organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o607-o608

Bis(4-methyl­imidazolium) succinate succinic acid solvate

aDepartment of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China, and bTongji Hospital, Huazhong University of Science and Technology, Wuhan 430070, People's Republic of China
*Correspondence e-mail: duguihuan@126.com

(Received 15 February 2009; accepted 19 February 2009; online 25 February 2009)

In the title compound, 2C4H7N2+·C4H4O42−·C4H6O4, the asymmetric unit consists of two 4-methyl­imidazolium cations, one succinate dianion and one netrual succinic acid mol­ecule and within the latter components, the C—O, C=O and C O bonds are clearly evidenced from their relative distances. In the crystal structure, the individual components are linked by inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds into a two-dimensional network parallel to the (101) plane in which R33(9), R33(12) and R44(18) hydrogen-bond motifs are present.

Related literature

For general background on co-crystals, see: Aakeröy & Salmon (2005[Aakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439-448.]); Aakeröy et al. (2007[Aakeröy, C. B., Fasulo, M. E. & Desper, J. (2007). Mol. Pharm. 4, 317-322.]); Childs & Hardcastle (2007[Childs, S. L. & Hardcastle, K. I. (2007). Cryst. Growth Des. 7, 1291-1304.]); Childs et al. (2007[Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323-338.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H7N2+·C4H4O42−·C4H6O4

  • Mr = 400.39

  • Monoclinic, P 21 /c

  • a = 17.260 (5) Å

  • b = 14.066 (4) Å

  • c = 7.761 (2) Å

  • β = 95.008 (6)°

  • V = 1877.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.30 × 0.10 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.957, Tmax = 0.995

  • 20337 measured reflections

  • 4080 independent reflections

  • 2197 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.153

  • S = 0.95

  • 4080 reflections

  • 273 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected bond lengths (Å)

C9—O1 1.235 (2)
C9—O2 1.271 (2)
C12—O4 1.228 (3)
C12—O3 1.276 (2)
C13—O6 1.210 (2)
C13—O5 1.298 (3)
C16—O7 1.207 (2)
C16—O8 1.302 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.96 (2) 1.74 (2) 2.699 (3) 176 (2)
N2—H2A⋯O3 0.97 (2) 1.78 (2) 2.752 (2) 173.0 (19)
N3—H3A⋯O1 1.07 (2) 1.61 (2) 2.673 (2) 170.6 (19)
N4—H4⋯O2ii 0.98 (2) 1.77 (2) 2.745 (2) 178.8 (19)
O5—H5⋯O3 0.98 (3) 1.53 (3) 2.509 (2) 177 (3)
O8—H8⋯O2iii 1.02 (3) 1.50 (3) 2.518 (2) 176 (3)
C2—H2⋯O6 0.93 2.29 3.024 (3) 136
C3—H3⋯O8iv 0.93 2.43 3.354 (3) 176
C6—H6⋯O5 0.93 2.43 3.346 (3) 169
C7—H7⋯O7v 0.93 2.29 3.017 (3) 134
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

In recent years, research on co-crystal or organic salts has been expanded rapidly owing to their potential application in the preparation of active pharmaceutical ingredients (Aakeröy et al., 2007; Childs & Hardcastle, 2007; Childs et al., 2007). In this paper, we report an organic salt formed by 4-methyl-imidazole and succinic acid in 95% methanol solution at room temperature, namely bis(4-methyl-imidazolium) succinicate succinic acid, (I).

In (I), the asymmetric unit is composed of two 4-methylimidazolium cations, one succinicate dianion and one netrual succinic acid molecule. The title compound can be regarded as an organic salt according to the definition of Aakeröy and Salmon (2005). One of the succinnic acid molecules is dually deprotonated, leading to a dianion (Fig. 1) which can be evidenced to an extent by the variations of the carboxyl C-O, C O and C O bond distances (Table 1).

In the crystal structure, by a combination of four N-H···O and two O-H···O hydrogen bonds (Table 2) molecules in (I) are linked into a two-dimensional network parallel to the (101) plane (Fig.2) in which R33(9), R33(12) and R44(18) hydrogen-bonding motifs are present (Bernstein et al., 1995). Within the network, several weak C-H..O interactions are present. No other interactions, such as C-H···π or π···π are observed in (I).

Related literature top

For general background on co-crystals, see: Aakeröy & Salmon (2005); Aakeröy et al. (2007); Childs & Hardcastle (2007); Childs et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

All the reagents and solvents were used as obtained without further purification. A 1:2 molar amounts of succinic acid (0.2 mmol, 23.6 mg) and 4-methyl-imidazole (0.4 mmol, 32.8 mg) were dissolved in 95% methanol (20 ml). The mixture was stirred for half an hour at room temperature and then filtered. The resulting solution was kept in air for one week. Plate crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel.

Refinement top

H atoms bonded to C atoms were located in difference maps and subsequently treated as riding, with C–H = 0.93 Å (aromatic), 0.97Å (methylene), 0.96Å (methyl), Uiso(H) = 1.2Ueq( aromatic and methylene C) and 1.5Ueq( methyl C). H atoms bonded to N and O atoms were also found in difference maps and their distances were refined freely (see Table 1 for the distances), and the Uiso(H) values being set k times of their carrier atoms ( k = 1.2 for N and 1.5 for O atoms)

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H-bonds are shown in dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the two-dimensional network parallel to the (101) plane linked by N-H···O, O-H···O and C-H···O hydrogen-bonds. Hydrogen atoms not involved in the motif have been omitted for clarity.
Bis(4-methylimidazolium) succinate succinic acid solvate top
Crystal data top
2C4H7N2+·C4H4O42·C4H6O4F(000) = 848
Mr = 400.39Dx = 1.417 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2035 reflections
a = 17.260 (5) Åθ = 2.4–21.1°
b = 14.066 (4) ŵ = 0.12 mm1
c = 7.761 (2) ÅT = 296 K
β = 95.008 (6)°Plate, colorless
V = 1877.0 (9) Å30.30 × 0.10 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4080 independent reflections
Radiation source: fine focus sealed Siemens Mo tube2197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
0.3° wide ω exposures scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.957, Tmax = 0.995k = 1717
20337 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0817P)2]
where P = (Fo2 + 2Fc2)/3
4080 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
2C4H7N2+·C4H4O42·C4H6O4V = 1877.0 (9) Å3
Mr = 400.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.260 (5) ŵ = 0.12 mm1
b = 14.066 (4) ÅT = 296 K
c = 7.761 (2) Å0.30 × 0.10 × 0.04 mm
β = 95.008 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4080 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2197 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.995Rint = 0.063
20337 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.28 e Å3
4080 reflectionsΔρmin = 0.25 e Å3
273 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45695 (11)0.47579 (16)0.7860 (3)0.0375 (6)
C20.50516 (13)0.33293 (17)0.7523 (3)0.0476 (6)
H20.53800.28390.72470.057*
C30.40700 (12)0.41101 (16)0.8406 (3)0.0431 (6)
H30.35970.42410.88470.052*
C40.45464 (13)0.58059 (16)0.7747 (3)0.0498 (7)
H4A0.43670.59930.65900.075*
H4B0.50590.60570.80360.075*
H4C0.41990.60500.85400.075*
C50.96099 (11)0.34301 (16)0.3015 (3)0.0342 (5)
C60.91078 (12)0.40732 (16)0.3567 (3)0.0404 (6)
H60.86650.39360.41220.049*
C71.00090 (12)0.48664 (17)0.2388 (3)0.0435 (6)
H71.03020.53610.19860.052*
C80.96426 (13)0.23840 (16)0.3093 (3)0.0454 (6)
H8A0.92130.21500.36760.068*
H8B1.01220.21900.37140.068*
H8C0.96140.21310.19410.068*
C90.83954 (12)0.73296 (15)0.4322 (3)0.0327 (5)
C100.76053 (11)0.71074 (15)0.4945 (3)0.0352 (5)
H10A0.75580.74460.60200.042*
H10B0.72060.73480.41010.042*
C110.74541 (12)0.60712 (15)0.5235 (3)0.0377 (6)
H11A0.78650.58240.60460.045*
H11B0.74820.57370.41500.045*
C120.66724 (12)0.58515 (15)0.5925 (3)0.0374 (6)
C130.70985 (12)0.28540 (16)0.5270 (3)0.0380 (6)
C140.76523 (12)0.20813 (16)0.4875 (3)0.0398 (6)
H14A0.81330.21650.56040.048*
H14B0.77720.21450.36820.048*
C150.73494 (12)0.10900 (16)0.5142 (3)0.0449 (6)
H15A0.72410.10200.63410.054*
H15B0.68630.10090.44310.054*
C160.79014 (13)0.03232 (16)0.4709 (3)0.0410 (6)
N10.43813 (11)0.32252 (14)0.8197 (3)0.0457 (5)
H10.4148 (14)0.2622 (18)0.842 (3)0.055*
N20.51776 (10)0.42424 (13)0.7306 (3)0.0413 (5)
H2A0.5629 (13)0.4491 (16)0.678 (3)0.050*
N30.93627 (10)0.49658 (14)0.3170 (2)0.0433 (5)
H3A0.9102 (13)0.5635 (17)0.342 (3)0.052*
N41.01708 (10)0.39539 (13)0.2269 (2)0.0386 (5)
H41.0622 (13)0.3685 (15)0.177 (3)0.046*
O10.88428 (9)0.66845 (11)0.3982 (2)0.0565 (5)
O20.85672 (8)0.82023 (10)0.4172 (2)0.0453 (4)
O30.65044 (8)0.49741 (10)0.6087 (2)0.0461 (4)
O40.62385 (9)0.64950 (11)0.6310 (3)0.0647 (6)
O50.73726 (9)0.37014 (12)0.5060 (2)0.0542 (5)
H50.7020 (17)0.419 (2)0.544 (3)0.081*
O60.64637 (10)0.27081 (12)0.5766 (3)0.0671 (6)
O70.84928 (10)0.04663 (12)0.4027 (3)0.0639 (6)
O80.76793 (10)0.05217 (12)0.5142 (3)0.0605 (6)
H80.8020 (17)0.105 (2)0.473 (4)0.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0270 (11)0.0344 (13)0.0528 (14)0.0012 (9)0.0138 (10)0.0009 (11)
C20.0344 (13)0.0358 (15)0.0763 (18)0.0018 (11)0.0253 (12)0.0020 (13)
C30.0284 (12)0.0410 (15)0.0625 (16)0.0039 (11)0.0202 (11)0.0011 (12)
C40.0381 (14)0.0369 (15)0.0772 (18)0.0010 (11)0.0215 (13)0.0039 (13)
C50.0255 (10)0.0325 (13)0.0465 (14)0.0003 (9)0.0148 (10)0.0016 (10)
C60.0282 (12)0.0356 (14)0.0606 (16)0.0007 (10)0.0217 (11)0.0004 (11)
C70.0356 (13)0.0347 (15)0.0629 (16)0.0005 (10)0.0199 (11)0.0009 (12)
C80.0384 (13)0.0350 (14)0.0663 (17)0.0041 (10)0.0233 (12)0.0009 (12)
C90.0264 (11)0.0247 (12)0.0488 (14)0.0004 (9)0.0130 (10)0.0008 (10)
C100.0279 (11)0.0303 (13)0.0497 (14)0.0003 (9)0.0167 (10)0.0027 (10)
C110.0284 (11)0.0291 (13)0.0583 (15)0.0022 (9)0.0186 (11)0.0014 (11)
C120.0307 (12)0.0264 (13)0.0573 (16)0.0006 (10)0.0162 (11)0.0019 (11)
C130.0300 (11)0.0330 (14)0.0532 (15)0.0001 (10)0.0164 (10)0.0005 (11)
C140.0293 (12)0.0372 (14)0.0553 (15)0.0034 (10)0.0167 (11)0.0011 (11)
C150.0314 (12)0.0370 (15)0.0693 (17)0.0051 (10)0.0222 (12)0.0016 (12)
C160.0322 (12)0.0341 (14)0.0594 (15)0.0004 (10)0.0184 (11)0.0030 (11)
N10.0371 (11)0.0327 (12)0.0697 (14)0.0074 (9)0.0195 (10)0.0020 (10)
N20.0298 (10)0.0333 (12)0.0639 (13)0.0044 (8)0.0223 (9)0.0000 (10)
N30.0353 (10)0.0325 (12)0.0645 (14)0.0056 (9)0.0183 (9)0.0042 (10)
N40.0280 (10)0.0344 (12)0.0561 (13)0.0016 (8)0.0200 (9)0.0018 (9)
O10.0422 (10)0.0304 (10)0.1026 (14)0.0040 (7)0.0383 (9)0.0027 (9)
O20.0326 (9)0.0257 (9)0.0821 (12)0.0009 (7)0.0309 (8)0.0033 (8)
O30.0342 (8)0.0266 (9)0.0819 (12)0.0027 (7)0.0300 (8)0.0026 (8)
O40.0474 (10)0.0309 (10)0.1235 (16)0.0039 (8)0.0513 (11)0.0015 (10)
O50.0409 (9)0.0291 (10)0.0980 (15)0.0005 (7)0.0368 (10)0.0032 (9)
O60.0406 (10)0.0420 (11)0.1255 (16)0.0021 (8)0.0465 (11)0.0062 (10)
O70.0452 (10)0.0430 (11)0.1108 (15)0.0044 (8)0.0480 (10)0.0016 (10)
O80.0464 (10)0.0310 (11)0.1109 (16)0.0043 (8)0.0453 (10)0.0041 (10)
Geometric parameters (Å, º) top
C1—C31.348 (3)C10—C111.501 (3)
C1—N21.375 (3)C10—H10A0.9700
C1—C41.477 (3)C10—H10B0.9700
C2—N21.316 (3)C11—C121.526 (3)
C2—N11.319 (3)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—N11.371 (3)C12—O41.228 (3)
C3—H30.9300C12—O31.276 (2)
C4—H4A0.9600C13—O61.210 (2)
C4—H4B0.9600C13—O51.298 (3)
C4—H4C0.9600C13—C141.497 (3)
C5—C61.348 (3)C14—C151.510 (3)
C5—N41.383 (3)C14—H14A0.9700
C5—C81.474 (3)C14—H14B0.9700
C6—N31.374 (3)C15—C161.497 (3)
C6—H60.9300C15—H15A0.9700
C7—N41.319 (3)C15—H15B0.9700
C7—N31.323 (3)C16—O71.207 (2)
C7—H70.9300C16—O81.302 (3)
C8—H8A0.9600N1—H10.96 (2)
C8—H8B0.9600N2—H2A0.97 (2)
C8—H8C0.9600N3—H3A1.07 (2)
C9—O11.235 (2)N4—H40.98 (2)
C9—O21.271 (2)O5—H50.98 (3)
C9—C101.519 (3)O8—H81.02 (3)
C3—C1—N2105.6 (2)C10—C11—H11A108.6
C3—C1—C4132.7 (2)C12—C11—H11A108.6
N2—C1—C4121.66 (19)C10—C11—H11B108.6
N2—C2—N1108.6 (2)C12—C11—H11B108.6
N2—C2—H2125.7H11A—C11—H11B107.5
N1—C2—H2125.7O4—C12—O3122.69 (19)
C1—C3—N1107.98 (19)O4—C12—C11120.84 (19)
C1—C3—H3126.0O3—C12—C11116.47 (18)
N1—C3—H3126.0O6—C13—O5123.1 (2)
C1—C4—H4A109.5O6—C13—C14123.7 (2)
C1—C4—H4B109.5O5—C13—C14113.25 (18)
H4A—C4—H4B109.5C13—C14—C15114.05 (17)
C1—C4—H4C109.5C13—C14—H14A108.7
H4A—C4—H4C109.5C15—C14—H14A108.7
H4B—C4—H4C109.5C13—C14—H14B108.7
C6—C5—N4105.58 (19)C15—C14—H14B108.7
C6—C5—C8132.85 (19)H14A—C14—H14B107.6
N4—C5—C8121.57 (18)C16—C15—C14113.57 (18)
C5—C6—N3108.32 (18)C16—C15—H15A108.9
C5—C6—H6125.8C14—C15—H15A108.9
N3—C6—H6125.8C16—C15—H15B108.9
N4—C7—N3109.1 (2)C14—C15—H15B108.9
N4—C7—H7125.4H15A—C15—H15B107.7
N3—C7—H7125.4O7—C16—O8123.0 (2)
C5—C8—H8A109.5O7—C16—C15123.9 (2)
C5—C8—H8B109.5O8—C16—C15113.10 (19)
H8A—C8—H8B109.5C2—N1—C3108.21 (19)
C5—C8—H8C109.5C2—N1—H1124.3 (15)
H8A—C8—H8C109.5C3—N1—H1127.4 (15)
H8B—C8—H8C109.5C2—N2—C1109.59 (18)
O1—C9—O2122.35 (18)C2—N2—H2A123.4 (13)
O1—C9—C10120.83 (19)C1—N2—H2A126.9 (13)
O2—C9—C10116.82 (18)C7—N3—C6107.79 (19)
C11—C10—C9114.85 (17)C7—N3—H3A124.3 (12)
C11—C10—H10A108.6C6—N3—H3A127.9 (12)
C9—C10—H10A108.6C7—N4—C5109.20 (18)
C11—C10—H10B108.6C7—N4—H4126.0 (13)
C9—C10—H10B108.6C5—N4—H4124.8 (13)
H10A—C10—H10B107.5C13—O5—H5111.4 (16)
C10—C11—C12114.83 (17)C16—O8—H8113.4 (16)
N2—C1—C3—N10.7 (3)C14—C15—C16—O78.0 (4)
C4—C1—C3—N1179.0 (3)C14—C15—C16—O8172.0 (2)
N4—C5—C6—N30.3 (3)N2—C2—N1—C30.3 (3)
C8—C5—C6—N3179.4 (2)C1—C3—N1—C20.6 (3)
O1—C9—C10—C114.6 (3)N1—C2—N2—C10.1 (3)
O2—C9—C10—C11175.4 (2)C3—C1—N2—C20.5 (3)
C9—C10—C11—C12177.83 (19)C4—C1—N2—C2179.0 (2)
C10—C11—C12—O44.7 (3)N4—C7—N3—C60.2 (3)
C10—C11—C12—O3175.8 (2)C5—C6—N3—C70.0 (3)
O6—C13—C14—C150.2 (4)N3—C7—N4—C50.4 (3)
O5—C13—C14—C15179.0 (2)C6—C5—N4—C70.4 (3)
C13—C14—C15—C16178.83 (19)C8—C5—N4—C7179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.96 (2)1.74 (2)2.699 (3)176 (2)
N2—H2A···O30.97 (2)1.78 (2)2.752 (2)173.0 (19)
N3—H3A···O11.07 (2)1.61 (2)2.673 (2)170.6 (19)
N4—H4···O2ii0.98 (2)1.77 (2)2.745 (2)178.8 (19)
O5—H5···O30.98 (3)1.53 (3)2.509 (2)177 (3)
O8—H8···O2iii1.02 (3)1.50 (3)2.518 (2)176 (3)
C2—H2···O60.932.293.024 (3)136
C3—H3···O8iv0.932.433.354 (3)176
C6—H6···O50.932.433.346 (3)169
C7—H7···O7v0.932.293.017 (3)134
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y1/2, z+1/2; (iii) x, y1, z; (iv) x+1, y+1/2, z+3/2; (v) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C4H7N2+·C4H4O42·C4H6O4
Mr400.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)17.260 (5), 14.066 (4), 7.761 (2)
β (°) 95.008 (6)
V3)1877.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.10 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.957, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
20337, 4080, 2197
Rint0.063
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.153, 0.95
No. of reflections4080
No. of parameters273
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.25

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
C9—O11.235 (2)C13—O61.210 (2)
C9—O21.271 (2)C13—O51.298 (3)
C12—O41.228 (3)C16—O71.207 (2)
C12—O31.276 (2)C16—O81.302 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.96 (2)1.74 (2)2.699 (3)176 (2)
N2—H2A···O30.97 (2)1.78 (2)2.752 (2)173.0 (19)
N3—H3A···O11.07 (2)1.61 (2)2.673 (2)170.6 (19)
N4—H4···O2ii0.98 (2)1.77 (2)2.745 (2)178.8 (19)
O5—H5···O30.98 (3)1.53 (3)2.509 (2)177 (3)
O8—H8···O2iii1.02 (3)1.50 (3)2.518 (2)176 (3)
C2—H2···O60.932.293.024 (3)135.9
C3—H3···O8iv0.932.433.354 (3)175.5
C6—H6···O50.932.433.346 (3)168.8
C7—H7···O7v0.932.293.017 (3)134.4
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y1/2, z+1/2; (iii) x, y1, z; (iv) x+1, y+1/2, z+3/2; (v) x+2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant Nos. 10574047, 10574048 and 20490210. This work was also supported by the National 973 Project under grant. No. 2006CB921605.

References

First citationAakeröy, C. B., Fasulo, M. E. & Desper, J. (2007). Mol. Pharm. 4, 317–322.  Web of Science PubMed Google Scholar
First citationAakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439–448.  Web of Science CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChilds, S. L. & Hardcastle, K. I. (2007). Cryst. Growth Des. 7, 1291–1304.  Web of Science CSD CrossRef CAS Google Scholar
First citationChilds, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o607-o608
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds