structures, e.g. (C6H14N2)[CoCl4] (Bremner & Harrison, 2003) and (C8H18N2)[CoCl4] (Qu & Sun, 2005).