organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-(5-Bromo-2-hy­droxy­phen­yl)(phen­yl)methyl­ene]benzohydrazide

aCollege of Environment and Chemical Engineering, Xi'an Polytechnic University, 710048 Xi'an, Shaanxi, People's Republic of China, and bDepartment of Material Science and Chemical Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan, People's Republic of China
*Correspondence e-mail: jichangyou789456@126.com

(Received 24 December 2008; accepted 23 January 2009; online 28 February 2009)

In the title compound, C20H15BrN2O2, the C=N double bond displays a trans configuration. The crystal structure features an intra­molecular O—H⋯N hydrogen bond.

Related literature

For literature on similar Schiff bases, see: Carcelli et al. (1995[Carcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43-62.]); Salem (1998[Salem, A. A. (1998). Microchem. J. 60, 51-66.]); Singh et al. (1982[Singh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77-84.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15BrN2O2

  • Mr = 395.25

  • Monoclinic, P 21 /c

  • a = 17.505 (5) Å

  • b = 13.761 (4) Å

  • c = 7.219 (2) Å

  • β = 94.546 (6)°

  • V = 1733.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.39 mm−1

  • T = 298 (2) K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.763, Tmax = 0.870

  • 9019 measured reflections

  • 3078 independent reflections

  • 1722 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.101

  • S = 1.00

  • 3078 reflections

  • 197 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.562 (4) 145

Data collection: SMART (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of aroylhydrazones continues to attract much attention due to their coordination ability to metal ions (Singh et al., 1982; Salem, 1998) and their biological activity (Singh et al., 1982; Carcelli et al., 1995).As an extension of work on the structural characterization of aroylhydrazone derivatives,the title compound, (I),was synthesized and its crystal structure is reported here.

The title molecule displays a trans conformation with respect to the C8=N1 double bond (Fig. 1). The crystal structure is stabilized by intramolecular O—H···N and intermolecular N—H···O hydrogen bonds (Table 1. and Fig. 2).

Related literature top

For literature on similar Schiff bases, see: Carcelli et al. (1995); Salem (1998); Singh et al. (1982).

Experimental top

benzoylhydrazine (0.02 mol,2.72 g) was dissolved in anhydrous ethanol (50 ml), and (5-bromo-2-hydroxyphenyl)(phenyl)methanone (0.02 mol, 5.54 g) was added. The reaction mixture was refluxed for 6 h with stirring, then the resulting precipitate was collected by filtration, washed several times with ethanol and dried in vacuo (yield 85%). The compound (2.0 mmol,0.79 g) was dissolved in dimethylformamide (30 ml) and kept at room temperature for 30 d to obtain yellow single crystals suitable for X-ray diffraction.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms,with C—H(aromatic) = 0.93 Å, O—H = 0.82 Å, and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(Caromatic,N).

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the c axis. Dashed lines show intra-and intermolecular hydrogen bonds.
N'-[(E)-(5-Bromo-2-hydroxyphenyl)(phenyl)methylene]benzohydrazide top
Crystal data top
C20H15BrN2O2F(000) = 800
Mr = 395.25Dx = 1.515 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1125 reflections
a = 17.505 (5) Åθ = 2.3–17.9°
b = 13.761 (4) ŵ = 2.39 mm1
c = 7.219 (2) ÅT = 298 K
β = 94.546 (6)°Block, yellow
V = 1733.4 (9) Å30.12 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker SMART
diffractometer
3078 independent reflections
Radiation source: fine-focus sealed tube1722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1920
Tmin = 0.763, Tmax = 0.870k = 1316
9019 measured reflectionsl = 87
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.038P)2 + 0.0901P]
where P = (Fo2 + 2Fc2)/3
3078 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C20H15BrN2O2V = 1733.4 (9) Å3
Mr = 395.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.505 (5) ŵ = 2.39 mm1
b = 13.761 (4) ÅT = 298 K
c = 7.219 (2) Å0.12 × 0.10 × 0.06 mm
β = 94.546 (6)°
Data collection top
Bruker SMART
diffractometer
3078 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1722 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.870Rint = 0.059
9019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.00Δρmax = 0.31 e Å3
3078 reflectionsΔρmin = 0.28 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.42053 (3)0.11003 (4)0.37885 (7)0.0690 (2)
O10.69581 (16)0.35312 (19)0.2430 (4)0.0600 (8)
H10.73430.32030.23270.090*
O20.89683 (17)0.2957 (2)0.1320 (5)0.0729 (9)
N10.7724 (2)0.1958 (2)0.2165 (4)0.0524 (9)
N20.84133 (19)0.1530 (2)0.1895 (5)0.0573 (9)
H20.84560.09080.19350.069*
C10.6363 (2)0.2941 (3)0.2723 (5)0.0469 (10)
C20.6425 (2)0.1921 (3)0.2769 (5)0.0428 (10)
C30.5771 (2)0.1384 (3)0.3098 (5)0.0463 (10)
H30.57990.07100.31580.056*
C40.5090 (2)0.1842 (3)0.3332 (5)0.0495 (11)
C50.5032 (3)0.2842 (3)0.3297 (5)0.0548 (11)
H50.45710.31480.34810.066*
C60.5670 (3)0.3371 (3)0.2983 (5)0.0566 (12)
H60.56350.40450.29440.068*
C70.7149 (2)0.1422 (3)0.2494 (5)0.0441 (10)
C80.7210 (2)0.0332 (3)0.2583 (6)0.0419 (10)
C90.7594 (2)0.0103 (3)0.4116 (6)0.0553 (12)
H90.77920.02750.51090.066*
C100.7682 (3)0.1098 (3)0.4170 (6)0.0641 (12)
H100.79510.13880.51870.077*
C110.7376 (3)0.1661 (3)0.2735 (7)0.0608 (12)
H110.74340.23320.27830.073*
C120.6986 (2)0.1235 (3)0.1229 (7)0.0579 (12)
H120.67680.16200.02680.069*
C130.6915 (2)0.0232 (3)0.1130 (6)0.0513 (11)
H130.66670.00570.00830.062*
C140.9034 (2)0.2088 (3)0.1563 (6)0.0527 (11)
C150.9765 (2)0.1545 (3)0.1514 (5)0.0471 (10)
C160.9902 (3)0.0672 (3)0.2383 (6)0.0570 (12)
H160.95240.03910.30430.068*
C171.0594 (3)0.0201 (3)0.2294 (6)0.0652 (13)
H171.06810.03910.28950.078*
C181.1156 (3)0.0609 (4)0.1314 (7)0.0701 (14)
H181.16220.02930.12320.084*
C191.1021 (3)0.1485 (4)0.0465 (7)0.0726 (14)
H191.14010.17660.01880.087*
C201.0337 (3)0.1958 (3)0.0553 (6)0.0584 (12)
H201.02560.25560.00310.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0514 (3)0.0762 (4)0.0801 (4)0.0014 (3)0.0099 (2)0.0023 (3)
O10.065 (2)0.0412 (17)0.074 (2)0.0003 (15)0.0062 (18)0.0016 (16)
O20.063 (2)0.0396 (18)0.115 (3)0.0032 (16)0.0033 (18)0.0054 (19)
N10.049 (2)0.047 (2)0.062 (2)0.0002 (19)0.0078 (18)0.0026 (18)
N20.047 (2)0.042 (2)0.084 (3)0.0039 (18)0.0108 (19)0.0040 (19)
C10.057 (3)0.043 (3)0.041 (2)0.001 (2)0.003 (2)0.000 (2)
C20.050 (3)0.045 (3)0.034 (2)0.007 (2)0.0050 (19)0.001 (2)
C30.049 (3)0.049 (3)0.041 (2)0.007 (2)0.0006 (19)0.003 (2)
C40.047 (3)0.061 (3)0.041 (2)0.005 (2)0.0044 (19)0.001 (2)
C50.054 (3)0.056 (3)0.054 (3)0.013 (2)0.002 (2)0.005 (2)
C60.073 (3)0.041 (3)0.055 (3)0.011 (3)0.000 (2)0.001 (2)
C70.044 (3)0.044 (3)0.044 (2)0.002 (2)0.0040 (19)0.001 (2)
C80.037 (2)0.039 (3)0.050 (3)0.0013 (19)0.0071 (19)0.002 (2)
C90.062 (3)0.052 (3)0.051 (3)0.003 (2)0.003 (2)0.003 (2)
C100.075 (3)0.056 (3)0.062 (3)0.012 (3)0.008 (2)0.013 (3)
C110.063 (3)0.040 (3)0.083 (4)0.005 (2)0.024 (3)0.006 (3)
C120.054 (3)0.051 (3)0.070 (3)0.007 (2)0.012 (2)0.012 (3)
C130.051 (3)0.048 (3)0.054 (3)0.005 (2)0.002 (2)0.001 (2)
C140.054 (3)0.044 (3)0.060 (3)0.012 (2)0.000 (2)0.003 (2)
C150.046 (3)0.043 (3)0.052 (3)0.008 (2)0.001 (2)0.003 (2)
C160.058 (3)0.051 (3)0.062 (3)0.004 (2)0.005 (2)0.001 (3)
C170.074 (4)0.049 (3)0.070 (3)0.005 (3)0.012 (3)0.001 (3)
C180.050 (3)0.084 (4)0.075 (4)0.009 (3)0.003 (3)0.022 (3)
C190.051 (3)0.101 (4)0.067 (3)0.012 (3)0.011 (2)0.000 (3)
C200.057 (3)0.060 (3)0.058 (3)0.011 (3)0.003 (2)0.010 (2)
Geometric parameters (Å, º) top
Br1—C41.905 (4)C9—C101.378 (5)
O1—C11.350 (4)C9—H90.9300
O1—H10.8200C10—C111.368 (5)
O2—C141.213 (4)C10—H100.9300
N1—C71.284 (4)C11—C121.369 (5)
N1—N21.370 (4)C11—H110.9300
N2—C141.367 (5)C12—C131.387 (5)
N2—H20.8600C12—H120.9300
C1—C61.376 (5)C13—H130.9300
C1—C21.409 (5)C14—C151.484 (6)
C2—C31.397 (5)C15—C161.369 (5)
C2—C71.469 (5)C15—C201.384 (5)
C3—C41.370 (5)C16—C171.380 (6)
C3—H30.9300C16—H160.9300
C4—C51.380 (5)C17—C181.377 (6)
C5—C61.368 (5)C17—H170.9300
C5—H50.9300C18—C191.364 (7)
C6—H60.9300C18—H180.9300
C7—C81.506 (5)C19—C201.370 (6)
C8—C131.373 (5)C19—H190.9300
C8—C91.384 (5)C20—H200.9300
C1—O1—H1109.5C11—C10—H10119.8
C7—N1—N2119.5 (3)C9—C10—H10119.8
C14—N2—N1120.3 (4)C10—C11—C12120.0 (4)
C14—N2—H2119.9C10—C11—H11120.0
N1—N2—H2119.9C12—C11—H11120.0
O1—C1—C6117.5 (4)C11—C12—C13120.2 (4)
O1—C1—C2123.0 (4)C11—C12—H12119.9
C6—C1—C2119.4 (4)C13—C12—H12119.9
C3—C2—C1117.9 (4)C8—C13—C12119.8 (4)
C3—C2—C7120.2 (4)C8—C13—H13120.1
C1—C2—C7121.8 (4)C12—C13—H13120.1
C4—C3—C2120.7 (4)O2—C14—N2120.8 (4)
C4—C3—H3119.7O2—C14—C15124.4 (4)
C2—C3—H3119.7N2—C14—C15114.8 (4)
C3—C4—C5121.3 (4)C16—C15—C20118.8 (4)
C3—C4—Br1120.2 (3)C16—C15—C14123.5 (4)
C5—C4—Br1118.5 (3)C20—C15—C14117.7 (4)
C6—C5—C4118.3 (4)C15—C16—C17121.0 (4)
C6—C5—H5120.8C15—C16—H16119.5
C4—C5—H5120.8C17—C16—H16119.5
C5—C6—C1122.3 (4)C18—C17—C16119.9 (5)
C5—C6—H6118.8C18—C17—H17120.1
C1—C6—H6118.8C16—C17—H17120.1
N1—C7—C2117.1 (4)C19—C18—C17119.1 (5)
N1—C7—C8121.7 (4)C19—C18—H18120.4
C2—C7—C8121.2 (3)C17—C18—H18120.4
C13—C8—C9119.7 (4)C18—C19—C20121.4 (5)
C13—C8—C7120.6 (4)C18—C19—H19119.3
C9—C8—C7119.6 (4)C20—C19—H19119.3
C10—C9—C8119.9 (4)C19—C20—C15119.9 (4)
C10—C9—H9120.1C19—C20—H20120.1
C8—C9—H9120.1C15—C20—H20120.1
C11—C10—C9120.3 (4)
C7—N1—N2—C14179.3 (4)C2—C7—C8—C9106.2 (4)
O1—C1—C2—C3179.5 (3)C13—C8—C9—C100.5 (6)
C6—C1—C2—C30.6 (5)C7—C8—C9—C10177.1 (4)
O1—C1—C2—C70.1 (6)C8—C9—C10—C111.6 (6)
C6—C1—C2—C7179.8 (3)C9—C10—C11—C120.6 (6)
C1—C2—C3—C41.2 (5)C10—C11—C12—C131.6 (6)
C7—C2—C3—C4179.2 (3)C9—C8—C13—C121.6 (6)
C2—C3—C4—C51.6 (6)C7—C8—C13—C12179.1 (4)
C2—C3—C4—Br1179.8 (3)C11—C12—C13—C82.6 (6)
C3—C4—C5—C61.3 (6)N1—N2—C14—O27.3 (6)
Br1—C4—C5—C6179.5 (3)N1—N2—C14—C15173.2 (3)
C4—C5—C6—C10.7 (6)O2—C14—C15—C16156.7 (4)
O1—C1—C6—C5179.8 (3)N2—C14—C15—C1623.8 (5)
C2—C1—C6—C50.3 (6)O2—C14—C15—C2022.5 (6)
N2—N1—C7—C2179.9 (3)N2—C14—C15—C20157.0 (4)
N2—N1—C7—C80.3 (5)C20—C15—C16—C170.7 (6)
C3—C2—C7—N1178.8 (3)C14—C15—C16—C17179.8 (4)
C1—C2—C7—N11.6 (5)C15—C16—C17—C180.2 (6)
C3—C2—C7—C80.8 (5)C16—C17—C18—C190.9 (7)
C1—C2—C7—C8178.8 (3)C17—C18—C19—C200.6 (7)
N1—C7—C8—C13103.3 (4)C18—C19—C20—C150.3 (7)
C2—C7—C8—C1376.3 (5)C16—C15—C20—C190.9 (6)
N1—C7—C8—C974.2 (5)C14—C15—C20—C19179.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.562 (4)145

Experimental details

Crystal data
Chemical formulaC20H15BrN2O2
Mr395.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)17.505 (5), 13.761 (4), 7.219 (2)
β (°) 94.546 (6)
V3)1733.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.39
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.763, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
9019, 3078, 1722
Rint0.059
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.101, 1.00
No. of reflections3078
No. of parameters197
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.28

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.8201.8462.562 (4)145
 

Acknowledgements

This project was supported by the Postgraduate Foundation of Xi'an Polytechnic University (grant No. Y05-2-09).

References

First citationBruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43–62.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSalem, A. A. (1998). Microchem. J. 60, 51–66.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77–84.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds