organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Amino­guanidinium hydrogen succinate

aDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, bDepartment of Physics, S. M. K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and dDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 13 January 2009; accepted 29 January 2009; online 4 February 2009)

The title compound, CH7N4+·C4H5O4, is a molecular salt containing discrete amino­guanidinium and succinate ions. The amino­guanidinium cation is nearly planar, with a maximum deviation of 0.035 (1) Å. The dihedral angle between the amino­guanidinium cation and the succinate anion is 3.35 (6)°. The crystal packing exhibits inter­molecular N—H⋯O and O—H⋯·O hydrogen bonds.

Related literature

For related structures, see: Adams (1977[Adams, J. M. (1977). Acta Cryst. B33, 1513-1515.]); Mullen & Hellner (1978[Mullen, D. & Hellner, E. (1978). Acta Cryst. B34, 2789-2794.]); Akella & Keszler (1994[Akella, A. & Keszler, D. A. (1994). Acta Cryst. C50, 1974-1976.]). For biological applications of amino­guanadine, see: Makita et al. (1995[Makita, Z., Yanagisawa, K. & Kuwajima, S. (1995). J. Diabetes Complications, 9, 265-268.]); Brownlee et al. (1986[Brownlee, M., Vlassara, H. & Cerami, A. (1986). In Diabetic Complications and Scientific and Clinical Aspects. London: Pitman.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • CH7N4+·C4H5O4

  • Mr = 192.19

  • Monoclinic, C 2/c

  • a = 15.071 (5) Å

  • b = 6.565 (2) Å

  • c = 18.152 (5) Å

  • β = 109.733 (5)°

  • V = 1690.5 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 (2) K

  • 0.25 × 0.16 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.980

  • 11302 measured reflections

  • 2773 independent reflections

  • 2107 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.135

  • S = 1.05

  • 2773 reflections

  • 146 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10B⋯O9 0.87 (2) 1.99 (2) 2.851 (1) 171 (2)
N11—H11⋯O8 0.88 (2) 2.07 (2) 2.939 (1) 166 (1)
N12—H12B⋯O6i 0.85 (2) 2.07 (2) 2.921 (1) 178 (2)
N10—H10A⋯O7i 0.84 (2) 2.05 (2) 2.886 (1) 178 (2)
O6—H6⋯O8ii 0.82 1.65 2.456 (1) 167
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Aminoguanadine is an early inhibitor of Advanced Glycosylation End products (AGEs) (Makita et al., 1995). It helps prevent proteins cross-linking and is being used in diabetes, atherosclerosis, renal and aging disorders (Brownlee et al., 1986). Aminoguanadine is a highly reactive nucleophilic reagent that reacts with many biological molecules (Pyridoxal phosphate, Pyruvate, glucose, malondialdehyde, and others). The crystal structures of several guanidinium salts have previously been reported over the last three decades (Adams, 1977; Mullen & Hellner, 1978). Here We report the crystal structure of the title compound, aminoguanidinium hydrogensuccinate (I) (Fig. 1).

The aminoguanidinium is nearly planar, with atom N11 shows the maximum deviation from planarity 0.035 (1) Å. The bond lengths in (I) are normal and comparable with the corresponding values observed in the related structure (Akella & Keszler, 1994). The dihedral angle between the aminoguanidinium cation and succinate anion is 3.35 (6)°. Two main motifs dominate the hydrogen bond in (I). Firstly, a nearly symmetrical simple R22(8) ring (Bernstein et al., 1995) forms from hydrogen bond between the two molecules involving the two guanidinium amino groups and the two succinate O atoms, viz. N10—H10B···O9 and N11—H11···O8 (Table 1 and Fig. 2). Secondly, atom N12 and N10 in the molecule at (x, y, z) donate one proton each to atom O6 and O7 in the molecule at (-1/2 + x, 1/2 - y, -1/2 + z), generating R22(8) ring motif (Table 1 and Fig. 2). Also, the O—H···O interaction is observed (Table 1). Thus, the symmetry-related molecules are cross linked by these hydrogen bonds to generate a three-dimensional network.

Related literature top

For related structures, see: Adams (1977); Mullen & Hellner (1978); Akella & Keszler (1994). For biological applications of aminoguanadine, see: Makita et al. (1995); Brownlee et al. (1986). For graph-set notation, see: Bernstein et al. (1995). [Please check rephrasing]

Experimental top

Aminoguanidine bicarbonate (0.136 g; 0.001 mol) was added in small portions with stirring to an aqueous solution (30 ml) of succinic acid (0.118 g; 0.001 mol). The resulting clear solution of pH<2 was concentrated over water-bath to half of its volume. The transparent single crystals suitable for X-ray diffraction obtained by slow evaporation at room temperature were separated, washed with ethanol and air dried.

Refinement top

All N bound H atoms were located in a difference map and refined freely. All other H atoms were fixed geometrically and allowed to ride on their parent atoms, with O—H = 0.82 Å and C—H = 0.97 Å with Uiso(H)=

1.2Ueq.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. N—H···O and O—H···O hydrogen bonds (dotted lines) in the title compound. [Symmetry code: (i) x - 1/2, -y + 1/2, z - 1/2; (ii) x, y - 1, z].
Aminoguanidinium hydrogen succinate top
Crystal data top
CH7N4+·C4H5O4F(000) = 816
Mr = 192.19Dx = 1.510 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 2773 reflections
a = 15.071 (5) Åθ = 2.4–31.4°
b = 6.565 (2) ŵ = 0.13 mm1
c = 18.152 (5) ÅT = 293 K
β = 109.733 (5)°Block, colourless
V = 1690.5 (9) Å30.25 × 0.16 × 0.16 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
2773 independent reflections
Radiation source: fine-focus sealed tube2107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.0 pixels mm-1θmax = 31.4°, θmin = 2.4°
ω scansh = 2221
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 99
Tmin = 0.968, Tmax = 0.980l = 2526
11302 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0746P)2 + 0.4733P]
where P = (Fo2 + 2Fc2)/3
2773 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
CH7N4+·C4H5O4V = 1690.5 (9) Å3
Mr = 192.19Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.071 (5) ŵ = 0.13 mm1
b = 6.565 (2) ÅT = 293 K
c = 18.152 (5) Å0.25 × 0.16 × 0.16 mm
β = 109.733 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2773 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2107 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.980Rint = 0.021
11302 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.37 e Å3
2773 reflectionsΔρmin = 0.27 e Å3
146 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H12A0.1707 (12)1.015 (3)0.2850 (10)0.053 (5)*
H12B0.1337 (11)0.802 (3)0.2512 (9)0.043 (4)*
H13A0.3357 (16)1.149 (3)0.4112 (13)0.090 (7)*
H13B0.2620 (13)1.136 (3)0.4466 (12)0.073 (6)*
H10A0.1961 (13)0.509 (3)0.3165 (11)0.055 (5)*
H10B0.2701 (11)0.531 (2)0.3943 (10)0.050 (4)*
H110.3229 (11)0.826 (2)0.4490 (9)0.047 (4)*
C10.54873 (7)0.08831 (15)0.67511 (6)0.0289 (2)
C20.47896 (7)0.20438 (15)0.61002 (6)0.0306 (2)
H2A0.41580.16890.60830.037*
H2B0.48530.16280.56070.037*
C30.49064 (7)0.43218 (15)0.61797 (6)0.0281 (2)
H3A0.55420.46760.62090.034*
H3B0.48260.47440.66660.034*
C40.42163 (7)0.54741 (15)0.55112 (6)0.0291 (2)
C50.22849 (7)0.78408 (16)0.34760 (6)0.0282 (2)
N100.23172 (8)0.58414 (15)0.35140 (6)0.0381 (3)
N110.28683 (7)0.88965 (14)0.40661 (6)0.0368 (2)
N120.16935 (7)0.87957 (16)0.28669 (6)0.0379 (3)
N130.27963 (9)1.10237 (16)0.40542 (7)0.0446 (3)
O60.54679 (6)0.10939 (12)0.66765 (5)0.0436 (2)
H60.50570.14140.62650.065*
O70.60494 (6)0.17027 (12)0.73220 (5)0.0386 (2)
O80.42768 (6)0.74200 (11)0.55212 (5)0.0395 (2)
O90.36190 (7)0.45581 (13)0.49819 (5)0.0489 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0314 (5)0.0199 (4)0.0270 (5)0.0002 (4)0.0011 (4)0.0023 (3)
C20.0343 (5)0.0190 (4)0.0269 (5)0.0002 (4)0.0052 (4)0.0028 (3)
C30.0326 (5)0.0185 (4)0.0239 (4)0.0009 (3)0.0028 (4)0.0012 (3)
C40.0355 (5)0.0195 (4)0.0239 (4)0.0026 (4)0.0012 (4)0.0013 (3)
C50.0296 (5)0.0241 (4)0.0242 (4)0.0005 (4)0.0005 (4)0.0018 (3)
N100.0454 (6)0.0221 (4)0.0325 (5)0.0001 (4)0.0058 (4)0.0020 (4)
N110.0443 (5)0.0223 (4)0.0285 (4)0.0002 (4)0.0076 (4)0.0024 (3)
N120.0426 (5)0.0261 (5)0.0294 (5)0.0009 (4)0.0082 (4)0.0004 (4)
N130.0525 (7)0.0224 (4)0.0443 (6)0.0012 (4)0.0030 (5)0.0061 (4)
O60.0503 (5)0.0181 (3)0.0396 (5)0.0004 (3)0.0147 (4)0.0026 (3)
O70.0420 (5)0.0250 (4)0.0317 (4)0.0003 (3)0.0097 (3)0.0007 (3)
O80.0485 (5)0.0181 (3)0.0347 (4)0.0009 (3)0.0085 (3)0.0027 (3)
O90.0592 (6)0.0258 (4)0.0348 (4)0.0000 (4)0.0195 (4)0.0018 (3)
Geometric parameters (Å, º) top
C1—O71.2200 (13)C5—N121.3207 (13)
C1—O61.3043 (13)C5—N111.3285 (13)
C1—C21.4978 (13)N10—H10A0.840 (19)
C2—C31.5071 (15)N10—H10B0.871 (17)
C2—H2A0.9700N11—N131.4003 (15)
C2—H2B0.9700N11—H110.884 (17)
C3—C41.5080 (13)N12—H12A0.891 (19)
C3—H3A0.9700N12—H12B0.852 (16)
C3—H3B0.9700N13—H13A0.87 (2)
C4—O91.2293 (13)N13—H13B0.90 (2)
C4—O81.2804 (12)O6—H60.8200
C5—N101.3144 (15)
O7—C1—O6120.79 (9)O8—C4—C3117.56 (9)
O7—C1—C2123.16 (9)N10—C5—N12121.37 (10)
O6—C1—C2116.06 (8)N10—C5—N11118.42 (10)
C1—C2—C3113.65 (8)N12—C5—N11120.21 (10)
C1—C2—H2A108.8C5—N10—H10A123.2 (12)
C3—C2—H2A108.8C5—N10—H10B116.7 (11)
C1—C2—H2B108.8H10A—N10—H10B119.9 (16)
C3—C2—H2B108.8C5—N11—N13118.76 (9)
H2A—C2—H2B107.7C5—N11—H11120.0 (10)
C2—C3—C4113.22 (8)N13—N11—H11120.6 (10)
C2—C3—H3A108.9C5—N12—H12A119.1 (11)
C4—C3—H3A108.9C5—N12—H12B115.2 (11)
C2—C3—H3B108.9H12A—N12—H12B125.7 (16)
C4—C3—H3B108.9N11—N13—H13A106.3 (15)
H3A—C3—H3B107.7N11—N13—H13B106.1 (13)
O9—C4—O8121.94 (9)H13A—N13—H13B111 (2)
O9—C4—C3120.50 (9)C1—O6—H6109.5
O7—C1—C2—C35.34 (16)C2—C3—C4—O8178.55 (10)
O6—C1—C2—C3174.44 (10)N10—C5—N11—N13175.87 (12)
C1—C2—C3—C4178.57 (9)N12—C5—N11—N134.49 (17)
C2—C3—C4—O91.74 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10B···O90.87 (2)1.99 (2)2.851 (1)171 (2)
N11—H11···O80.88 (2)2.07 (2)2.939 (1)166 (1)
N12—H12B···O6i0.85 (2)2.07 (2)2.921 (1)178 (2)
N10—H10A···O7i0.84 (2)2.05 (2)2.886 (1)178 (2)
O6—H6···O8ii0.821.652.456 (1)167
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaCH7N4+·C4H5O4
Mr192.19
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)15.071 (5), 6.565 (2), 18.152 (5)
β (°) 109.733 (5)
V3)1690.5 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.25 × 0.16 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
11302, 2773, 2107
Rint0.021
(sin θ/λ)max1)0.732
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.135, 1.05
No. of reflections2773
No. of parameters146
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10B···O90.87 (2)1.99 (2)2.851 (1)171 (2)
N11—H11···O80.88 (2)2.07 (2)2.939 (1)166 (1)
N12—H12B···O6i0.85 (2)2.07 (2)2.921 (1)178 (2)
N10—H10A···O7i0.84 (2)2.05 (2)2.886 (1)178 (2)
O6—H6···O8ii0.821.652.456 (1)167.1
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y1, z.
 

Acknowledgements

SM and ASP thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationAdams, J. M. (1977). Acta Cryst. B33, 1513–1515.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAkella, A. & Keszler, D. A. (1994). Acta Cryst. C50, 1974–1976.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrownlee, M., Vlassara, H. & Cerami, A. (1986). In Diabetic Complications and Scientific and Clinical Aspects. London: Pitman.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMakita, Z., Yanagisawa, K. & Kuwajima, S. (1995). J. Diabetes Complications, 9, 265–268.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMullen, D. & Hellner, E. (1978). Acta Cryst. B34, 2789–2794.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds