organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(3,5-di­methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 13 January 2009; accepted 14 January 2009; online 4 February 2009)

In the structure of the the title compound, C15H14ClNO, the N—H and C=O bonds are trans to each other and the amide O atom is anti to the ortho-Cl atom in the benzoyl ring. The amide group makes dihedral angles of 61.2 (6) and 42.2 (8)° with the benzoyl and aniline rings, respectively. In the crystal, the mol­ecules are linked into infinite chains by N—H⋯O hydrogen bonds.

Related literature

For the synthesis, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For structure of the 3,5-dichloro­phenyl analog and other benzanilides, see: Gowda et al. (2008a[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o1294.],b[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1365.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14ClNO

  • Mr = 259.72

  • Orthorhombic, P n a 21

  • a = 9.1867 (6) Å

  • b = 13.9710 (8) Å

  • c = 10.2711 (7) Å

  • V = 1318.27 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 (2) K

  • 0.48 × 0.28 × 0.13 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.879, Tmax = 0.965

  • 6034 measured reflections

  • 2136 independent reflections

  • 1977 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.03

  • 2136 reflections

  • 187 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 712 Friedel pairs

  • Flack parameter: 0.01 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.831 (17) 2.120 (18) 2.918 (2) 161 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the structure of 2-chloro-N-(3,5-dimethylphenyl)- benzamide (N35DMP2CBA) has been determined to explore the substituent effects on the solid state structures of benzanilides (Gowda et al., 2003, 2008a,b). The conformations of N—H and C=O bonds in the amide group of N35DMP2CBA are trans to each other (Fig.1), similar to that observed in 2-chloro-N-(3,5-dichlorophenyl)-benzamide(N35DCP2CBA) (Gowda et al., 2008a), 2-chloro-N-(phenyl)-benzamide (NP2CBA) (Gowda et al., 2003) and other benzanilides (Gowda et al., 2008b). Further, the conformation of the amide oxygen in N35DMP2CBA is anti to the ortho-chloro group in the benzoyl ring similar to that observed in N35DCP2CBA but in contrast to the syn conformation observed in NP2CBA. The amide group –NHCO– makes the dihedral angles of 61.2 (6)° and 42.2 (8)° with the benzoyl and aniline rings, respectively, while the benzoyl and aniline rings form the dihedral angle of 76.7 (1)°), compared to the corresponding values of 63.1 (12)°, 31.1 (17)° and 32.1 (2)°) in N35DCP2CBA. Part of the crystal structure of the title compound with infinite molecular chains running along the a axis is shown in Fig. 2. The chains are generated by N—H···O hydrogen bonds (Table 1)

Related literature top

For the synthesis, see: Gowda et al. (2003). For structure of the 3,5-dichlorophenyl analog and other benzanilides, see: Gowda et al. (2008a,b).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The H atoms of the methyl groups were positioned with idealized geometry using a riding model with C—H = 0.98 Å. The other H atoms were located in difference map, and its positional parameters were refined freely with C—H = 0.89 (3)–0.99 (3) Å, while the H atom of the NH group was later restrained to the distance 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
2-Chloro-N-(3,5-dimethylphenyl)benzamide top
Crystal data top
C15H14ClNOF(000) = 544
Mr = 259.72Dx = 1.309 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2104 reflections
a = 9.1867 (6) Åθ = 2.5–28.1°
b = 13.9710 (8) ŵ = 0.28 mm1
c = 10.2711 (7) ÅT = 100 K
V = 1318.27 (15) Å3Prism, colourless
Z = 40.48 × 0.28 × 0.13 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2136 independent reflections
Radiation source: fine-focus sealed tube1977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1111
Tmin = 0.879, Tmax = 0.965k = 1717
6034 measured reflectionsl = 1012
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.598P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
2136 reflectionsΔρmax = 0.34 e Å3
187 parametersΔρmin = 0.27 e Å3
2 restraintsAbsolute structure: Flack (1983), 712 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
C15H14ClNOV = 1318.27 (15) Å3
Mr = 259.72Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.1867 (6) ŵ = 0.28 mm1
b = 13.9710 (8) ÅT = 100 K
c = 10.2711 (7) Å0.48 × 0.28 × 0.13 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2136 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1977 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.965Rint = 0.014
6034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083Δρmax = 0.34 e Å3
S = 1.03Δρmin = 0.27 e Å3
2136 reflectionsAbsolute structure: Flack (1983), 712 Friedel pairs
187 parametersAbsolute structure parameter: 0.01 (7)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11485 (6)0.32674 (4)1.16333 (7)0.03305 (16)
O10.19372 (16)0.32548 (10)0.85807 (18)0.0253 (4)
N10.01100 (18)0.24094 (12)0.8052 (2)0.0210 (4)
H1N0.0995 (19)0.2359 (18)0.820 (3)0.025*
C10.0540 (2)0.17351 (13)0.7178 (2)0.0211 (4)
C20.0112 (2)0.07840 (15)0.7257 (3)0.0247 (5)
H20.049 (3)0.0577 (18)0.794 (3)0.030*
C30.0694 (2)0.01080 (14)0.6398 (3)0.0299 (6)
C40.1719 (3)0.04035 (16)0.5498 (3)0.0307 (5)
H40.219 (3)0.0046 (18)0.489 (3)0.037*
C50.2166 (3)0.13617 (16)0.5410 (2)0.0287 (5)
C60.1549 (2)0.20260 (15)0.6256 (2)0.0249 (5)
H60.192 (3)0.2682 (18)0.617 (3)0.030*
C70.0614 (2)0.31152 (14)0.8664 (2)0.0200 (4)
C80.0321 (2)0.37827 (13)0.9446 (2)0.0193 (4)
C90.0080 (2)0.39557 (15)1.0757 (2)0.0237 (5)
C100.0849 (3)0.46637 (16)1.1420 (2)0.0289 (5)
H100.068 (3)0.4734 (19)1.232 (3)0.035*
C110.1868 (2)0.52064 (16)1.0761 (3)0.0313 (6)
H110.240 (3)0.5734 (18)1.117 (3)0.038*
C120.2157 (3)0.50321 (15)0.9463 (3)0.0305 (5)
H120.285 (3)0.539 (2)0.907 (3)0.037*
C130.1396 (2)0.43181 (16)0.8809 (3)0.0239 (5)
H130.157 (3)0.4197 (18)0.798 (3)0.029*
C140.0200 (3)0.09234 (15)0.6467 (4)0.0409 (7)
H14A0.00780.11110.73800.049*
H14B0.09320.13350.60570.049*
H14C0.07290.09930.60080.049*
C150.3281 (3)0.16747 (18)0.4422 (3)0.0392 (6)
H15A0.28540.16450.35480.047*
H15B0.41280.12500.44650.047*
H15C0.35850.23330.46100.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0362 (3)0.0325 (3)0.0304 (3)0.0048 (2)0.0079 (3)0.0058 (3)
O10.0141 (7)0.0272 (7)0.0345 (10)0.0016 (5)0.0019 (7)0.0081 (7)
N10.0133 (8)0.0218 (8)0.0280 (10)0.0020 (6)0.0015 (8)0.0034 (7)
C10.0164 (9)0.0219 (10)0.0249 (11)0.0019 (7)0.0043 (9)0.0049 (8)
C20.0178 (9)0.0242 (10)0.0323 (13)0.0008 (8)0.0045 (10)0.0028 (9)
C30.0219 (10)0.0225 (9)0.0454 (16)0.0042 (7)0.0137 (11)0.0063 (10)
C40.0269 (11)0.0306 (11)0.0345 (14)0.0099 (9)0.0078 (11)0.0150 (10)
C50.0261 (11)0.0337 (11)0.0262 (14)0.0060 (9)0.0032 (11)0.0064 (10)
C60.0238 (10)0.0221 (10)0.0286 (13)0.0010 (8)0.0015 (9)0.0030 (8)
C70.0180 (10)0.0211 (9)0.0208 (12)0.0005 (7)0.0029 (9)0.0011 (8)
C80.0172 (9)0.0188 (9)0.0220 (12)0.0048 (7)0.0034 (9)0.0019 (8)
C90.0211 (9)0.0228 (10)0.0273 (13)0.0085 (8)0.0010 (9)0.0008 (8)
C100.0351 (12)0.0282 (10)0.0235 (14)0.0127 (8)0.0098 (11)0.0094 (9)
C110.0271 (11)0.0249 (10)0.0418 (16)0.0037 (8)0.0135 (11)0.0097 (10)
C120.0221 (11)0.0270 (11)0.0424 (16)0.0016 (9)0.0052 (12)0.0005 (10)
C130.0188 (10)0.0279 (10)0.0250 (13)0.0015 (8)0.0016 (9)0.0032 (9)
C140.0319 (12)0.0227 (10)0.068 (2)0.0007 (8)0.0118 (14)0.0102 (13)
C150.0412 (14)0.0471 (14)0.0294 (14)0.0052 (12)0.0090 (13)0.0100 (12)
Geometric parameters (Å, º) top
Cl1—C91.735 (2)C8—C91.386 (3)
O1—C71.234 (3)C8—C131.401 (3)
N1—C71.346 (3)C9—C101.393 (3)
N1—C11.431 (3)C10—C111.383 (4)
N1—H1N0.831 (17)C10—H100.94 (3)
C1—C61.386 (3)C11—C121.380 (4)
C1—C21.388 (3)C11—H110.98 (3)
C2—C31.399 (3)C12—C131.391 (3)
C2—H20.94 (3)C12—H120.91 (3)
C3—C41.382 (4)C13—H130.89 (3)
C3—C141.512 (3)C14—H14A0.9800
C4—C51.403 (3)C14—H14B0.9800
C4—H40.99 (3)C14—H14C0.9800
C5—C61.392 (3)C15—H15A0.9800
C5—C151.506 (4)C15—H15B0.9800
C6—H60.98 (3)C15—H15C0.9800
C7—C81.501 (3)
C7—N1—C1124.70 (17)C8—C9—C10121.2 (2)
C7—N1—H1N117.2 (19)C8—C9—Cl1120.74 (16)
C1—N1—H1N118.1 (19)C10—C9—Cl1118.02 (19)
C6—C1—C2120.7 (2)C11—C10—C9119.5 (2)
C6—C1—N1120.94 (18)C11—C10—H10122.3 (18)
C2—C1—N1118.4 (2)C9—C10—H10118.1 (18)
C1—C2—C3120.1 (2)C12—C11—C10120.4 (2)
C1—C2—H2120.5 (16)C12—C11—H11116.7 (18)
C3—C2—H2119.2 (16)C10—C11—H11122.8 (18)
C4—C3—C2118.7 (2)C11—C12—C13119.8 (2)
C4—C3—C14121.3 (2)C11—C12—H12118 (2)
C2—C3—C14119.9 (2)C13—C12—H12122 (2)
C3—C4—C5121.8 (2)C12—C13—C8120.7 (2)
C3—C4—H4122.2 (16)C12—C13—H13120.8 (17)
C5—C4—H4116.0 (16)C8—C13—H13118.5 (17)
C6—C5—C4118.4 (2)C3—C14—H14A109.5
C6—C5—C15120.3 (2)C3—C14—H14B109.5
C4—C5—C15121.3 (2)H14A—C14—H14B109.5
C1—C6—C5120.2 (2)C3—C14—H14C109.5
C1—C6—H6124.8 (16)H14A—C14—H14C109.5
C5—C6—H6114.9 (16)H14B—C14—H14C109.5
O1—C7—N1124.76 (19)C5—C15—H15A109.5
O1—C7—C8120.18 (18)C5—C15—H15B109.5
N1—C7—C8115.01 (18)H15A—C15—H15B109.5
C9—C8—C13118.23 (19)C5—C15—H15C109.5
C9—C8—C7122.49 (19)H15A—C15—H15C109.5
C13—C8—C7119.0 (2)H15B—C15—H15C109.5
C7—N1—C1—C642.6 (3)O1—C7—C8—C957.9 (3)
C7—N1—C1—C2138.7 (2)N1—C7—C8—C9124.6 (2)
C6—C1—C2—C30.3 (3)O1—C7—C8—C13116.2 (2)
N1—C1—C2—C3178.36 (19)N1—C7—C8—C1361.3 (3)
C1—C2—C3—C41.4 (3)C13—C8—C9—C102.1 (3)
C1—C2—C3—C14178.6 (2)C7—C8—C9—C10172.08 (18)
C2—C3—C4—C51.2 (4)C13—C8—C9—Cl1175.77 (15)
C14—C3—C4—C5178.8 (2)C7—C8—C9—Cl110.1 (3)
C3—C4—C5—C60.2 (4)C8—C9—C10—C110.2 (3)
C3—C4—C5—C15179.8 (2)Cl1—C9—C10—C11178.07 (16)
C2—C1—C6—C51.1 (3)C9—C10—C11—C121.9 (3)
N1—C1—C6—C5179.7 (2)C10—C11—C12—C131.3 (3)
C4—C5—C6—C11.3 (3)C11—C12—C13—C81.1 (3)
C15—C5—C6—C1179.0 (2)C9—C8—C13—C122.7 (3)
C1—N1—C7—O12.2 (4)C7—C8—C13—C12171.68 (19)
C1—N1—C7—C8175.16 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.12 (2)2.918 (2)161 (2)
Symmetry code: (i) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H14ClNO
Mr259.72
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)9.1867 (6), 13.9710 (8), 10.2711 (7)
V3)1318.27 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.48 × 0.28 × 0.13
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.879, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
6034, 2136, 1977
Rint0.014
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.03
No. of reflections2136
No. of parameters187
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.27
Absolute structureFlack (1983), 712 Friedel pairs
Absolute structure parameter0.01 (7)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.831 (17)2.120 (18)2.918 (2)161 (2)
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o1294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds