metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Ammonio­prop­yl)morpholin-4-ium tetra­chloridozincate(II)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and bUniverstié Lyon1, Centre de Diffractométrie Henri Longchambon, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 26 January 2009; accepted 6 February 2009; online 18 February 2009)

In the title compound, (C7H18N2O)[ZnCl4], the ZnII ion is coordinated by four Cl atoms in a close to tetra­hedral geometry. The crystal packing exhibits C—H⋯Cl, N—H⋯Cl and N—H⋯O hydrogen bonds.

Related literature

For common applications of this material, see: Bringley & Rajeswaran (2006[Bringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304-m1305.]); Tao et al. (2003[Tao, J., Yin, X., Jiang, Y. B., Yang, L. F., Huang, R. B. & Zheng, L. S. (2003). Eur. J. Inorg. Chem. pp. 2678-2682.]). For structure cohesion, see: Brammer et al. (2002[Brammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956-4961.]). For a discussion of Zn—Cl distances and Cl—Zn—Cl bond angles, see: Guo et al. (2007[Guo, N., Yi, J., Chen, Y., Liao, S. & Fu, Z. (2007). Acta Cryst. E63, m2571.]); Valkonen et al. (2006[Valkonen, A., Ahonen, K. & Kolehmainen, E. (2006). Acta Cryst. C62, m290-m292.]). For computational details, see: Prince (1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H18N2O)[ZnCl4]

  • Mr = 353.42

  • Monoclinic, P 21 /c

  • a = 6.2765 (2) Å

  • b = 14.3552 (4) Å

  • c = 15.4858 (6) Å

  • β = 100.759 (4)°

  • V = 1370.75 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.55 mm−1

  • T = 293 K

  • 0.17 × 0.09 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2002[Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]) Tmin = 0.63, Tmax = 0.82

  • 13120 measured reflections

  • 3304 independent reflections

  • 2815 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.020

  • S = 1.04

  • 2696 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Oi 0.87 1.95 2.821 (2) 173
N2—H3⋯Cl2 0.87 2.43 3.209 (2) 150
C1—H6⋯Cl2ii 0.96 2.72 3.653 (2) 164
C7—H18⋯Cl2iii 0.95 2.70 3.644 (2) 173
C5—H14⋯Cl4ii 0.98 2.82 3.657 (2) 144
N2—H4⋯Cl3iii 0.87 2.54 3.320 (2) 149
N1—H1⋯Cl3iv 0.88 2.42 3.206 (2) 149
C2—H7⋯Cl1iv 0.97 2.74 3.677 (2) 165
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2002[Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2002[Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Hybrid compounds have many practical and potential applications in various field (Tao et al., 2003; Bringley and Rajeswaran, 2006). In these materials, the crystal packing is ensured by hydrogen bonds and coulombic interactions (Brammer et al., 2002). Here we report the crystal structure of the title compound, 4-(3-ammoniopropyl)morpholin-4-ium tetrachlorozincate (II) (Fig. 1).

As shown in Fig. 1, to ensure charge balance, the organic species is double protonated at N1 and N2 nitrogen atoms. The structure consists essentially of an 4-(3-ammoniopropyl)morpholin-4-ium and [ZnCl4]2- anion which are held together by N—H···Cl and C—H···Cl hydrogen bonds so as to build layers developing parallel to (a, c) planes (Fig. 2). These layers, situated at y = 1/4 and y = 3/4, are themselves interconnected by a set of N2—H···Cl hydrogen bonds (Table 1), alternating with layers, to form a three dimensional infinite network (Fig. 3). The Zn (II) ion is in tetrahedral coordination environment composed of four chloride ions. Each ZnCl42- anion is connected to its neighbors organic cations, which are associated via N—H···O hydrogen bonds, by N—H···Cl and C—H···Cl interactions involving four chlorine atoms (Table 1). The Cl1 and Cl4 are simple acceptors, the Cl3 is double acceptor and the Cl2 is triple acceptor of hydrogen bonds. The (N)—H···Cl distances, varying between 2.42 and 2.54 Å, are smaller than the sum of the Van der Walls radii of the chlorine and hydrogen atoms [r(Cl) + r(H) = 2.81 Å]. Consequently, these values correspond well to strong hydrogen bonds.

However, it is worth noticing that the Zn—Cl bond lengths and Cl—Zn—Cl bond angles in the [ZnCl4]2- anion are not equal to one another but vary with the environment around the Cl atoms(Valkonen et al., 2006). In the title compound, the Zn—Cl bond lengths vary between 2.2486 (4) and 2.2950 (4) Å. The Cl—Zn—Cl bond angles range from 104.32 (1) to 114.43 (2) °. These values indicate that the anionic [ZnCl4]2- tetrahedron is slightly distorted (Guo et al., 2007).

Related literature top

For common applications of this material, see: Bringley & Rajeswaran (2006); Tao et al. (2003). For structure cohesion, see: Brammer et al. (2002). For a discussion of Zn—Cl distances and Cl—Zn—Cl bond angles, see: Guo et al. (2007); Valkonen et al. (2006). For the weighting scheme, see: Prince (1982); Watkin (1994).

Experimental top

ZnCl2, aqueous 1M HCl solution and 3-Morpholinopropylamine in a 1:2:1 molar ratio were mixed and dissolved in sufficient ethanol. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in ethanol at room temperature after a few days.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 and O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: Xcalibur User Manual (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED (Oxford Diffraction, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. Crystal structure of (I) viewed along b axis showing the layered organization.
[Figure 3] Fig. 3. The packing of (I) viewed down the a axis showing layers at y = 1/4 and y = 3/4.
4-(3-Ammoniopropyl)morpholin-4-ium tetrachloridozincate(II) top
Crystal data top
(C7H18N2O)[ZnCl4]F(000) = 720
Mr = 353.42Dx = 1.712 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 7336 reflections
a = 6.2765 (2) Åθ = 2.8–29.2°
b = 14.3552 (4) ŵ = 2.55 mm1
c = 15.4858 (6) ÅT = 293 K
β = 100.759 (4)°Block, colorless
V = 1370.75 (8) Å30.17 × 0.09 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction XCALIBUR area-detector
diffractometer
3304 independent reflections
Radiation source: Enhance (Mo) X-ray Source2815 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 15.9897 pixels mm-1θmax = 29.3°, θmin = 2.8°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2002)
k = 1818
Tmin = 0.63, Tmax = 0.82l = 1820
13120 measured reflections
Refinement top
Refinement on FHydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 8.69 -6.08 5.75
wR(F2) = 0.020(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.27 e Å3
2696 reflectionsΔρmin = 0.19 e Å3
137 parametersExtinction correction: Larson (1970), Equation 22
0 restraintsExtinction coefficient: 64 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
(C7H18N2O)[ZnCl4]V = 1370.75 (8) Å3
Mr = 353.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.2765 (2) ŵ = 2.55 mm1
b = 14.3552 (4) ÅT = 293 K
c = 15.4858 (6) Å0.17 × 0.09 × 0.08 mm
β = 100.759 (4)°
Data collection top
Oxford Diffraction XCALIBUR area-detector
diffractometer
3304 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2002)
2815 reflections with I > 2σ(I)
Tmin = 0.63, Tmax = 0.82Rint = 0.021
13120 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.020H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
2696 reflectionsΔρmin = 0.19 e Å3
137 parameters
Special details top

Refinement. Data with I<3σ(I) were excluded from the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.37044 (3)0.371470 (11)0.756164 (11)0.0273
Cl10.48665 (7)0.47971 (3)0.85946 (3)0.0402
Cl20.00747 (6)0.35230 (3)0.74949 (3)0.0367
Cl30.51658 (6)0.22854 (2)0.79921 (3)0.0372
Cl40.43433 (6)0.42069 (3)0.62551 (2)0.0402
C10.2040 (3)0.73398 (12)0.47182 (11)0.0383
C20.2358 (3)0.83554 (14)0.45739 (12)0.0468
C30.0795 (3)0.87396 (11)0.50847 (11)0.0441
C40.1308 (2)0.77313 (10)0.52356 (10)0.0319
C50.0385 (3)0.61461 (10)0.54896 (10)0.0319
C60.1030 (2)0.58498 (10)0.61278 (9)0.0310
C70.0059 (2)0.60272 (10)0.70780 (9)0.0284
O0.0323 (2)0.88265 (8)0.43720 (8)0.0456
N10.07386 (18)0.71776 (8)0.54268 (7)0.0256
N20.1501 (2)0.56344 (9)0.76395 (8)0.0355
H10.15130.73710.59240.0370*
H20.09770.57580.81910.0530*
H30.16100.50370.75690.0543*
H40.27860.58810.75080.0540*
H50.33910.70340.49020.0478*
H60.12540.70590.41900.0461*
H70.32470.86250.50900.0563*
H80.30800.84100.40800.0566*
H90.00950.90010.56120.0534*
H100.21540.90710.49380.0536*
H110.20370.76730.57270.0386*
H120.21850.74680.47140.0373*
H130.18200.58790.56380.0378*
H140.03050.59630.48960.0376*
H150.12240.51880.60590.0375*
H160.24280.61610.59820.0365*
H170.13340.57400.72400.0348*
H180.00680.66790.71930.0354*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02689 (9)0.02429 (9)0.02946 (9)0.00028 (6)0.00203 (6)0.00055 (6)
Cl10.0496 (2)0.03524 (19)0.03582 (19)0.00756 (15)0.00812 (16)0.00963 (14)
Cl20.02569 (16)0.03157 (17)0.0513 (2)0.00010 (12)0.00342 (14)0.00177 (15)
Cl30.02699 (16)0.02632 (16)0.0545 (2)0.00182 (12)0.00201 (15)0.00397 (15)
Cl40.0402 (2)0.0493 (2)0.03073 (18)0.00006 (16)0.00604 (15)0.00497 (15)
C10.0350 (8)0.0496 (9)0.0336 (8)0.0016 (7)0.0147 (6)0.0046 (7)
C20.0456 (9)0.0538 (10)0.0415 (9)0.0109 (8)0.0096 (7)0.0126 (8)
C30.0648 (11)0.0334 (8)0.0370 (8)0.0071 (7)0.0177 (8)0.0041 (6)
C40.0333 (7)0.0331 (7)0.0306 (7)0.0031 (6)0.0093 (6)0.0007 (5)
C50.0405 (8)0.0261 (7)0.0297 (7)0.0009 (5)0.0084 (6)0.0024 (5)
C60.0367 (7)0.0256 (7)0.0300 (7)0.0060 (5)0.0047 (6)0.0010 (5)
C70.0318 (7)0.0238 (6)0.0293 (7)0.0020 (5)0.0052 (5)0.0007 (5)
O0.0610 (8)0.0437 (7)0.0337 (6)0.0007 (5)0.0133 (5)0.0131 (5)
N10.0283 (6)0.0286 (6)0.0192 (5)0.0033 (4)0.0027 (4)0.0002 (4)
N20.0441 (7)0.0331 (6)0.0310 (6)0.0010 (5)0.0119 (5)0.0018 (5)
Geometric parameters (Å, º) top
Zn1—Cl12.2515 (4)C5—H130.966
Zn1—Cl22.2779 (4)C5—H140.976
Zn1—Cl32.2950 (4)C6—C71.5056 (19)
Zn1—Cl42.2486 (4)C6—H160.973
O—C21.427 (2)C6—H150.961
O—C31.419 (2)C7—N21.4790 (18)
C2—C11.494 (2)C7—H180.954
C2—H70.966C7—H170.957
C2—H80.962N2—H20.875
C1—N11.5036 (18)N2—H30.866
C1—H50.950N2—H40.869
C1—H60.961C4—C31.510 (2)
N1—C51.5032 (17)C4—H110.963
N1—C41.4922 (18)C4—H120.965
N1—H10.875C3—H90.974
C5—C61.508 (2)C3—H100.966
Cl1—Zn1—Cl2107.710 (16)C5—C6—C7114.36 (12)
Cl1—Zn1—Cl3110.593 (17)C5—C6—H16109.5
Cl2—Zn1—Cl3104.316 (14)C7—C6—H16109.4
Cl1—Zn1—Cl4109.501 (17)C5—C6—H15106.5
Cl2—Zn1—Cl4109.997 (17)C7—C6—H15107.2
Cl3—Zn1—Cl4114.428 (17)H16—C6—H15109.8
C2—O—C3109.87 (13)C6—C7—N2109.25 (12)
O—C2—C1110.87 (14)C6—C7—H18110.7
O—C2—H7110.3N2—C7—H18107.7
C1—C2—H7109.9C6—C7—H17111.5
O—C2—H8108.8N2—C7—H17108.1
C1—C2—H8107.1H18—C7—H17109.5
H7—C2—H8109.9C7—N2—H2109.7
C2—C1—N1111.48 (13)C7—N2—H3110.2
C2—C1—H5111.0H2—N2—H3109.4
N1—C1—H5106.6C7—N2—H4110.5
C2—C1—H6110.1H2—N2—H4108.0
N1—C1—H6107.0H3—N2—H4109.0
H5—C1—H6110.5N1—C4—C3109.92 (13)
C1—N1—C5107.86 (11)N1—C4—H11108.4
C1—N1—C4109.72 (11)C3—C4—H11110.6
C5—N1—C4113.91 (11)N1—C4—H12107.1
C1—N1—H1107.7C3—C4—H12110.5
C5—N1—H1108.7H11—C4—H12110.3
C4—N1—H1108.8C4—C3—O110.79 (13)
N1—C5—C6115.63 (11)C4—C3—H9110.1
N1—C5—H13105.3O—C3—H9109.2
C6—C5—H13111.7C4—C3—H10107.7
N1—C5—H14104.5O—C3—H10108.4
C6—C5—H14109.2H9—C3—H10110.5
H13—C5—H14110.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Oi0.871.952.821 (2)173
N2—H3···Cl20.872.433.209 (2)150
C1—H6···Cl2ii0.962.723.653 (2)164
C7—H18···Cl2iii0.952.703.644 (2)173
C5—H14···Cl4ii0.982.823.657 (2)144
N2—H4···Cl3iii0.872.543.320 (2)149
N1—H1···Cl3iv0.882.423.206 (2)149
C2—H7···Cl1iv0.972.743.677 (2)165
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z+1; (iii) x, y+1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C7H18N2O)[ZnCl4]
Mr353.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.2765 (2), 14.3552 (4), 15.4858 (6)
β (°) 100.759 (4)
V3)1370.75 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.55
Crystal size (mm)0.17 × 0.09 × 0.08
Data collection
DiffractometerOxford Diffraction XCALIBUR area-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2002)
Tmin, Tmax0.63, 0.82
No. of measured, independent and
observed [I > 2σ(I)] reflections
13120, 3304, 2815
Rint0.021
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.020, 1.04
No. of reflections2696
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.19

Computer programs: Xcalibur User Manual (Oxford Diffraction, 2002), CrysAlis RED (Oxford Diffraction, 2002), SIR97 (Altomare et al., 1999), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Oi0.871.952.821 (2)173
N2—H3···Cl20.8662.4293.209 (2)150.2
C1—H6···Cl2ii0.9612.7193.653 (2)164.1
C7—H18···Cl2iii0.9542.6953.644 (2)173.3
C5—H14···Cl4ii0.9762.8243.657 (2)143.6
N2—H4···Cl3iii0.8692.5433.320 (2)149.3
N1—H1···Cl3iv0.8752.4243.206 (2)149.1
C2—H7···Cl1iv0.9662.7363.677 (2)164.8
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z+1; (iii) x, y+1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

We acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956–4961.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304–m1305.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGuo, N., Yi, J., Chen, Y., Liao, S. & Fu, Z. (2007). Acta Cryst. E63, m2571.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationTao, J., Yin, X., Jiang, Y. B., Yang, L. F., Huang, R. B. & Zheng, L. S. (2003). Eur. J. Inorg. Chem. pp. 2678–2682.  Web of Science CSD CrossRef Google Scholar
First citationValkonen, A., Ahonen, K. & Kolehmainen, E. (2006). Acta Cryst. C62, m290–m292.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds