metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Nitratotris(tri­phenyl­phosphine)copper(I) methanol solvate

aDepartment of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
*Correspondence e-mail: geds12@yahoo.com

(Received 7 January 2009; accepted 9 February 2009; online 13 February 2009)

The title compound, [Cu(NO3)(C18H15P)3]·CH3OH, is a methanol solvate derivative of nitratotris(triphenyl­phos­phine)copper(I). The complex crystallizes with three triphenyl­phosphine ligands coordinated to the copper centre, with an O—H⋯O hydrogen bond observed between the nitrate ligand and the methanol solvent mol­ecule. The coordination around the CuI centre is distorted tetrahedral.

Related literature

The title compound is structurally related to the ethanol solvate derivative (Dyason et al., 1986[Dyason, J. C., Engelhardt, L. M., Healy, P. C., Klich, H. L. & White, A. H. (1986). Aust. J. Chem. 39, 2003-2011.]). For related diketonato complexes, see: Hill & Steyl (2008[Hill, T. N. & Steyl, G. (2008). Acta Cryst. E64, m1580-m1581.]); Steyl & Roodt (2006[Steyl, G. & Roodt, A. (2006). S. Afr. J. Chem. 59, 21-27.]); Steyl (2007[Steyl, G. (2007). Acta Cryst. E63, m2613-m2614.]); Steyl & Hill (2009[Steyl, G. & Hill, T. N. (2009). Acta Cryst. E65, m233.]). For general background, see: Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.]); Crous et al. (2005[Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108-1115.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)(C18H15P)3]·CH4O

  • Mr = 944.40

  • Monoclinic, P 21 /n

  • a = 14.016 (2) Å

  • b = 23.015 (3) Å

  • c = 14.765 (2) Å

  • β = 92.569 (1)°

  • V = 4758.08 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 143 K

  • 0.16 × 0.14 × 0.12 mm

Data collection
  • Bruker APEXII 4K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.909, Tmax = 0.931

  • 60001 measured reflections

  • 10386 independent reflections

  • 7282 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.125

  • S = 1.07

  • 10386 reflections

  • 579 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu—O1 2.1503 (18)
Cu—P2 2.3070 (7)
Cu—P3 2.3321 (6)
Cu—P1 2.3397 (6)
O1—Cu—P2 109.78 (5)
O1—Cu—P3 95.11 (6)
P2—Cu—P3 113.80 (2)
O1—Cu—P1 98.21 (5)
P2—Cu—P1 121.70 (2)
P3—Cu—P1 113.24 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O01—H01⋯O2 0.84 2.03 2.835 (3) 159

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), is an example of a methanol solvate of a previously published ethanol solvate complex (Dyason et al., 1986). Both complexes crystallize in the P21/n space group with similar cell lengths and angles. The inclusion of a methanol solvate compared to a ethanol solvate molecule is best illustrated in the cell volume increase from 4758 to 4909 Å3.

The Cu—P bond distances differ from each other in the title compound, Table 1, with one triphenyl phosphine moiety (P2) being slightly closer to the copper metal centre compared to the remaining ligands. An intermolecular hydrogen bond is observed between the solvate molecule and the nitrato moiety coordinated to the copper centre, Table 2.

The ethanol complex (Dyason et al., 1986) is closely related to the title compound with only minor differences in bond lengths and angles. A similar hydrogen bond is observed between the solvate molecule and the nitrato moiety in each of these compounds. The O···O bond distance increases from 2.772 to 2.835 Å from the ethanol to the methanol solvate system.

Related literature top

The title compound is structurally related to the ethanol solvate derivative (Dyason et al., 1986). For related diketonato complexes, see: Hill & Steyl (2008); Steyl & Roodt (2006); Steyl (2007); Steyl & Hill (2009). For general background, see: Roodt et al. (2003); Crous et al. (2005).

Experimental top

The title complex was synthesised by recrystallizing the [Cu(PPh3)2NO3] complex from hot methanol. On slow evaporation of the solvent; yellow crystals suitable for X-Ray crystallography was obtained.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 (C aromatic) and 0.99 (methyl) Å and Uiso(H) = 1.2 times Ueq.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Representation of the title compound (I), showing the numbering scheme and displacement ellipsoids (50 % probability). For the carbon rings on the triphenylphosphine ligands, the first digit refers to phosphorous number, second digit to the ring number and third digit to atom in the ring. Hydrogen atoms omitted for clarity.
Nitratotris(triphenylphosphine)copper(I) methanol solvate top
Crystal data top
[Cu(NO3)(C18H15P)3]·CH4OF(000) = 1968
Mr = 944.40Dx = 1.318 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9106 reflections
a = 14.0160 (2) Åθ = 2.3–28.3°
b = 23.0150 (3) ŵ = 0.61 mm1
c = 14.7650 (2) ÅT = 143 K
β = 92.569 (1)°Cuboid, yellow
V = 4758.08 (11) Å30.16 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII 4K CCD area-detector
diffractometer
10386 independent reflections
Radiation source: fine-focus sealed tube7282 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 512 x 512 pixels mm-1θmax = 27.0°, θmin = 2.2°
ϕ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 2929
Tmin = 0.909, Tmax = 0.931l = 1818
60001 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0652P)2 + 1.3303P]
where P = (Fo2 + 2Fc2)/3
10386 reflections(Δ/σ)max < 0.001
579 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cu(NO3)(C18H15P)3]·CH4OV = 4758.08 (11) Å3
Mr = 944.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.0160 (2) ŵ = 0.61 mm1
b = 23.0150 (3) ÅT = 143 K
c = 14.7650 (2) Å0.16 × 0.14 × 0.12 mm
β = 92.569 (1)°
Data collection top
Bruker APEXII 4K CCD area-detector
diffractometer
10386 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
7282 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.931Rint = 0.045
60001 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.07Δρmax = 0.70 e Å3
10386 reflectionsΔρmin = 0.49 e Å3
579 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.648980 (19)0.639638 (12)0.721924 (18)0.02506 (9)
P10.68719 (4)0.66836 (3)0.57592 (4)0.02327 (14)
P20.49525 (4)0.64599 (3)0.77073 (4)0.02451 (14)
P30.76607 (4)0.66405 (3)0.83260 (4)0.02716 (15)
O10.69049 (14)0.54993 (8)0.71328 (13)0.0426 (5)
O20.70267 (14)0.46327 (8)0.76821 (16)0.0545 (6)
O30.58208 (14)0.51654 (9)0.79920 (14)0.0476 (5)
N0.65747 (16)0.50981 (9)0.76134 (15)0.0339 (5)
C1110.80233 (16)0.64237 (10)0.53885 (15)0.0242 (5)
C1240.7058 (2)0.86739 (12)0.5420 (2)0.0513 (8)
H1240.70910.90850.53660.062*
C2240.2713 (3)0.52621 (15)0.6295 (3)0.0669 (11)
H2240.22530.50250.59820.080*
C3160.7201 (2)0.58002 (13)0.9585 (2)0.0479 (7)
H3160.65610.58700.93730.057*
C2310.48468 (16)0.63742 (11)0.89305 (16)0.0278 (5)
C3210.88416 (17)0.67722 (11)0.78815 (16)0.0296 (5)
C1310.60777 (17)0.64440 (10)0.48089 (15)0.0255 (5)
C1150.94606 (19)0.65381 (13)0.4577 (2)0.0442 (7)
H1150.98840.67800.42620.053*
C3110.79398 (18)0.60965 (11)0.92032 (16)0.0318 (6)
C3320.69771 (17)0.77617 (11)0.85457 (17)0.0324 (6)
H3320.67630.77230.79290.039*
C1120.82424 (17)0.58383 (11)0.55058 (16)0.0294 (5)
H1120.78270.55950.58270.035*
C2110.43902 (16)0.71734 (10)0.75056 (15)0.0269 (5)
C3310.74432 (16)0.72969 (11)0.89767 (16)0.0283 (5)
C1320.64211 (19)0.61962 (12)0.40217 (16)0.0338 (6)
H1320.70890.61540.39600.041*
C2210.40535 (18)0.59655 (11)0.72002 (17)0.0319 (6)
C2160.35266 (18)0.73328 (12)0.78759 (18)0.0370 (6)
H2160.32260.70750.82760.044*
C1220.74845 (19)0.77996 (11)0.62032 (18)0.0349 (6)
H1220.78240.76100.66900.042*
C3120.8876 (2)0.59846 (13)0.95272 (18)0.0411 (7)
H3120.93930.61860.92760.049*
C2250.2474 (2)0.55510 (14)0.7067 (3)0.0621 (10)
H2250.18530.55090.72900.075*
C2120.48208 (18)0.75662 (11)0.69410 (16)0.0316 (6)
H2120.54100.74680.66870.038*
C1210.69420 (16)0.74698 (10)0.55818 (16)0.0267 (5)
C3260.92508 (18)0.63211 (13)0.73989 (17)0.0368 (6)
H3260.89160.59650.73110.044*
C1160.86462 (18)0.67765 (11)0.49296 (18)0.0347 (6)
H1160.85150.71790.48570.042*
C1130.90613 (18)0.56075 (11)0.51586 (18)0.0356 (6)
H1130.92100.52090.52500.043*
C1330.5789 (2)0.60125 (13)0.33334 (18)0.0421 (7)
H1330.60280.58440.28010.050*
C2220.4288 (2)0.56572 (11)0.64328 (18)0.0419 (7)
H2220.49160.56810.62190.050*
C1250.6523 (2)0.83553 (13)0.4786 (2)0.0507 (8)
H1250.61980.85480.42940.061*
C1360.50933 (18)0.65097 (12)0.48728 (17)0.0340 (6)
H1360.48470.66840.53970.041*
C1140.96614 (19)0.59556 (12)0.4680 (2)0.0414 (7)
H1141.02110.57940.44220.050*
C3220.93414 (18)0.72892 (12)0.79913 (17)0.0353 (6)
H3220.90720.75990.83190.042*
C3241.0635 (2)0.69100 (16)0.71702 (19)0.0497 (8)
H3241.12520.69550.69370.060*
C3231.02253 (19)0.73598 (14)0.76306 (19)0.0431 (7)
H3231.05520.77200.77000.052*
C2150.3105 (2)0.78637 (13)0.7665 (2)0.0449 (7)
H2150.25120.79640.79110.054*
C1340.4815 (2)0.60707 (12)0.34115 (18)0.0409 (7)
H1340.43850.59380.29400.049*
C1350.44731 (19)0.63221 (13)0.41747 (19)0.0409 (7)
H1350.38040.63680.42260.049*
C3340.7111 (2)0.83285 (13)0.9899 (2)0.0438 (7)
H3340.69950.86791.02170.053*
C2140.3545 (2)0.82457 (12)0.7097 (2)0.0464 (7)
H2140.32550.86090.69510.056*
C3330.68171 (18)0.82795 (12)0.8992 (2)0.0395 (6)
H3330.65120.85950.86830.047*
C2130.4401 (2)0.81017 (12)0.67419 (19)0.0426 (7)
H2130.47080.83680.63590.051*
C1260.64584 (19)0.77566 (12)0.48651 (19)0.0391 (6)
H1260.60840.75410.44310.047*
C1230.7541 (2)0.83983 (12)0.6128 (2)0.0448 (7)
H1230.79100.86170.65630.054*
C3360.77430 (19)0.73630 (12)0.98842 (17)0.0375 (6)
H3360.80700.70541.01920.045*
C2260.31446 (19)0.59069 (13)0.7526 (2)0.0454 (7)
H2260.29790.61080.80580.054*
C3251.0142 (2)0.63923 (14)0.7049 (2)0.0459 (7)
H3251.04180.60840.67230.055*
C3130.9051 (2)0.55805 (14)1.02142 (19)0.0483 (8)
H3130.96880.55051.04280.058*
C2320.46013 (18)0.58494 (12)0.93197 (18)0.0381 (6)
H2320.44200.55290.89440.046*
C2360.51236 (19)0.68329 (13)0.94916 (17)0.0381 (6)
H2360.53050.71920.92310.046*
C2230.3604 (3)0.53138 (13)0.5977 (2)0.0601 (9)
H2230.37610.51150.54400.072*
C2350.5140 (2)0.67760 (16)1.0430 (2)0.0543 (8)
H2350.53210.70951.08080.065*
C3350.7569 (2)0.78753 (13)1.03417 (19)0.0440 (7)
H3350.77660.79131.09630.053*
C2330.4620 (2)0.57908 (15)1.0260 (2)0.0501 (8)
H2330.44460.54321.05240.060*
C3140.8304 (3)0.52900 (14)1.0585 (2)0.0565 (9)
H3140.84250.50141.10540.068*
C2340.4890 (2)0.62522 (18)1.0805 (2)0.0587 (9)
H2340.49050.62091.14450.070*
C3150.7387 (3)0.53994 (15)1.0278 (2)0.0629 (10)
H3150.68720.52011.05380.075*
O010.88218 (16)0.46711 (12)0.68724 (15)0.0648 (6)
H010.82620.47360.70280.097*
C010.9416 (3)0.4603 (2)0.7637 (3)0.0824 (12)
H01A1.00770.45580.74580.124*
H01B0.92250.42570.79700.124*
H01C0.93690.49460.80270.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.02526 (16)0.02543 (16)0.02440 (16)0.00043 (12)0.00013 (12)0.00087 (11)
P10.0239 (3)0.0232 (3)0.0227 (3)0.0005 (2)0.0004 (2)0.0001 (2)
P20.0247 (3)0.0264 (3)0.0224 (3)0.0005 (2)0.0009 (2)0.0006 (2)
P30.0256 (3)0.0297 (3)0.0258 (3)0.0007 (3)0.0028 (2)0.0002 (3)
O10.0506 (12)0.0282 (10)0.0504 (12)0.0031 (9)0.0178 (9)0.0087 (9)
O20.0473 (12)0.0289 (10)0.0873 (16)0.0077 (9)0.0029 (11)0.0159 (10)
O30.0456 (12)0.0458 (12)0.0526 (12)0.0012 (9)0.0158 (10)0.0115 (10)
N0.0362 (12)0.0271 (12)0.0382 (12)0.0005 (10)0.0001 (10)0.0029 (9)
C1110.0233 (11)0.0271 (12)0.0223 (11)0.0010 (10)0.0009 (9)0.0017 (9)
C1240.0514 (19)0.0226 (14)0.081 (2)0.0014 (13)0.0130 (17)0.0052 (14)
C2240.074 (3)0.0410 (19)0.081 (3)0.0160 (18)0.042 (2)0.0059 (18)
C3160.0402 (16)0.0503 (18)0.0519 (18)0.0091 (14)0.0103 (14)0.0147 (14)
C2310.0221 (12)0.0379 (14)0.0236 (12)0.0016 (10)0.0037 (9)0.0042 (10)
C3210.0255 (12)0.0387 (14)0.0241 (12)0.0005 (11)0.0039 (10)0.0006 (10)
C1310.0304 (13)0.0237 (12)0.0226 (11)0.0004 (10)0.0018 (10)0.0028 (9)
C1150.0307 (14)0.0436 (17)0.0596 (19)0.0028 (12)0.0181 (13)0.0124 (14)
C3110.0342 (14)0.0318 (14)0.0290 (13)0.0015 (11)0.0039 (11)0.0001 (10)
C3320.0268 (13)0.0389 (15)0.0316 (13)0.0005 (11)0.0012 (10)0.0008 (11)
C1120.0296 (13)0.0280 (13)0.0307 (13)0.0017 (10)0.0014 (10)0.0013 (10)
C2110.0265 (12)0.0276 (13)0.0259 (12)0.0008 (10)0.0049 (10)0.0015 (10)
C3310.0238 (12)0.0308 (13)0.0304 (13)0.0025 (10)0.0013 (10)0.0020 (10)
C1320.0349 (14)0.0385 (14)0.0277 (13)0.0023 (12)0.0014 (11)0.0038 (11)
C2210.0328 (14)0.0260 (13)0.0363 (14)0.0033 (11)0.0061 (11)0.0029 (11)
C2160.0370 (15)0.0365 (15)0.0379 (15)0.0036 (12)0.0048 (12)0.0038 (12)
C1220.0411 (15)0.0305 (14)0.0332 (14)0.0041 (12)0.0028 (11)0.0002 (11)
C3120.0375 (15)0.0481 (17)0.0367 (15)0.0036 (13)0.0076 (12)0.0053 (12)
C2250.0368 (17)0.0452 (19)0.102 (3)0.0100 (15)0.0191 (18)0.0133 (19)
C2120.0348 (14)0.0311 (14)0.0290 (13)0.0008 (11)0.0015 (11)0.0016 (10)
C1210.0274 (12)0.0239 (12)0.0294 (12)0.0010 (10)0.0075 (10)0.0013 (10)
C3260.0319 (14)0.0475 (17)0.0307 (14)0.0022 (12)0.0014 (11)0.0048 (12)
C1160.0304 (13)0.0288 (13)0.0455 (15)0.0030 (11)0.0057 (11)0.0041 (11)
C1130.0332 (14)0.0277 (13)0.0461 (15)0.0071 (11)0.0041 (12)0.0023 (11)
C1330.0520 (18)0.0449 (17)0.0288 (14)0.0029 (14)0.0031 (12)0.0045 (12)
C2220.0574 (18)0.0295 (14)0.0379 (15)0.0071 (13)0.0070 (13)0.0003 (11)
C1250.0468 (17)0.0388 (17)0.066 (2)0.0064 (14)0.0029 (15)0.0189 (15)
C1360.0281 (13)0.0454 (16)0.0286 (13)0.0024 (11)0.0021 (10)0.0002 (11)
C1140.0290 (14)0.0411 (16)0.0553 (18)0.0080 (12)0.0130 (13)0.0032 (13)
C3220.0339 (14)0.0385 (15)0.0333 (14)0.0008 (12)0.0015 (11)0.0028 (11)
C3240.0304 (15)0.081 (2)0.0378 (16)0.0006 (15)0.0052 (12)0.0010 (16)
C3230.0325 (15)0.0550 (19)0.0416 (16)0.0104 (13)0.0015 (12)0.0056 (14)
C2150.0403 (16)0.0460 (17)0.0483 (17)0.0149 (14)0.0002 (13)0.0113 (14)
C1340.0425 (16)0.0422 (16)0.0365 (15)0.0084 (13)0.0146 (12)0.0025 (12)
C1350.0269 (14)0.0537 (18)0.0414 (16)0.0059 (12)0.0053 (12)0.0072 (13)
C3340.0380 (15)0.0426 (17)0.0515 (18)0.0018 (13)0.0099 (13)0.0162 (14)
C2140.0579 (19)0.0321 (15)0.0480 (17)0.0135 (14)0.0103 (15)0.0036 (13)
C3330.0304 (14)0.0352 (15)0.0535 (17)0.0027 (12)0.0098 (12)0.0006 (13)
C2130.0579 (19)0.0305 (14)0.0386 (15)0.0007 (13)0.0061 (14)0.0030 (12)
C1260.0375 (15)0.0367 (15)0.0427 (16)0.0015 (12)0.0037 (12)0.0059 (12)
C1230.0494 (17)0.0307 (15)0.0547 (18)0.0079 (13)0.0071 (14)0.0060 (13)
C3360.0403 (15)0.0431 (16)0.0289 (13)0.0021 (12)0.0001 (11)0.0022 (11)
C2260.0325 (15)0.0419 (16)0.0614 (19)0.0019 (13)0.0022 (14)0.0007 (14)
C3250.0341 (15)0.065 (2)0.0385 (16)0.0145 (14)0.0016 (12)0.0098 (14)
C3130.0501 (18)0.0501 (18)0.0433 (16)0.0129 (15)0.0130 (14)0.0027 (14)
C2320.0334 (14)0.0414 (16)0.0402 (15)0.0023 (12)0.0087 (12)0.0108 (12)
C2360.0392 (15)0.0480 (17)0.0274 (13)0.0018 (13)0.0040 (11)0.0033 (12)
C2230.090 (3)0.0376 (17)0.0505 (19)0.0110 (17)0.0200 (19)0.0087 (14)
C2350.0549 (19)0.078 (2)0.0306 (15)0.0007 (17)0.0022 (14)0.0108 (15)
C3350.0457 (17)0.0538 (18)0.0325 (15)0.0031 (14)0.0013 (13)0.0116 (13)
C2330.0452 (17)0.065 (2)0.0409 (17)0.0058 (15)0.0136 (14)0.0273 (16)
C3140.079 (2)0.0412 (18)0.0476 (18)0.0019 (17)0.0165 (17)0.0132 (14)
C2340.0519 (19)0.097 (3)0.0274 (15)0.0098 (19)0.0061 (14)0.0106 (17)
C3150.060 (2)0.061 (2)0.066 (2)0.0217 (17)0.0134 (17)0.0295 (18)
O010.0563 (14)0.0808 (18)0.0577 (14)0.0180 (14)0.0077 (11)0.0099 (12)
C010.075 (3)0.083 (3)0.088 (3)0.018 (2)0.017 (2)0.005 (2)
Geometric parameters (Å, º) top
Cu—O12.1503 (18)C121—C1261.397 (3)
Cu—P22.3070 (7)C326—C3251.383 (4)
Cu—P32.3321 (6)C326—H3260.9500
Cu—P12.3397 (6)C116—H1160.9500
P1—C1111.828 (2)C113—C1141.379 (4)
P1—C1211.832 (2)C113—H1130.9500
P1—C1311.836 (2)C133—C1341.382 (4)
P2—C2311.829 (2)C133—H1330.9500
P2—C2211.833 (2)C222—C2231.392 (4)
P2—C2111.840 (2)C222—H2220.9500
P3—C3311.823 (2)C125—C1261.386 (4)
P3—C3111.831 (3)C125—H1250.9500
P3—C3211.833 (3)C136—C1351.387 (4)
O1—N1.265 (3)C136—H1360.9500
O2—N1.246 (3)C114—H1140.9500
O3—N1.227 (3)C322—C3231.380 (4)
C111—C1161.391 (3)C322—H3220.9500
C111—C1121.391 (3)C324—C3231.378 (4)
C124—C1231.375 (4)C324—C3251.385 (4)
C124—C1251.383 (5)C324—H3240.9500
C124—H1240.9500C323—H3230.9500
C224—C2231.359 (5)C215—C2141.380 (4)
C224—C2251.374 (5)C215—H2150.9500
C224—H2240.9500C134—C1351.372 (4)
C316—C3111.381 (4)C134—H1340.9500
C316—C3151.393 (4)C135—H1350.9500
C316—H3160.9500C334—C3351.374 (4)
C231—C2361.387 (4)C334—C3331.388 (4)
C231—C2321.387 (3)C334—H3340.9500
C321—C3221.387 (4)C214—C2131.371 (4)
C321—C3261.397 (4)C214—H2140.9500
C131—C1361.395 (3)C333—H3330.9500
C131—C1321.399 (3)C213—H2130.9500
C115—C1141.377 (4)C126—H1260.9500
C115—C1161.388 (4)C123—H1230.9500
C115—H1150.9500C336—C3351.386 (4)
C311—C3121.400 (3)C336—H3360.9500
C332—C3331.385 (4)C226—H2260.9500
C332—C3311.392 (3)C325—H3250.9500
C332—H3320.9500C313—C3141.377 (5)
C112—C1131.384 (3)C313—H3130.9500
C112—H1120.9500C232—C2331.394 (4)
C211—C2121.386 (3)C232—H2320.9500
C211—C2161.399 (3)C236—C2351.391 (4)
C331—C3361.394 (3)C236—H2360.9500
C132—C1331.384 (4)C223—H2230.9500
C132—H1320.9500C235—C2341.378 (5)
C221—C2261.388 (4)C235—H2350.9500
C221—C2221.389 (4)C335—H3350.9500
C216—C2151.387 (4)C233—C2341.375 (5)
C216—H2160.9500C233—H2330.9500
C122—C1231.385 (4)C314—C3151.367 (5)
C122—C1211.391 (3)C314—H3140.9500
C122—H1220.9500C234—H2340.9500
C312—C3131.390 (4)C315—H3150.9500
C312—H3120.9500O01—C011.382 (4)
C225—C2261.398 (4)O01—H010.8400
C225—H2250.9500C01—H01A0.9800
C212—C2131.391 (4)C01—H01B0.9800
C212—H2120.9500C01—H01C0.9800
O1—Cu—P2109.78 (5)C112—C113—H113119.9
O1—Cu—P395.11 (6)C134—C133—C132120.7 (3)
P2—Cu—P3113.80 (2)C134—C133—H133119.6
O1—Cu—P198.21 (5)C132—C133—H133119.6
P2—Cu—P1121.70 (2)C221—C222—C223120.1 (3)
P3—Cu—P1113.24 (2)C221—C222—H222119.9
C111—P1—C121103.11 (11)C223—C222—H222119.9
C111—P1—C131100.72 (11)C124—C125—C126120.4 (3)
C121—P1—C131102.82 (10)C124—C125—H125119.8
C111—P1—Cu115.16 (8)C126—C125—H125119.8
C121—P1—Cu115.26 (8)C135—C136—C131120.3 (2)
C131—P1—Cu117.59 (8)C135—C136—H136119.8
C231—P2—C221104.58 (12)C131—C136—H136119.8
C231—P2—C211101.71 (11)C115—C114—C113119.7 (2)
C221—P2—C211101.91 (11)C115—C114—H114120.1
C231—P2—Cu114.81 (8)C113—C114—H114120.1
C221—P2—Cu117.89 (9)C323—C322—C321120.9 (3)
C211—P2—Cu113.91 (8)C323—C322—H322119.6
C331—P3—C311103.25 (11)C321—C322—H322119.6
C331—P3—C321103.10 (11)C323—C324—C325119.6 (3)
C311—P3—C321101.46 (11)C323—C324—H324120.2
C331—P3—Cu116.09 (8)C325—C324—H324120.2
C311—P3—Cu116.89 (8)C324—C323—C322120.2 (3)
C321—P3—Cu114.04 (8)C324—C323—H323119.9
N—O1—Cu124.12 (16)C322—C323—H323119.9
O3—N—O2121.1 (2)C214—C215—C216120.0 (3)
O3—N—O1120.5 (2)C214—C215—H215120.0
O2—N—O1118.4 (2)C216—C215—H215120.0
C116—C111—C112119.1 (2)C135—C134—C133119.5 (2)
C116—C111—P1122.47 (18)C135—C134—H134120.3
C112—C111—P1118.21 (18)C133—C134—H134120.3
C123—C124—C125120.2 (3)C134—C135—C136120.7 (3)
C123—C124—H124119.9C134—C135—H135119.6
C125—C124—H124119.9C136—C135—H135119.6
C223—C224—C225120.4 (3)C335—C334—C333120.6 (3)
C223—C224—H224119.8C335—C334—H334119.7
C225—C224—H224119.8C333—C334—H334119.7
C311—C316—C315120.5 (3)C213—C214—C215120.1 (3)
C311—C316—H316119.8C213—C214—H214120.0
C315—C316—H316119.8C215—C214—H214120.0
C236—C231—C232118.9 (2)C332—C333—C334118.8 (3)
C236—C231—P2118.35 (19)C332—C333—H333120.6
C232—C231—P2122.4 (2)C334—C333—H333120.6
C322—C321—C326118.7 (2)C214—C213—C212120.1 (3)
C322—C321—P3124.0 (2)C214—C213—H213119.9
C326—C321—P3117.2 (2)C212—C213—H213119.9
C136—C131—C132118.6 (2)C125—C126—C121120.1 (3)
C136—C131—P1118.90 (18)C125—C126—H126119.9
C132—C131—P1122.53 (18)C121—C126—H126119.9
C114—C115—C116120.7 (3)C124—C123—C122119.5 (3)
C114—C115—H115119.6C124—C123—H123120.3
C116—C115—H115119.6C122—C123—H123120.3
C316—C311—C312118.5 (2)C335—C336—C331120.6 (3)
C316—C311—P3119.08 (19)C335—C336—H336119.7
C312—C311—P3122.3 (2)C331—C336—H336119.7
C333—C332—C331121.7 (2)C221—C226—C225119.8 (3)
C333—C332—H332119.1C221—C226—H226120.1
C331—C332—H332119.1C225—C226—H226120.1
C113—C112—C111120.5 (2)C326—C325—C324120.5 (3)
C113—C112—H112119.7C326—C325—H325119.8
C111—C112—H112119.7C324—C325—H325119.8
C212—C211—C216118.1 (2)C314—C313—C312120.1 (3)
C212—C211—P2118.98 (18)C314—C313—H313119.9
C216—C211—P2122.85 (19)C312—C313—H313119.9
C332—C331—C336118.1 (2)C231—C232—C233120.2 (3)
C332—C331—P3118.80 (18)C231—C232—H232119.9
C336—C331—P3123.1 (2)C233—C232—H232119.9
C133—C132—C131120.1 (2)C231—C236—C235121.0 (3)
C133—C132—H132119.9C231—C236—H236119.5
C131—C132—H132119.9C235—C236—H236119.5
C226—C221—C222119.1 (2)C224—C223—C222120.4 (3)
C226—C221—P2122.9 (2)C224—C223—H223119.8
C222—C221—P2117.9 (2)C222—C223—H223119.8
C215—C216—C211120.7 (3)C234—C235—C236119.3 (3)
C215—C216—H216119.6C234—C235—H235120.3
C211—C216—H216119.6C236—C235—H235120.3
C123—C122—C121121.4 (3)C334—C335—C336120.2 (3)
C123—C122—H122119.3C334—C335—H335119.9
C121—C122—H122119.3C336—C335—H335119.9
C313—C312—C311120.3 (3)C234—C233—C232120.0 (3)
C313—C312—H312119.8C234—C233—H233120.0
C311—C312—H312119.8C232—C233—H233120.0
C224—C225—C226120.1 (3)C315—C314—C313120.0 (3)
C224—C225—H225119.9C315—C314—H314120.0
C226—C225—H225119.9C313—C314—H314120.0
C211—C212—C213120.9 (2)C233—C234—C235120.6 (3)
C211—C212—H212119.6C233—C234—H234119.7
C213—C212—H212119.6C235—C234—H234119.7
C122—C121—C126118.3 (2)C314—C315—C316120.5 (3)
C122—C121—P1118.44 (18)C314—C315—H315119.7
C126—C121—P1123.22 (19)C316—C315—H315119.7
C325—C326—C321120.1 (3)C01—O01—H01109.5
C325—C326—H326120.0O01—C01—H01A109.5
C321—C326—H326120.0O01—C01—H01B109.5
C115—C116—C111119.8 (2)H01A—C01—H01B109.5
C115—C116—H116120.1O01—C01—H01C109.5
C111—C116—H116120.1H01A—C01—H01C109.5
C114—C113—C112120.1 (2)H01B—C01—H01C109.5
C114—C113—H113119.9
O1—Cu—P1—C11144.63 (10)Cu—P3—C331—C336147.10 (19)
P2—Cu—P1—C111164.03 (8)C136—C131—C132—C1331.2 (4)
P3—Cu—P1—C11154.58 (9)P1—C131—C132—C133178.7 (2)
O1—Cu—P1—C121164.54 (10)C231—P2—C221—C22641.8 (2)
P2—Cu—P1—C12176.06 (9)C211—P2—C221—C22663.8 (2)
P3—Cu—P1—C12165.34 (9)Cu—P2—C221—C226170.72 (19)
O1—Cu—P1—C13173.89 (10)C231—P2—C221—C222141.0 (2)
P2—Cu—P1—C13145.51 (9)C211—P2—C221—C222113.3 (2)
P3—Cu—P1—C131173.09 (9)Cu—P2—C221—C22212.1 (2)
O1—Cu—P2—C23179.69 (11)C212—C211—C216—C2151.5 (4)
P3—Cu—P2—C23125.50 (10)P2—C211—C216—C215176.5 (2)
P1—Cu—P2—C231166.70 (9)C316—C311—C312—C3130.4 (4)
O1—Cu—P2—C22144.25 (11)P3—C311—C312—C313178.0 (2)
P3—Cu—P2—C221149.45 (9)C223—C224—C225—C2260.8 (5)
P1—Cu—P2—C22169.35 (10)C216—C211—C212—C2130.6 (4)
O1—Cu—P2—C211163.59 (10)P2—C211—C212—C213177.49 (19)
P3—Cu—P2—C21191.21 (8)C123—C122—C121—C1260.8 (4)
P1—Cu—P2—C21149.98 (9)C123—C122—C121—P1177.7 (2)
O1—Cu—P3—C331159.83 (10)C111—P1—C121—C12276.8 (2)
P2—Cu—P3—C33145.58 (9)C131—P1—C121—C122178.80 (19)
P1—Cu—P3—C33198.95 (9)Cu—P1—C121—C12249.6 (2)
O1—Cu—P3—C31137.52 (11)C111—P1—C121—C126104.8 (2)
P2—Cu—P3—C31176.73 (10)C131—P1—C121—C1260.4 (2)
P1—Cu—P3—C311138.73 (10)Cu—P1—C121—C126128.8 (2)
O1—Cu—P3—C32180.52 (10)C322—C321—C326—C3250.7 (4)
P2—Cu—P3—C321165.23 (9)P3—C321—C326—C325179.7 (2)
P1—Cu—P3—C32120.69 (10)C114—C115—C116—C1110.2 (4)
P2—Cu—O1—N27.8 (2)C112—C111—C116—C1151.6 (4)
P3—Cu—O1—N89.75 (19)P1—C111—C116—C115172.9 (2)
P1—Cu—O1—N155.85 (18)C111—C112—C113—C1141.0 (4)
Cu—O1—N—O319.2 (3)C131—C132—C133—C1340.0 (4)
Cu—O1—N—O2161.71 (18)C226—C221—C222—C2232.7 (4)
C121—P1—C111—C11610.8 (2)P2—C221—C222—C223174.5 (2)
C131—P1—C111—C11695.2 (2)C123—C124—C125—C1260.9 (5)
Cu—P1—C111—C116137.20 (19)C132—C131—C136—C1351.2 (4)
C121—P1—C111—C112174.68 (18)P1—C131—C136—C135178.7 (2)
C131—P1—C111—C11279.3 (2)C116—C115—C114—C1131.8 (5)
Cu—P1—C111—C11248.3 (2)C112—C113—C114—C1152.4 (4)
C221—P2—C231—C236154.1 (2)C326—C321—C322—C3230.1 (4)
C211—P2—C231—C23648.3 (2)P3—C321—C322—C323179.4 (2)
Cu—P2—C231—C23675.2 (2)C325—C324—C323—C3221.9 (4)
C221—P2—C231—C23233.1 (2)C321—C322—C323—C3241.4 (4)
C211—P2—C231—C232138.9 (2)C211—C216—C215—C2141.2 (4)
Cu—P2—C231—C23297.6 (2)C132—C133—C134—C1351.0 (4)
C331—P3—C321—C3225.1 (2)C133—C134—C135—C1361.0 (4)
C311—P3—C321—C322111.8 (2)C131—C136—C135—C1340.1 (4)
Cu—P3—C321—C322121.6 (2)C216—C215—C214—C2130.1 (4)
C331—P3—C321—C326175.31 (19)C331—C332—C333—C3341.5 (4)
C311—P3—C321—C32668.6 (2)C335—C334—C333—C3321.2 (4)
Cu—P3—C321—C32657.9 (2)C215—C214—C213—C2121.1 (4)
C111—P1—C131—C136173.54 (19)C211—C212—C213—C2140.7 (4)
C121—P1—C131—C13680.2 (2)C124—C125—C126—C1210.7 (5)
Cu—P1—C131—C13647.6 (2)C122—C121—C126—C1250.2 (4)
C111—P1—C131—C1326.3 (2)P1—C121—C126—C125178.2 (2)
C121—P1—C131—C13299.9 (2)C125—C124—C123—C1220.2 (5)
Cu—P1—C131—C132132.27 (19)C121—C122—C123—C1240.6 (4)
C315—C316—C311—C3120.1 (5)C332—C331—C336—C3350.8 (4)
C315—C316—C311—P3177.6 (3)P3—C331—C336—C335179.1 (2)
C331—P3—C311—C31685.7 (2)C222—C221—C226—C2251.5 (4)
C321—P3—C311—C316167.7 (2)P2—C221—C226—C225175.6 (2)
Cu—P3—C311—C31643.0 (3)C224—C225—C226—C2210.3 (5)
C331—P3—C311—C31291.8 (2)C321—C326—C325—C3240.2 (4)
C321—P3—C311—C31214.8 (2)C323—C324—C325—C3261.1 (4)
Cu—P3—C311—C312139.4 (2)C311—C312—C313—C3140.4 (5)
C116—C111—C112—C1131.0 (4)C236—C231—C232—C2331.0 (4)
P1—C111—C112—C113173.72 (19)P2—C231—C232—C233173.8 (2)
C231—P2—C211—C212136.60 (19)C232—C231—C236—C2351.2 (4)
C221—P2—C211—C212115.6 (2)P2—C231—C236—C235174.3 (2)
Cu—P2—C211—C21212.5 (2)C225—C224—C223—C2220.4 (5)
C231—P2—C211—C21645.4 (2)C221—C222—C223—C2242.2 (5)
C221—P2—C211—C21662.4 (2)C231—C236—C235—C2341.0 (5)
Cu—P2—C211—C216169.52 (18)C333—C334—C335—C3360.1 (4)
C333—C332—C331—C3360.6 (4)C331—C336—C335—C3341.1 (4)
C333—C332—C331—P3177.87 (19)C231—C232—C233—C2340.6 (4)
C311—P3—C331—C332163.81 (19)C312—C313—C314—C3150.0 (5)
C321—P3—C331—C33290.9 (2)C232—C233—C234—C2350.3 (5)
Cu—P3—C331—C33234.6 (2)C236—C235—C234—C2330.5 (5)
C311—P3—C331—C33617.8 (2)C313—C314—C315—C3160.5 (5)
C321—P3—C331—C33687.5 (2)C311—C316—C315—C3140.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O01—H01···O20.842.032.835 (3)159

Experimental details

Crystal data
Chemical formula[Cu(NO3)(C18H15P)3]·CH4O
Mr944.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)143
a, b, c (Å)14.0160 (2), 23.0150 (3), 14.7650 (2)
β (°) 92.569 (1)
V3)4758.08 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.16 × 0.14 × 0.12
Data collection
DiffractometerBruker APEXII 4K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.909, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
60001, 10386, 7282
Rint0.045
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.07
No. of reflections10386
No. of parameters579
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.49

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006).

Selected geometric parameters (Å, º) top
Cu—O12.1503 (18)Cu—P32.3321 (6)
Cu—P22.3070 (7)Cu—P12.3397 (6)
O1—Cu—P2109.78 (5)O1—Cu—P198.21 (5)
O1—Cu—P395.11 (6)P2—Cu—P1121.70 (2)
P2—Cu—P3113.80 (2)P3—Cu—P1113.24 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O01—H01···O20.842.032.835 (3)159.0
 

Acknowledgements

Financial assistance from the University of the Free State and Professor A. Roodt is gratefully acknowledged. Mr L. Kirsten is acknowledged for the the data collection. Part of this material is based on work supported by the South African National Research Foundation (NRF) under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the NRF.

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108–1115.  Web of Science CSD CrossRef Google Scholar
First citationDyason, J. C., Engelhardt, L. M., Healy, P. C., Klich, H. L. & White, A. H. (1986). Aust. J. Chem. 39, 2003–2011.  CSD CrossRef CAS Google Scholar
First citationHill, T. N. & Steyl, G. (2008). Acta Cryst. E64, m1580–m1581.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteyl, G. (2007). Acta Cryst. E63, m2613–m2614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSteyl, G. & Hill, T. N. (2009). Acta Cryst. E65, m233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSteyl, G. & Roodt, A. (2006). S. Afr. J. Chem. 59, 21–27.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds